

RF TEST REPORT

Applicant	Honor Device Co., Ltd.
FCC ID	2AYGCTFY-LX3
Product	Smart Phone
Model	TFY-LX3
Report No.	R2201A0036-R6V1
Issue Date	February 9, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2020)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Keng Tao

Prepared by: Peng Tao

a'Xu

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	5
1.1.	Notes of the test report	5
1.2.	Test facility	5
1.3.	Testing Location	5
2. Ger	neral Description of Equipment under Test	6
2.1.	Applicant and Manufacturer Information	6
2.2.	General information	6
3. App	olied Standards	8
4. Tes	st Configuration	9
5. Tes	st Case Results	10
5.1.	Maximum output power	
5.2.	99% Bandwidth and 6dB Bandwidth	13
5.3.	Band Edge	
5.4.	Power Spectral Density	
5.5.	Spurious RF Conducted Emissions	51
5.6.	Unwanted Emission	
5.7.	Conducted Emission	112
6. Mai	in Test Instruments	117
ANNEX	A: The EUT Appearance	118
ANNEX	B: Test Setup Photos	119

Version	Revision description	Issue Date	
Rev.0	Initial issue of report.	January 28, 2022	
Rev.1	Update information in Page 6. February 9, 2022		
Note: This revised report (Report No. R2201A0036-R6V1) supersedes and replaces the			
previously issued report (Report No. R2201A0036-R6). Please discard or destroy the			
previously issued report and dispose of it accordingly.			

Number	Test Case	Clause in FCC rules	Verdict		
1	Maximum output power	15.247(b)(3)	PASS		
2	6 dB bandwidth	15.247(a)(2)	PASS		
3	Power spectral density	15.247(e)	PASS		
4	Band Edge	15.247(d)	PASS		
5	Spurious RF Conducted Emissions	15.247(d)	PASS		
6	Unwanted Emissions	15.247(d),15.205,15.209	PASS		
7	Conducted Emissions 15.207 PASS				
Date of Testing: January 11, 2022 and January 24, 2022					
Date of Sample Received: January 10, 2022					
Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology					
(Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement					
Uncertainti	es were not taken into account and are publishe	ed for informational purposes	only.		

Summary of measurement results

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	xukai@ta-shanghai.com

2. General Description of Equipment under Test

Applicant	Honor Device Co., Ltd.
Applicant address	Shum Yip Sky Park, No. 8089, Hongli West Road, Shenzhen, China
Manufacturer	Honor Device Co., Ltd.
Manufacturer address	Shum Yip Sky Park, No. 8089, Hongli West Road, Shenzhen, China

2.1. Applicant and Manufacturer Information

2.2. General information

EUT Description					
Model		TF	Y-LX3		
SN		A7NX011C30000083			
Hardware Ve	ersion	HL	6TFYM		
Software Ver	rsion	4.2	.0.35(C900E14R1P1)		
Power Suppl	у	Bat	tery / AC adapter		
Antenna Typ	е	Inte	ernal Antenna		
Antenna Cor	nnector		permanently attached antenna (meet with the standard t 15.203 requirement)	FCC	
Antenna Gai	n	-1.8	3dBi		
additional be	amforming gain	NA			
		802	2.11b/g/n(HT20): 2412 ~ 2462 MHz		
Operating Fr	equency Range(s)		2.11n(HT40): 2422 ~ 2452 MHz		
		Blu	etooth LE V5.0: 2402 ~2480 MHz		
		802	2.11b: DSSS		
Modulation T	уре		802.11g/n(HT20/HT40): OFDM		
		_	uetooth LE: GFSK		
Max. Conduc	cted Power		Fi 2.4G: 19.02dBm		
Blu		Blu	etooth LE: 6.95dBm		
			EUT Accessory		
Accessory	essory Model		Manufacture	No.	
	HW-100225E00	1	Honor Device Co., Ltd.	1	
			(Manufacturer:Huntkey)		
	HW-100225U00	Honor Device Co., Ltd.		2	
			(Manufacturer:Huntkey)		
Adapter HW-100225B00			Honor Device Co., Ltd.		
			(Manufacturer:Huntkey)		
HN-100225E00			Honor Device Co., Ltd.		
			(Manufacturer: Salcomp)		
HN-100225U00			Honor Device Co., Ltd.		
			(Manufacturer: Salcomp)		
Battery HB416492EFW			Honor Device Co., Ltd.		
			(Manufacturer: Sunwoda Electronic Co.,LTD)	1	

TA Technology (Shanghai) Co., Ltd.TA-MB-04-005RPage 6 of 119This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

