Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA

Tel: 888-847-8027

DS2NA1-WR2117TX

Issued: September 2, 2021

EMC Test Report

regarding

USA: CFR Title 47, Part 15.247 (Emissions)
Canada: IC RSS-247/GENe (Emissions)

for

S2NA1

Category: DTS Module

Judgments:

FCC 15.247, ISED RSS-247v2 Compliant

Testing Completed: August 11, 2021

Prepared for:

DENSO International America, Inc.

24777 DENSO Drive, Southfield Michigan 48033 USA

Phone: +(248) 750-3798, Fax:

Contact: Jason Summerford , jason.summerford@na.denso.com

Data Recorded by:

r Joseph Brunett, EMC-002790-NE

Reviewed by:

Gordon Helm, EMC-002401-NE

Prepared by:

Dr. Jøseph Brunett, EMC-002790-NE

Date of Issue:

September 2, 2021

Revision History

Rev	. No.	Date	Details	Revised By
r0 r1		September 2, 2021 September 16, 2021	Initial Release. Correct DTS OBW Meas.	J. Brunett J. Brunett
Con	tents			
Revis	sion Histor	y		2
Table	e of Conten	ats		2
1 Te 1.5 1.5 1.6 1.7 1.8 1.6 1.7 1.8 1.9	Laborator Report R Subcontra Test Data Limitatio Copyright Endorsem Test Loca	etention	ns	5 5 5 5 5 5 5 5 6
2 Te		ations and Procedure ification and General Pr	es cocedures	7
3 Co	1 Description 3.1.1 EV 3.1.2 M 3.1.3 Va 3.1.4 Te 3.1.5 Ft 3.1.6 M 3.1.7 Pr	on and Declarations	Additional Product Notes	999999
4 En 4.:	4.1.1 Ra 4.1.2 Co 4.1.3 Po 2 Intentiona 4.2.1 Do 4.2.2 Fo 4.2.3 Ef 4.2.4 Po 3 Unintenti 4.3.1 To 4.3.2 Ro	adiated Test Setup and conducted Emissions Test ower Supply Variation al Emissions	Procedures	

Date: September 2, 2021 Prepared For: DENSO International America, Inc. Report No.: DS2NA1-WR2117TX

5 Measurement Uncertainty and Accreditation Documents

24

List of Tables

1	Test Site List	6
2	Equipment List.	6
3	EUT Declarations	8
4	Pulsed Emission Characteristics (Duty Cycle)	
5	Intentional Emission Bandwidth	15
6	Radiated Power Results	17
7	Power Spectral Density Results	19
8	Transmit Chain Spurious Emissions	21
9	Radiated Digital Spurious Emissions.	23
10	Measurement Uncertainty	24
1	f Figures Photos of EUT	8
_	1 110005 01 110 1	
2		
$\frac{2}{3}$	EUT Test Configuration Diagram	Ć
_	EUT Test Configuration Diagram	(1 11
3	EUT Test Configuration Diagram	11 12 13
3	EUT Test Configuration Diagram. Radiated Emissions Diagram of the EUT. Radiated Emissions Test Setup Photograph(s). Conducted RF Test Setup Photograph(s). Pulsed Emission Characteristics (Duty Cycle).	11 12 13 14
3 4 5	EUT Test Configuration Diagram. Radiated Emissions Diagram of the EUT. Radiated Emissions Test Setup Photograph(s). Conducted RF Test Setup Photograph(s). Pulsed Emission Characteristics (Duty Cycle). Intentional Emission Bandwidth.	11 12 13 14 16
3 4 5 6	EUT Test Configuration Diagram. Radiated Emissions Diagram of the EUT. Radiated Emissions Test Setup Photograph(s). Conducted RF Test Setup Photograph(s). Pulsed Emission Characteristics (Duty Cycle).	11 12 13 14 16
3 4 5 6 7	EUT Test Configuration Diagram. Radiated Emissions Diagram of the EUT. Radiated Emissions Test Setup Photograph(s). Conducted RF Test Setup Photograph(s). Pulsed Emission Characteristics (Duty Cycle). Intentional Emission Bandwidth. Conducted RF Power Plots Power Spectral Density Plots.	11 12 13 14 16 18
3 4 5 6 7 8	EUT Test Configuration Diagram. Radiated Emissions Diagram of the EUT. Radiated Emissions Test Setup Photograph(s). Conducted RF Test Setup Photograph(s). Pulsed Emission Characteristics (Duty Cycle). Intentional Emission Bandwidth. Conducted RF Power Plots	11 12 13 14 16 18

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until October 2031.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.

