

ANNEX I: D2450V2 Dipole Calibration Certificate

Tel: +86-10-623046.		rlet, Beijing, 100191, China	CNAS L05
E-mail: cttl@chinatt	33-2079 Fax: +	www.chinattl.cn	
Client TA(SI	nanghai)	Certificate No: Z2	20-60298
CALIBRATION CE	RTIFICAT	E	
Object	D2450	/2 - SN: 786	
Calibration Procedure(s)	-		
a second a s	FF-Z11- Calibral	-003-01 lion Procedures for dipole validation kits	
Collibration data:			
Calibration date:	August	27, 2020	
pages and are part of the ce All calibrations have been	ertificate.	the uncertainties with confidence probability the closed laboratory facility: environment	
pages and are part of the ce	ertificate.	the closed laboratory facility: environment	
pages and are part of the ce All calibrations have been humidity<70%.	ertificate.	the closed laboratory facility: environment	
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	M&TE critical for ID # 106276	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	temperature(22±3)°C an Scheduled Calibration May-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	(M&TE critical for ID # 106276 101369	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	temperature(22±3)°C an Scheduled Calibration May-21 May-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4	(M&TE critical for ID # 106276 101369 SN 3617	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20)	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	(M&TE critical for ID # 106276 101369	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	temperature(22±3)°C an Scheduled Calibration May-21 May-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 106276 101369 SN 3617 SN 771 ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.)	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21 Feb-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 106276 101369 SN 3617 SN 771 ID # ID # MY49071430	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017)	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21 Feb-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106276 101369 SN 3617 SN 771 ID # ID # MY49071430	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516)	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106276 101369 SN 3617 SN 771 ID # ID # MY49071430	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516)	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in 1 (M&TE critical for 10 # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46107873	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515)	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21 Feb-21
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ertificate. conducted in 1 (M&TE critical for 10 # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46107873 Name	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function	temperature(22±3)°C an Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21 Feb-21

Certificate No: Z20-60298

Page 1 of 8

Glocenne

Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com

Add: No.51 Xpeyoon Road, Huidian District, Beijing, 100197, China Fax: +86-10-02304633-2504 http://www.chinattl.en

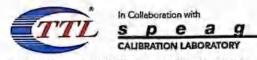
tissue simulating liquid
sensitivity in TSL / NORMx, y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013.
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60298

Page 2 of 8

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.co

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	the second s
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 18.7 % (k=2)

Certificate No: Z20-60298

Page 3 of 8

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com an District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5Ω+ 1.44 jΩ	
Return Loss	- 26.9dB	

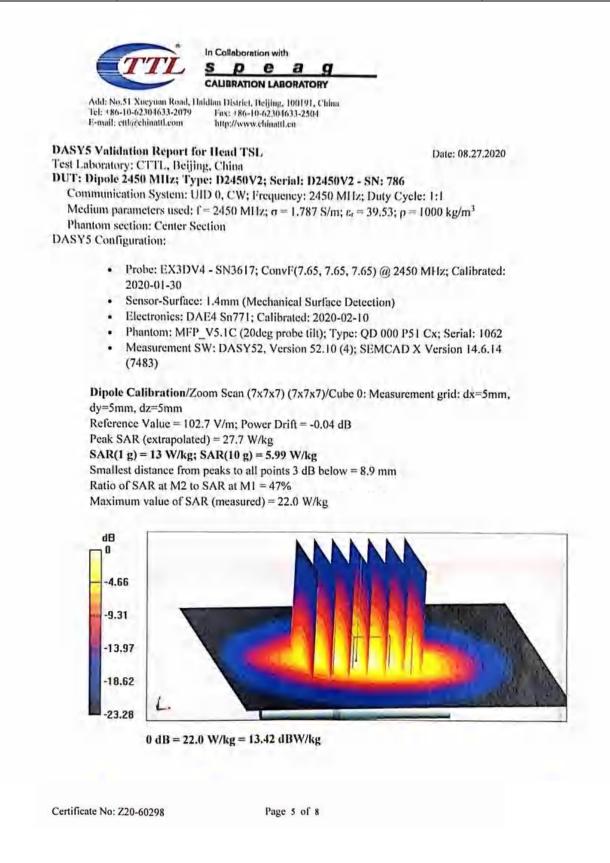
Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9Ω+ 5.09 jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