Description	Location	Quality Num.
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	$\mathbf{S}\mathbf{N}$	Quality Num.	Cal/Ver By / Date Due
Spectrum Analyzer	R & S / FPC1000	101060	RSFPC1K01	RS / Jan-2022
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2023
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2023
Log Periodic Antenna	EMCO / 3146	9305 - 3614	LOGEMCO01	Keysight / Aug-2023
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2022
K-Band Horn	JEF / NRL Std.	001	HRNK01	AHD / Jul-2022
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB001-BLACK	AHD / Oct-2021
$3.5\text{-}3.5\mathrm{MM}$ Coax	PhaseFlex / PhaseFlex	001	CAB015-PURP	AHD / Jul-2022

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of DENSO International America, Inc. is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the DENSO International America, Inc. S2NA1 for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)	
United States	Code of Federal Regulations	CFR Title 47, Part 15.247	
Canada	ISED Canada	IC RSS-247/GENe	

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
KDB 558074 D01 v05r02	"GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"
ICES-003; Issue 7 (2020)	"Information Technology Equipment (ITE) - Limits and methods of measurement" $$

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The EUT is wireless transceiver module. The EUT is approximately $11 \times 9 \times 2$ cm in dimension, and is depicted in Figure 1. It is powered by 13.4 VDC vehicular power system. This device is a BLE module used in a motor vehicle. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3: EUT Declarations.

General	Declarations

Equipment Type:DTS ModuleCountry of Origin:USANominal Supply:13.4 VDCOper. Temp Range:not declaredFrequency Range:2402 – 2480 MHzAntenna Dimension:IntegralAntenna Type:PCB Trace

Antenna Type:
Antenna Gain:
Number of Channels:
Channel Spacing:
Alignment Range:
Not Declared
Type of Modulation:

PCB Trace
3.3 dBi
40
2 MHz
Not Declared
GFSK

United States

FCC ID Number: 2AYGPS2NA1 Classification: DTS

Canada

IC Number: 26851-S2NA1

Classification: Spread Spectrum (24002483.5 MHz)

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

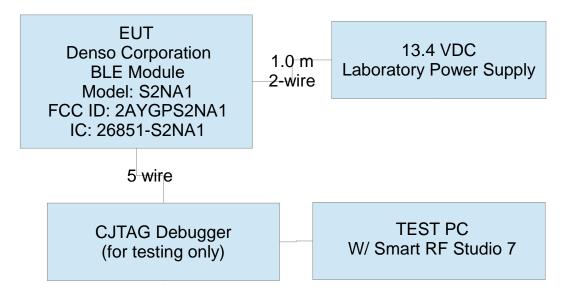


Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT is capable of one modulation, BLE 1MBps GFSK modulation. This mode was tested herein. Test samples were programmed for low, middle, high channels and worst-case data rates via UART interface and TI Smart RF Studio test software.

3.1.3 Variants

There is only a single version of the EUT.

3.1.4 Test Samples

Two samples in total were provided. One radiated emissions sample and one sample with the antenna replaced by an RF connector for conducted RF emissions testing. All samples were modified by manufacturer to allow test software programming.

3.1.5 Functional Exerciser

Normal functionality was confirmed by measurement of transmitted signals.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003).

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

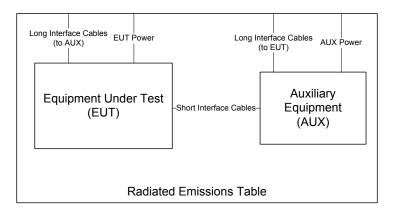


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broad-band probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

Transmit Antenna Port Conducted Emissions At least one sample EUT supplied for testing was provided with a 50Ω antenna port. Conducted transmit chain emissions measurements (where applicable) are made by connecting the EUT antenna port directly to the test receiver port. Photographs of the test setup employed are depicted in Figure 5.

Figure 5: Conducted RF Test Setup Photograph(s).