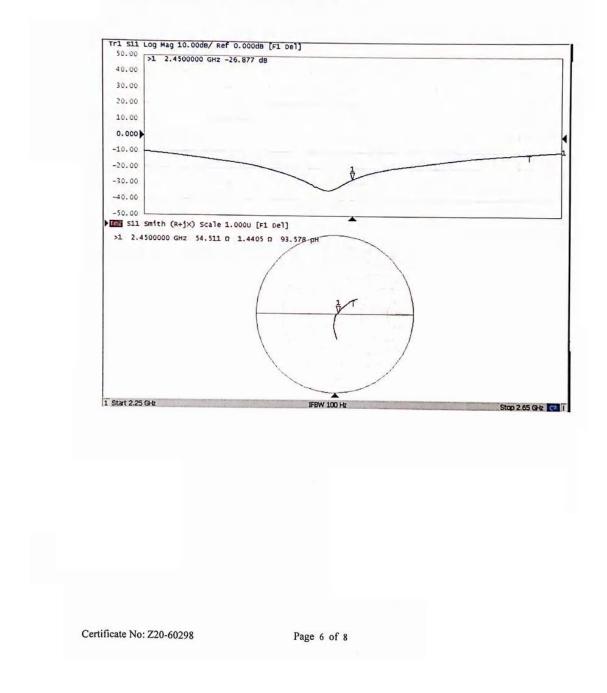
Electrical Delay (one direction)	1.018 ns	

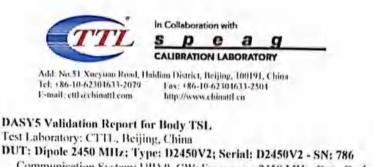
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG


Certificate No: Z20-60298


Page 4 of 8

Impedance Measurement Plot for Head TSL

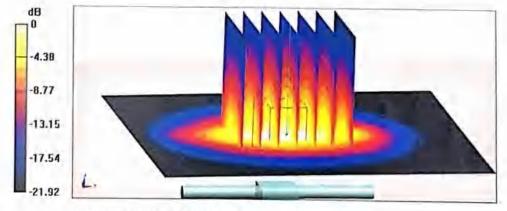
Date: 08.27.2020

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.938 \text{ S/m}$; $r_t = 52.06$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

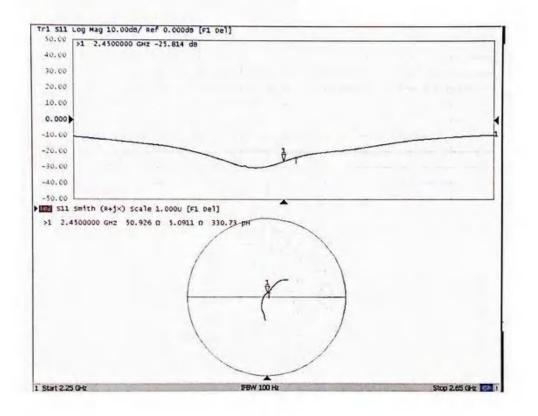

- Probe: EX3DV4 SN3617; ConvF(7.76, 7.76, 7.76) @ 2450 MHz; Calibrated: ٠ 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 . (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.9 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.9%

Maximum value of SAR (measured) = 21.8 W/kg


0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: Z20-60298

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z20-60298

Page 8 of 8

ANNEX J: D2600V2 Dipole Calibration Certificate

Client TA(SI	nanghai)	Certificate No: Z	21-60156
CALIBRATION CE			
Object	D2600\	/2 - SN: 1025	
Calibration Procedure(s)	FF-Z11 Calibra	-003-01 Ion Procedures for dipole validation kits	
Calibration date:	April 23	, 2021	
pages and are part of the ce			
	conducted in t	he closed laboratory facility: environment	temperature (22±3)°C and
All calibrations have been humidity<70% Calibration Equipment used	conducted in t		temperature (22±3)°C and Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	Conducted in t (M&TE critical fr ID # 106276	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	conducted in t (M&TE critical fr ID # 106276 101369	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL. No.J20X02965) 12-May-20 (CTTL. No.J20X02965)	Scheduled Calibration May-21 May-21
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4	conducted in t (M&TE critical fr ID # 106276 101369	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	Scheduled Calibration May-21
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4	conducted in t (M&TE critical fr 105276 101369 SN 3517	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL. No. J20X02965) 12-May-20 (CTTL. No. J20X02965) 27-Jan-21(SPEAG.No.EX3-3617_Jan21)	Scheduled Calibration May-21 May-21 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	conducted in t (M&TE critical fi 106276 101369 SN 3517 SN 777	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 27-Jan-21(CTTL, No.J20X02965) 28-Jan-21(CTTL-SPEAG, No.Z21-60003)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards	conducted in t (M&TE critical fi 106276 101369 SN 3517 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL. No. J20X02965) 12-May-20 (CTTL. No. J20X02965) 27-Jan-21 (CTTL. No. J20X02965) 27-Jan-21 (CTTL-SPEAG, No. Z21-60003) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fi 106276 101369 SN 3517 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL. No. J20X02965) 12-May-20 (CTTL. No. J20X02965) 27-Jan-21 (SPEAG, No. EX3-3617_Jan21) 08-Jan-21 (CTTL-SPEAG, No. Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No. J21X00593)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	conducted in t (M&TE critical fi 106276 101369 SN 3517 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No. J20X02965) 12-May-20 (CTTL, No. J20X02965) 27-Jan-21 (SPEAG, No. EX3-3617_Jan21) 08-Jan-21 (CTTL-SPEAG, No. Z21-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No. J21X00593) 14-Jan-21 (CTTL, No. J21X00232)	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fr 106276 101369 SN 3817 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL. No. J20X02965) 12-May-20 (CTTL. No. J20X02965) 27-Jan-21 (SPEAG.No. EX3-3617_Jan21) 08-Jan-21 (CTTL-SPEAG.No. 221-60003) Cal Date(Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No. J21X00593) 14-Jan-21 (CTTL, No. J21X00232) Function	Scheduled Calibration May-21 May-21 Jan-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60156

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013. "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement Techniques", June 2013
- b) IEC 62209-1. "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-heid and body-mounted wireless communication devices. Bad 1: Device und need to be pay (Foreverse of 2001) and the pay (Foreverse of 2001).
- communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)', July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions. Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented
- parallel to the body axis.
 Feed Point Impedance and Return Loss. These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low
- reflected power. No uncertainty required. • Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
- No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60156

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9±6%	1.94 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60156

Page 3 of 6

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1Ω- 7.19jΩ	
Return Loss	~ 22.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.055 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Certificate No: Z21-60156

Page 4 of 6

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 04.23.2021

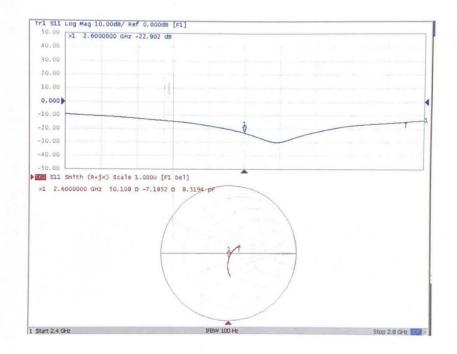
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.944$ S/m; $\varepsilon_r = 39.94$; $\rho = 1000$ kg/m³ Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.55, 7.55, 7.55) @ 2600 MHz; Calibrated: 2021-01-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

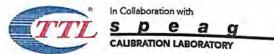
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.1 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 24.4 W/kg