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

4.2 Intentional Emissions

4.2.1 Duty and Transmission Cycle, Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 6.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Test Date: 20-Jul-21
Test Engineer: Joseph Brunett
EUT DENSO S2NA1
Meas. Distance: Conducted

	Test Mode Pulsed Operation / Average Measurement Duty Cycle									
	Mode	Data Rate	Voltage	Oper. Freq	Pulse Length	Pulse	Duty Cycle	Power Duty Correction		
#	# Mode	Mbps	V	MHz	Puise Lengin	Period	%	dB		
R1	BLE	1.0	12.7	2440.0	-	-	100.0			
R2										
R3										
R4										
R5					·					
#	C1	C3	C4	C5	C6	C7	C8	C9		

^{*} Duty Cycle is measured in line with DTS guidance 558074 D01 v5 r02 section 6(b) for averaging only over full-power transmission pulses.

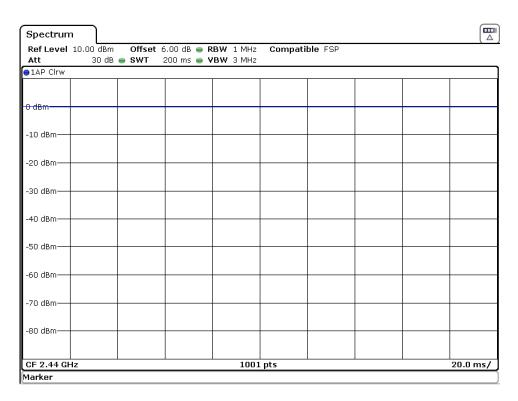


Figure 6: Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available packet length and minimum packet spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 6 dB bandwidth is measured for the lowest, middle, and highest channels available. The 99% emission bandwidth per IC test procedures is also reported. The results of this testing are summarized in Table 5. Plots showing measurements employed obtain the emission bandwidths reported are provided in Figure 7.

Table 5: Intentional Emission Bandwidth.

Test Date: 20-Jul-21
Test Engineer: Joseph Brunett
EUT DENSO S2NA1

Meas. Distance: Conducted

	Occupied Bandwidth								
	Transmit Mode	Data Rate	Voltage	Oper. Freq	6 dB BW	6 dB BW Limit	99% OBW	20 dB BW	Pass/Fail
#	Transmit Wode	(Mbps)	(V)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	Pass/Faii
R1				2402.0	0.729	0.50	1.078	1.230	Pass
R2	BLE	1.0	12.7	2440.0	0.719	0.50	1.085	1.245	Pass
R3				2480.0	0.718	0.50	1.093	1.245	Pass
R4									
R5									
R6									
#	C1	C2	C3	C4	C5	C6	C7	C8	C9

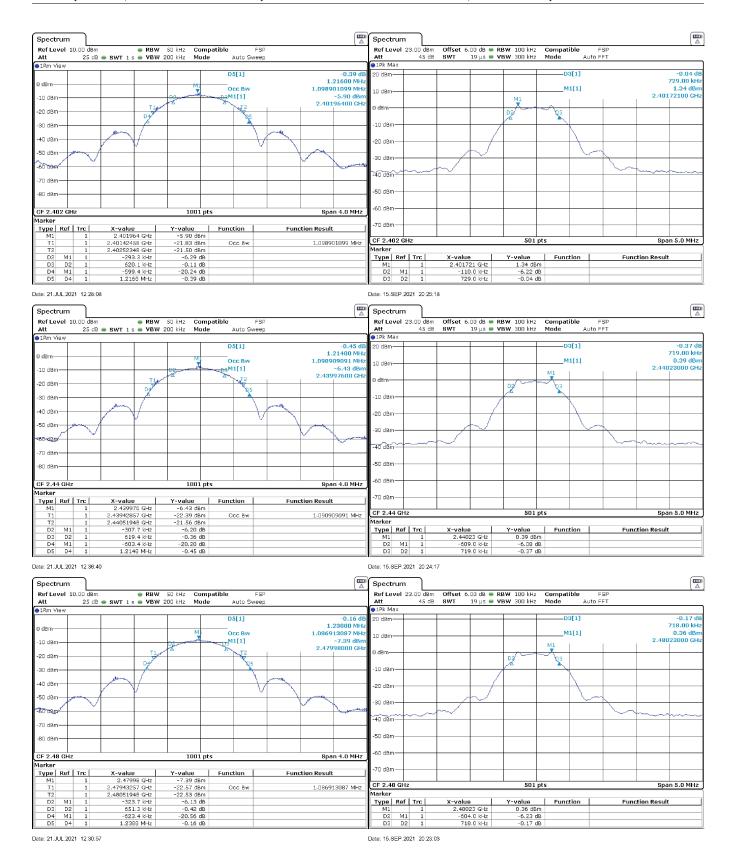


Figure 7: Intentional Emission Bandwidth.