0 dB = 24.4 W/kg = 13.87 dBW/kg

Certificate No: Z21-60156

Page 5 of 6

Impedance Measurement Plot for Head TSL


Certificate No: Z21-60156

Page 6 of 6

ANNEX K: D5GHzV2 Dipole Calibration Certificate

E mail attle ahinatt	33-2512 Fax: +	trict, Beijing, 100191, China 86-10-62304633-2504	CALIBRATIO CNAS L0570
E-mail: cttl@chinatt Client TA(S	Shanghai)	www.chinattl.cn Certificate No: Z2	20-60080
CALIBRATION CE	ERTIFICAT	E	
Object	DSGH	:V2 - SN: 1151	
	DUCITZ		·注:"·台湾和
Calibration Procedure(s)	FF-Z11	-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Febura	ry 27, 2020	
All calibrations have been humidity<70%. Calibration Equipment used		the closed laboratory facility: environment or calibration)	temperature(22±3)℃ and
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Dollior Motor Minno	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power Meter NRP2			
Power sensor NRP2 Power sensor NRP6A ReferenceProbe EX3DV4	101369 SN 3846	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369		
Power sensor NRP6A ReferenceProbe EX3DV4	101369 SN 3846	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Apr-20 Mar-20 Aug-20
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4	101369 SN 3846 SN 1555	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064)	Apr-20 Mar-20
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards	101369 SN 3846 SN 1555 ID #	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.)	Apr-20 Mar-20 Aug-20 Scheduled Calibration
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101369 SN 3846 SN 1555 ID # MY49071430	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 10-Feb-20 (CTTL, No.J20X00516)	Apr-20 Mar-20 Aug-20 Scheduled Calibration Feb-21 Feb-21
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	101369 SN 3846 SN 1555 ID # MY49071430 MY46110673	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 10-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515)	Apr-20 Mar-20 Aug-20 Scheduled Calibration Feb-21
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzerE5071C	101369 SN 3846 SN 1555 ID # MY49071430 MY46110673 Name	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 10-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function	Apr-20 Mar-20 Aug-20 Scheduled Calibration Feb-21 Feb-21
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzerE5071C Calibrated by:	101369 SN 3846 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 10-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function SAR Test Engineer	Apr-20 Mar-20 Aug-20 Scheduled Calibration Feb-21 Feb-21
Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzerE5071C Calibrated by: Reviewed by: Approved by:	101369 SN 3846 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao Qi Dianyuan	11-Apr-19 (CTTL, No.J19X02605) 25-Mar-19(CTTL-SPEAG,No.Z19-60064) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 10-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function SAR Test Engineer SAR Test Engineer	Apr-20 Mar-20 Aug-20 Scheduled Calibration Feb-21 Feb-21 Signature

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60080

Page 2 of 14

In Collaboration with s pea CALIBRATION LABORATORY

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

g

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.9 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Certificate No: Z20-60080

Page 3 of 14

ith			
aq			
BORATORY			
ing, 100191, China 304633-2504 iattl.cn			
applied. Temperature	Permitti	vity	Conductivity
22.0 °C	35.5		5.07 mho/m
(22.0 ± 0.2) °C	36.3 ± 0	6 %	4.96 mho/m ± 6 %
<1.0 °C			
Condi	tion	1	
the second se	put power	-	8.02 W/kg
normalize	d to 1W	80.5	W/kg ± 24.4 % (<i>k</i> =2)
SL Condi	tion		
	a g BORATORY BORATORY ing, 100191, China 304633-2504 304633-2504 anatilized applied. Temperature 22.0 °C (22.0 ± 0.2) °C <1.0 °C	A G BORATORY BORATORY ng, 100191, China 304633-2504 304633-2504 autil.en applied. Permitti 22.0 °C 35.5 (22.0 ± 0.2) °C 36.3 ± 1 <1.0 °C	A G BORATORY BORATORY ing, 100191, China 304633-2504 added 33-2504 added 32-2504 aatil.cn Permittivity 22.0 °C 35.5 (22.0 ± 0.2) °C 36.3 ± 6 % <1.0 °C

Head TSL parameters at 5750 MHz

SAR for nominal Head TSL parameters

SAR measured

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	5.12 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

100 mW input power

normalized to 1W

2.29 W/kg

23.0 W/kg ± 24.2 % (k=2)

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	100.00
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 24.2 % (k=2)

Certificate No: Z20-60080

Page 4 of 14

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.27 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.74 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 24.2 % (k=2)

Certificate No: Z20-60080

Page 5 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Body TSL parameters at 5750 MHz

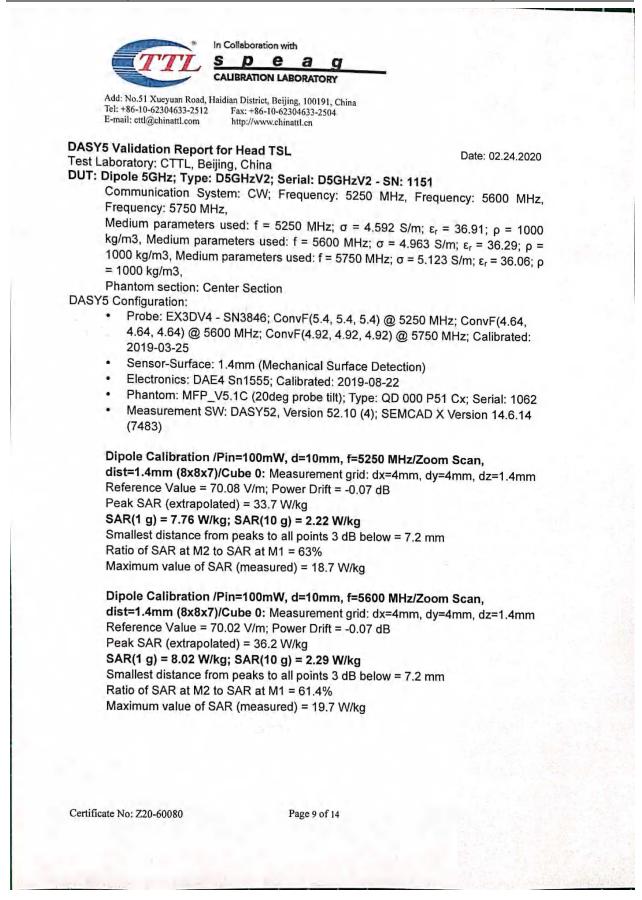
The following parameters and calculations were applied.

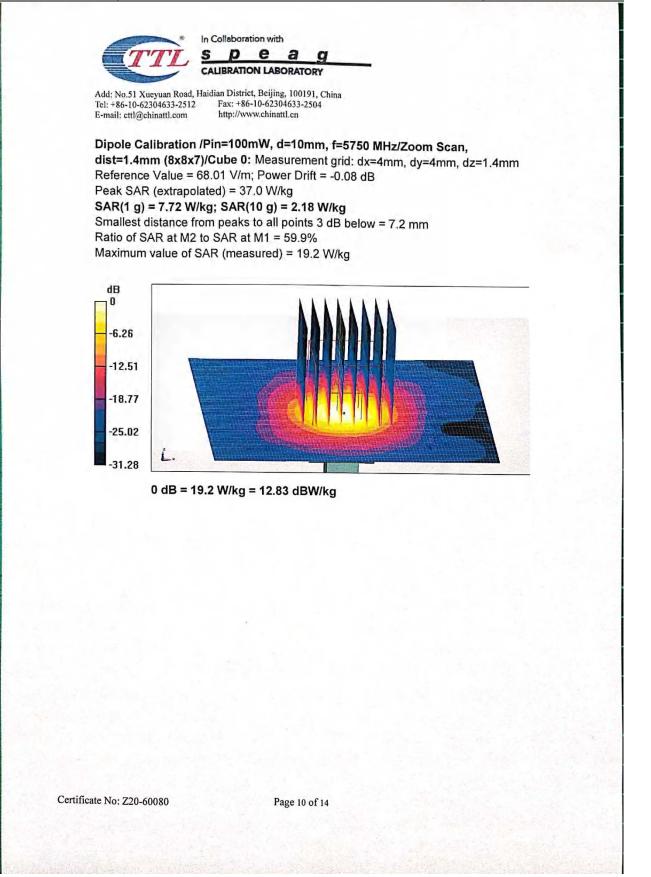
	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