4.2.3 Effective Isotropic Radiated Power

The EUT's radiated power is computed from antenna port conducted power measurements and the gain of the EUT antenna(s). Where the EUT is not sold with an antenna connector, a modified product has been provided including such. The results of this testing are summarized in Table 6.

Peak conducted output power was measured

Table 6: Radiated Power Results.

Test Date: 20-Jul-21
Test Engineer: Joseph Brunett
EUT: DENSO S2NA1
Meas. Distance: Conducted

	Fundamental Power										
			Freq.	Pout (Pk)	Duty	Pout + Duty	Ant Gain**	EIRP (Pk)	EIRP (Avg) Limit	Pass	Comments
#	Mode	Channel	MHz	dBm	dB	dBm	dBi	dBm	dBm	dB	
R1		37	2402.0	1.6		1.6	3.3	4.9	36.0	31.2	
R2	BLE (1MBPS)*	19	2440.0	0.6		0.6	3.3	3.9	36.0	32.1	
R3		39	2480.0	0.6		0.6	3.3	3.9	36.0	32.1	
R4											
R5											
R6											
* M e:	sured conducted fr	om Fadio o	onducted	l sampl ^{£4} Avg P	ower measured	per DFS Guida	nce 558674 D01	v5 r02 Section 8.3.2	.2 / ANSF C63.10 1	1.9.2.210	C11

(AVGSA-1)

directly from the EUT at the port where the antenna attaches. The test receiver bandwidth was set to be greater than the measured emission bandwidth of the EUT to capture the true peak. Antenna gain is either provided directly by the manufacturer or measured by comparison between calculated EIRP and conducted output power. Plots showing conducted measurements made are depicted in Figure 8.

^{**} Measured conducted from radio conducted sample. Pk Power measured per DTS Guidance 558074 D01 v5 r02 Section 8.3.1.3 / ANSI C63.10 11.9.1.3 (PKPM1)

^{***} Worst Case Antenna Gain as declared by manufacturer.

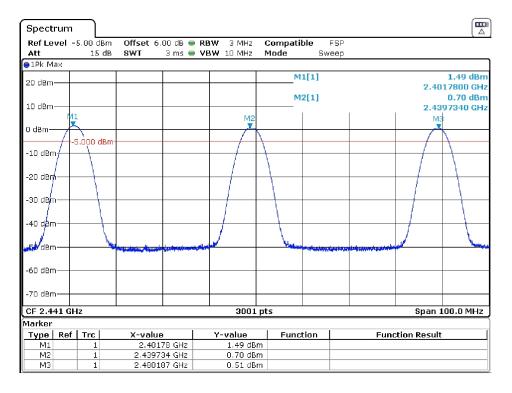


Figure 8: Conducted RF Power Plots

4.2.4 Power Spectral Density

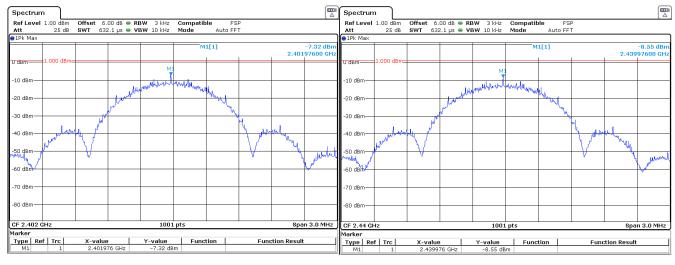

For this test, the EUT was attached directly to the test receiver. Following FCC DTS measurement procedures, the emission spectrum is first scanned for maximum spectral peaks, the span and receiver bandwidth are then reduced until the power spectral density is measured in the prescribed receiver bandwidth. The results of this testing are summarized in Table 7. Plots showing how these measurements were made are depicted in Figure 9.

Table 7: Power Spectral Density Results.