a

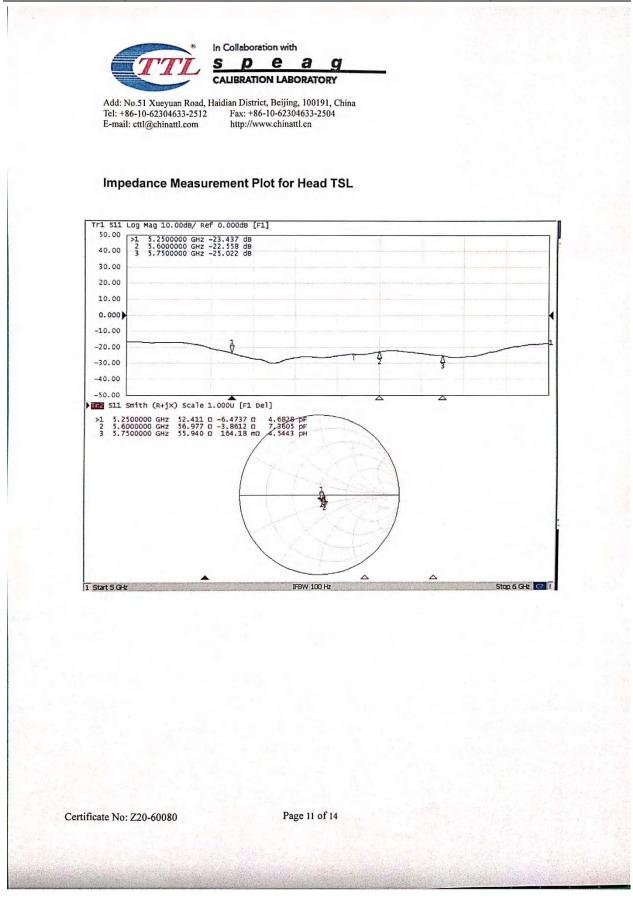
SAR result with Body TSL at 5750 MHz

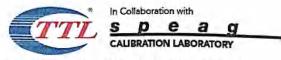
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 24.2 % (k=2)


Certificate No: Z20-60080


Page 6 of 14

Appendix (Additional assessments outside Antenna Parameters with Head TSL at 5250	
Impedance, transformed to feed point	52.4Ω - 6.47jΩ
Return Loss	- 23.4dB
Antenna Parameters with Head TSL at 5600	MHz
Impedance, transformed to feed point	57.0Ω - 3.86jΩ
Return Loss	- 22.6dB
Impedance, transformed to feed point	55.9Ω + 0.16jΩ
Return Loss	- 25.0dB
Antenna Parameters with Body TSL at 5250	
Return Loss	51.6Ω - 5.33jΩ
Tetum Loss	- 25.3dB
Antenna Parameters with Body TSL at 5600	MHz
Impedance, transformed to feed point	57.6Ω - 2.15jΩ
Return Loss	- 22.7dB
Antenna Parameters with Body TSL at 5750	MHz
Impedance, transformed to feed point	55.4Ω + 1.94jΩ
Return Loss	- 25.2dB


14


Add: No.51 Xueyuan Road, Haidian		
Tel: +86-10-62304633-2512 F	a District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn	
General Antenna Parameter	s and Design	
Electrical Delay (one direction)		1.066 ns
The dipole is made of standard se connected to the second arm of th of the dipoles, small end caps are	mirigid coaxial cable. The cente e dipole. The antenna is therefo added to the dipole arms in orde	ng of the dipole near the feedpoint can r conductor of the feeding line is directly re short-circuited for DC-signals. On some er to improve matching when loaded tions" paragraph. The SAR data are not
Additional EUT Data	all dipole length is still according	to the Standard
Manufactured by		SPEAG

Report No.: R2206A0587-S1

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

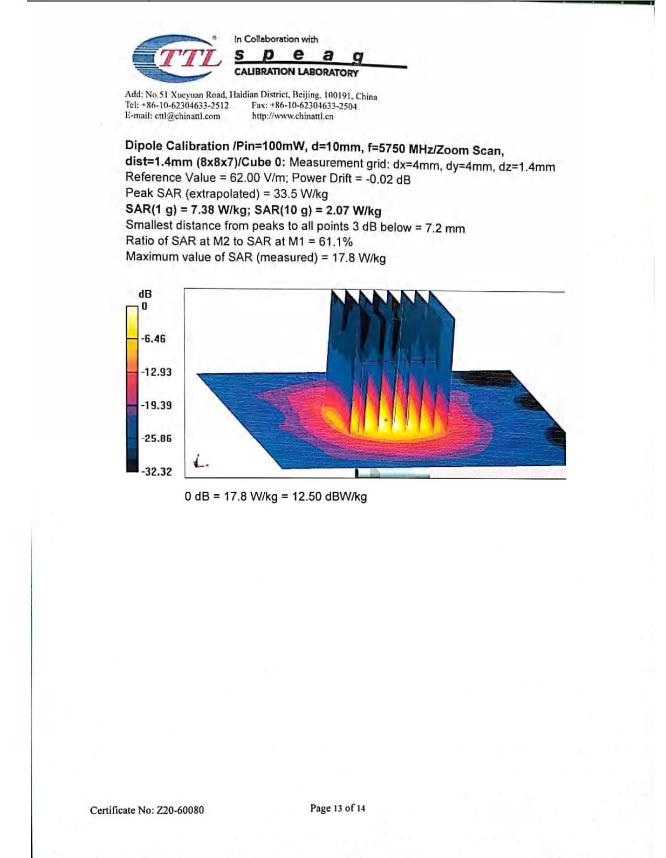
Date: 02.27.2020

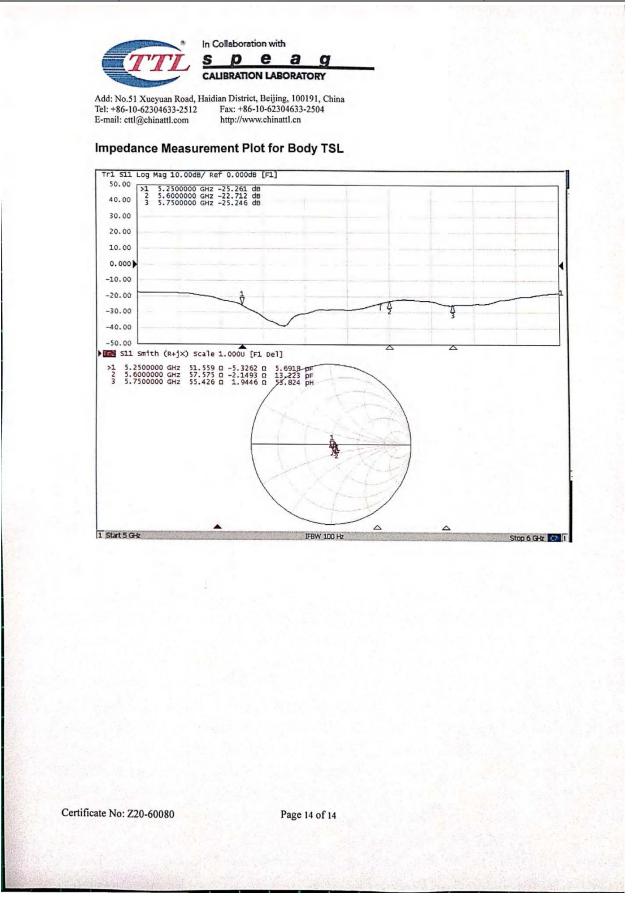
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.267 S/m; ϵ r = 48.1; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.736 S/m; ϵ r = 47.44; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.963 S/m; ϵ r = 47.11; ρ = 1000 kg/m3,

Phantom section: Right Section

DASY5 Configuration:


- Probe: EX3DV4 SN3846; ConvF(5.01, 5.01, 5.01) @ 5250 MHz; ConvF(4.29, 4.29, . 4.29) @ 5600 MHz; ConvF(4.32, 4.32, 4.32) @ 5750 MHz; Calibrated: 2019-03-25,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.50 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.00 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.21 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.6 W/kg

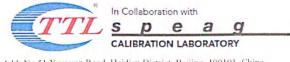
Certificate No: Z20-60080

Page 12 of 14

ANNEX L: DAE4 Calibration Certificate (SN: 1317)

	CERTIFICAT	re .	
Object	DAE4	- SN: 1317	
Calibration Procedure(s)	FF-Z1	1-002-01 ation Procedure for the Data Acqui)	sition Electronics
Calibration date:	Februa	ary 23, 2021	
pages and are part of the All calibrations have be humidity<70%.	e certificate. een conducted in	I the uncertainties with confidence prol the closed laboratory facility: enviro	
Calibration Equipment us	ed (M&TE critical	for calibration)	-
Primary Standards	ID # Ca	al Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	16-Jun-20 (CTTL, No.J20X04342)	Jun-21
	Name	Function	Sizzatura
	Yu Zongying	SAR Test Engineer	Signature
Calibrated by:			
Calibrated by: Reviewed by:	Lin Hao	SAR Test Engineer	11 397
	Lin Hao Qi Dianyuan	SAR Test Engineer	200
Reviewed by: Approved by:	Qi Dianyuan		Issued: February 25, 2021

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn


Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Page 2 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

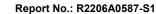
DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	403.746 ± 0.15% (k=2)	404.512 ± 0.15% (k=2)	403.872 ± 0.15% (k=2)
Low Range	3.97990 ± 0.7% (k=2)	3.99299 ± 0.7% (k=2)	$3.96969 \pm 0.7\%$ (k=2)

Connector Angle

Co	onnector Angle to be used in DASY system	333° ± 1 °


Certificate No: Z21-60041

Page 3 of 3

ANNEX M: DAE4 Calibration Certificate (SN: 1692)