Frequency Range	Detector	IF Bandwidth	Video Bandwidth	Test Date:	20-Jul-21
2400-2483.5	Pk	3 kHz	10 kHz	Test Engineer:	Joseph Brunett
				EUT:	DENSO S2NA1
				Meas. Distance:	Conducted

	3kHz Power Spectral Density									
			Frequency	Ant.	PSDcond (meas)*	PSD Limit	Pass By			
#	Mode	Channel	(MHz)	Used	(dBm/3kHz)	(dBm/3kHz)	(dB)			
R1		37	2402.0	Cond.	-7.3	8.00	15.3			
R2	BLE	19	2440.0	Cond.	-8.6	8.00	16.6			
R3		39	2480.0	Cond.	-8.8	8.00	16.8			
R4										
R5										
R6						_				
#	C1	C2	C3	C4	C5	C6	C7			

^{*} PSD measured conducted following DTS guidance 558074 D01 v5 r02 8.4 / ANSI C63.10 11.10 PKPSD procedure.

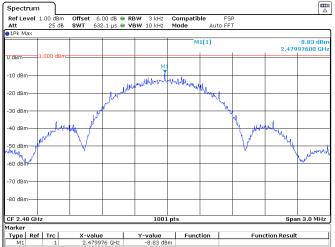


Figure 9: Power Spectral Density Plots.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Radiated Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 8. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 8: Transmit Chain Spurious Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	20-Jul-21
30 >= f > 1000 MHz	Pk/QPk	100 kHz	300 kHz	Test Engineer:	J. Brunett
f < 1000 MHz	Pk/Avg	1 MHz	3 MHz	EUT:	DENSO S2NA1
				Meas. Distance:	Conducted

Transmitter Spurious in Restricted Bands FCC/IC														
		Frequ	uency	Output Power		Ant	nt ***GR Factor Avg Duty		Electric Field @ 3m			Pass		
	Mode	Start	Stop	Pk	Qpk/Avg	Gain		Factor	Meas. Pk	Limit Pk	Meas. Qpk/Avg	Limit Qpk/Avg		
#		MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1 Fundamental Restricted Band Edge (Low Side)														
R2	BLE	2390.0	2390.0	-59.6	-71.4	3.3			39.0	74.0	27.2	54.0	26.8	max all - L,M,H channels
R3 Fundamental Restricted Band Edge (High Side)														
R4	BLE	2483.5	2483.5	-54.4	-64.8	3.3			44.1	74.0	33.7	54.0	20.3	max all - L,M,H channels
R5														
R6	BLE	30	88	-85.3		3.3	6.0		19.2			40	20.8	
R7	BLE	88	216	-84.6		3.3	6.0		19.9			43	23.1	
R8	BLE	216	1000	-77.1		3.3	6.0		27.4			46	18.6	
R9	BLE	4804.0	4804.0	-50.6	-60.1	3.3			47.9	74.0	38.5	54.0	15.5	CH Low channel or noise
R10	BLE	4888.0	4888.0	-52.0	-60.1	3.3			46.5	74.0	38.4	54.0	15.6	CH Med channel or noise
R11	BLE	4960.0	4960.0	-51.8	-59.8	3.3			46.7	74.0	38.8	54.0	15.2	CH High channel or noise
R13	BLE	1000.0	4000.0	-54.4	-64.8	3.3			44.1	74.0	33.7	54.0	20.3	max L,M,H channels or noise
R14	BLE	4000.0	6000.0	-65.1	-67.4	3.3			33.4	74.0	31.2	54.0	22.8	max L,M,H channels or noise
R15	BLE	6000.0	8400.0	-65.7	-70.2	3.3			32.8	74.0	28.3	54.0	25.7	max L,M,H channels or noise
R16	BLE	8400.0	12500.0	-52.8	-62.8	3.3			45.7	74.0	35.8	54.0	18.2	max L,M,H channels or noise
R17	BLE	12500.0	26000.0	-58.3	-65.0	3.3			40.2	74.0	33.6	54.0	20.4	max L,M,H channels or noise
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14

^{*} Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12

^{**} Measured according to ANSI C63-10-2013 section 6.10.5.2

^{***} Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

^{***} Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

4.3.2 Relative Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions relative to the fundamental in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) are provided in Figure 10 below.

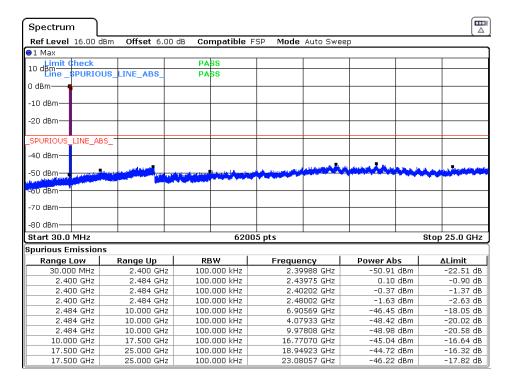


Figure 10: Conducted Transmitter Emissions Measured.