Engineering AG Zeughausstrasse 43, 8004 Zuri			C Service suisse d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signatories	to the FA	ion No.: SCS 0108
Client TA-SH (Auder	ר)	Certificate	No: DAE4-1692_Oct21
CALIBRATION	CERTIFICATE		
Object	DAE4 - SD 000 D	004 BO - SN: 1692	
Calibration procedure(s)	QA CAL-06.v30 Calibration proces	dure for the data acquisition ele	ectronics (DAE)
Calibration date:	October 04, 2021		
All calibrations have been condu	ertainties with confidence pro	nal standards, which realize the physical u obability are given on the following pages a readility: environment temperature (22 ± 3)	and are part of the certificate.
All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pro	obability are given on the following pages a	and are part of the certificate.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pro incled in the closed laboratory .TE critical for calibration)	bability are given on the following pages a facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 31-Aug-21 (No:31368)	and are part of the certificate. I°C and humidity < 70%. Scheduled Calibration Aug-22
the measurements and the unco	ID # ID # SR: 0810278 ID # SR: 0810278	bability are given on the following pages a facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house)	and are part of the certificate. I ^o C and humidity < 70%. Scheduled Calibration
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # ID # SR: 0810278 ID # SR: 0810278	bability are given on the following pages a facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house) 07-Jan-21 (in house check)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Aug-22 Scheduled Check In house check: Jan-22 In house check: Jan-22
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002	Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Aug-22 Scheduled Check In house check: Jan-22 In house check: Jan-22
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	Adrian Gehring	Dability are given on the following pages a Iacility: environment temperature (22 ± 3) Cal Date (Certificate No.) 31-Aug-21 (No:31368) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) 07-Jan-21 (in house check) Function	and are part of the certificate. I ^o C and humidity < 70%. <u>Scheduled Calibration</u> Aug-22 <u>Scheduled Check</u> In house check: Jan-22 In house check: Jan-22

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the algostories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE

Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1692_Oct21

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: Low Range:	1LSB = 1LSB =	6.1μV, 61nV,	full range =	-100+300 mV
DASY measurement p		o Zero Time: 2	full range =	-1+3mV
and a second s	and meters. Au	to zero rime: 3	sec; measuring	time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.451 ± 0.02% (k=2)	404.531 ± 0.02% (k=2)	404.388 ± 0.02% (k=2)
	3.95023 ± 1.50% (k=2)		

Connector Angle

Connector Angle to be used in DASY system	334.5°±1°
---	-----------

Certificate No: DAE4-1692_Oct21

Page 3 of 5

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199998.31	2.10	0.00
Channel X + Input	20004.35	2.07	0.01
Channel X - Input	-19997.45	4.22	-0.02
Channel Y + Input	199996.63	0.87	0.00
Channel Y + Input	20001.14	-1.08	-0.01
Channel Y - Input	-20002.28	-0.47	0.00
Channel Z + Input	199998.12	1.98	0.00
Channel Z + Input	20002.54	0.26	0.00
Channel Z - Input	-20001.19	0.53	-0.00

Appendix (Additional assessments outside the scope of SCS0108)

Low Range Reading (µV) Difference (µV) Error (%) Channel X + Input 2001.64 0.32 0.02 Channel X + Input 202.20 0.58 0.29 Channel X - Input -197.54 0.78 -0.39 Channel Y + Input 1999.35 -1.87 -0.09 Channel Y + Input 200.36 -1.25 -0.62 Channel Y - Input -199.29 -0.98 0.49 Channel Z + Input 2000.89 -0.32 -0.02 Channel Z + Input 200.91 -0.59 -0.29 Channel Z - Input -199.57 -1.16 0.58

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	15.85	13.56
	- 200	-12.16	-14.19
Channel Y	200	21.51	20.97
	- 200	-24.04	-24.35
Channel Z	200	-6.87	-7.13
	- 200	6.28	5.75

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-0.88	-2.39
Channel Y	200	6.27	-	2.31
Channel Z	200	8.86	3.02	

Certificate No: DAE4-1692_Oct21

4. AD-Converter Values with Inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15949	15587
Channel Y	15899	16465
Channel Z	15625	15999

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.24	-0.39	2.50	0.44
Channel Y	-0.70	-1.86	0.77	0.48
Channel Z	-0.23	-1.42	0.54	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1692_Oct21

ANNEX N: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX O: Test Setup Photos

The Test Setup Photos are submitted separately.

ANNEX P: Product Change Description

The Product Change Description are submitted separately.