4.3.3 General Radiated Spurious

The results for the measurement of general spurious emissions (emissions arising from digital circuitry) at the nominal voltage and temperature are provided in Table 9. Radiation from digital components are measured up to 1000 MHz or to the highest frequency required by the applied standards, whichever is greater.

Table 9: Radiated Digital Spurious Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	20-Jul-21
$25~MHz \leq f \leq 1~000~MHz$	Pk/QPk	120 kHz	300 kHz	Test Engineer:	Joseph Brunett
f > 1 000 MHz	Avg/RMS	1 MHz	3 MHz	*** EUT:	DENSO S2NA1
				EUT Mode:	Active
				Meas. Distance:	3 m
				Temperature:	4.3C
				Rel. Humidty:	39%

	RADIATED Spurious Emissions FCC/I										CC/IC + EU(CISPR)					
	Test	Antenna				E-Field @ 3m**		FCC/IC Class B		EU 55032 Class B		FCC/IC Class A		EU 55032 Class A		
	Freq.	QN	Test	Ka	Kg	Pk	QPk/Avg	E3lim	Pass	E3lim	Pass	E3lim	Pass	E3lim	Pass	
#	MHz	Used	Pol.	dB/m	dB	$dB\mu V/m$	dBμV/m	dBμV/m	dB	dBμV/m	dB	dBμV/m	dB	dBμV/m	dB	Comments
1	160.0	BICEMCO01	Н	13.1	7	38.9	35.9	43.5	7.6	40.5	4.6	54.0	18.1	50.5	14.6	
2	160.0	BICEMCO01	V	13.1	7	32.1	26.8	43.5	16.7	40.5	13.7	54.0	27.2	50.5	23.7	
3	181.0	BICEMCO01	Н	14.2	8	24.7	19.2	43.5	24.3	40.5	21.3	54.0	34.8	50.5	31.3	
4	181.0	BICEMCO01	V	14.2	8	27.6	21.3	43.5	22.2	40.5	19.2	54.0	32.7	50.5	29.2	
5	199.0	BICEMCO01	Н	14.7	8	25.7	19.4	43.5	24.1	40.5	21.1	54.0	34.6	50.5	31.1	
6	199.0	BICEMCO01	V	14.7	8	29.9	23.4	43.5	20.1	40.5	17.1	54.0	30.6	50.5	27.1	
7	320.0	LOGEMCO01	Н	14.2	-1.2	33.7	31.1	46.0	14.9	47.5	16.4	56.9	25.8	57.5	26.4	
8	320.0	LOGEMCO01	V	14.2	-1.2	30.4	26.0	46.0	20.0	47.5	21.5	56.9	30.9	57.5	31.5	
9	480.2	LOGEMCO01	Н	17.1	-1.7	40.3	34.8	46.0	11.2	47.5	12.7	56.9	22.1	57.5	22.7	
10	480.2	LOGEMCO01	V	17.1	-1.7	31.1	25.7	46.0	20.3	47.5	21.8	56.9	31.2	57.5	31.8	
11	962.1	LOGEMCO01	Н	23.4	-3.0	38.5	32.9	54.0	21.1	47.5	14.6	60.0	27.1	57.5	24.6	
12	962.1	LOGEMCO01	V	23.4	-3.0	39	32.8	54.0	21.2	47.5	14.7	60.0	27.2	57.5	24.7	
13																
No other spurious emissions observed within 20 dB of the regulatory limit up to 26.5 GHz.																
15																

^{*}QPk detection below 1 GHz, Avg detection at or above 1 GHz with receiver bandwidth as specified at top of table.

^{**} When E-field is reported directly from Spectrum Analyzer, Antenna Factors and Cable losses are included directly in SA settings.

^{***} The EUT was tested as provided and declared by the customer.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k=2.

Table 10: Measurement Uncertainty.

Measured Parameter	${\bf Measurement~Uncertainty^{\dagger}}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \mathrm{MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \mathrm{MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \mathrm{MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \mathrm{MHz})$	$\pm 3.7\mathrm{dB}$

†Ref: CISPR 16-4-2:2011+A1:2014

Figure 11: Accreditation Documents