RF T	est Report	Report No.: R2201A0036-R6	V1
HB416492EFW		Honor Device Co., Ltd. (Manufacturer:NVT)	
	MEND1532B528A11	Jiangxi Lianchuang Hongsheng Electronic Co., LTD.	1
Earphone	1293-3283-3.5mm-339	BOLUO COUNTY QUANCHENG ELECTRONIC CO.,LTD.	2
	EPAB542-2WH05-DH	FOXCONN INTERCONNECT TECHNOLOGY LIMITED	
	RY0002	NingBo Broad Telecommunication Co., Ltd.	1
	AU2-CRO013HF	Freeport Resources Enterprises Corp.	2
USB Cable	2120-00001-0	MING JI ELECTRONICS CO., LTD.	3
	L125UC007-CS-H	LUXSHARE PRECISION INDUSTRY CO., LTD.	4
	CUDU01B-HC451-EH	FOXCONN INTERCONNECT TECHNOLOGY LIMITED	5
Note: 1. The applicant.	EUT is sent from the appl	licant to TA and the information of the EUT is declared by	y the

2. There are more than one Adapter, Battery, Earphone and USB Cable, each one should be applied throughout the compliance test respectively, however, only the worst case (Adapter 1, Battery 2, Earphone 1 and USB Cable 3) will be recorded in this report.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2020) Radio Frequency Devices

ANSI C63.10 (2013)

Reference standard: KDB 558074 D01 15.247 Meas Guidance v05r02

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

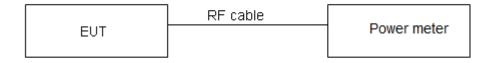
In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Test Mode	Data Rate
Bluetooth(Low Energy)	1Mbps
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

5. Test Case Results

5.1. Maximum output power


Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that " For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."

Average Output Power ≤ 1W (30dBm)	
-----------------------------------	--

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

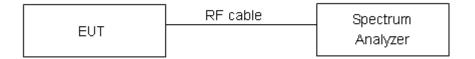
Test Results

Test Mode	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)
802.11b	12.44	12.60	0.99	0.00
802.11g	2.06	2.10	0.98	0.00
802.11n HT20	1.92	1.96	0.98	0.00
802.11n HT40	0.95	1.00	0.95	0.24
Bluetooth LE	2.14	2.50	0.86	0.66
Note: when Duty cycle \geq 0.98, Duty cycle correction Factor not required.				

Test Mode	Carrier frequency (MHz))/ Channel	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	2412/CH 1	18.75	18.75	30	PASS
802.11b	2437/CH 6	18.46	18.46	30	PASS
	2462/CH11	18.60	18.60	30	PASS
	2412/CH 1	14.67	14.67	30	PASS
	2417/CH 2	16.37	16.37	30	PASS
	2422/CH 3	18.80	18.80	30	PASS
	2427/CH 4	18.80	18.80	30	PASS
802.11g	2437/CH 6	19.02	19.02	30	PASS
	2447/CH 8	18.84	18.84	30	PASS
	2452/CH 9	18.51	18.51	30	PASS
	2457/CH 10	16.32	16.32	30	PASS
	2462/CH 11	14.34	14.34	30	PASS
	2412/CH 1	14.47	14.47	30	PASS
	2417/CH 2	16.21	16.21	30	PASS
	2422/CH 3	18.72	18.72	30	PASS
000.44	2427/CH 4	18.73	18.73	30	PASS
802.11n	2437/CH 6	18.87	18.87	30	PASS
HT20	2447/CH 8	18.68	18.68	30	PASS
	2452/CH 9	18.30	18.30	30	PASS
	2457/CH 10	16.14	16.14	30	PASS
	2462/CH 11	14.12	14.12	30	PASS
	2422/CH 3	11.34	11.58	30	PASS
	2427/CH 4	11.24	11.48	30	PASS
000 11-	2432/CH 5	12.76	13.00	30	PASS
802.11n HT40	2437/CH 6	14.10	14.34	30	PASS
	2442/CH 7	12.64	12.88	30	PASS
	2447/CH 8	11.54	11.78	30	PASS
	2452/CH 9	11.25	11.49	30	PASS
Divert 1	2402/CH 0	5.69	6.35	30	PASS
Bluetooth	2440/CH 19	5.24	5.90	30	PASS
(Low Energy)	2480/CH 39	6.29	6.95	30	PASS
Note: Average F	Power with duty factor	= Average Power M	easured +Duty cyc	le correcti	on factor

5.2. 99% Bandwidth and 6dB Bandwidth

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

Test Setup

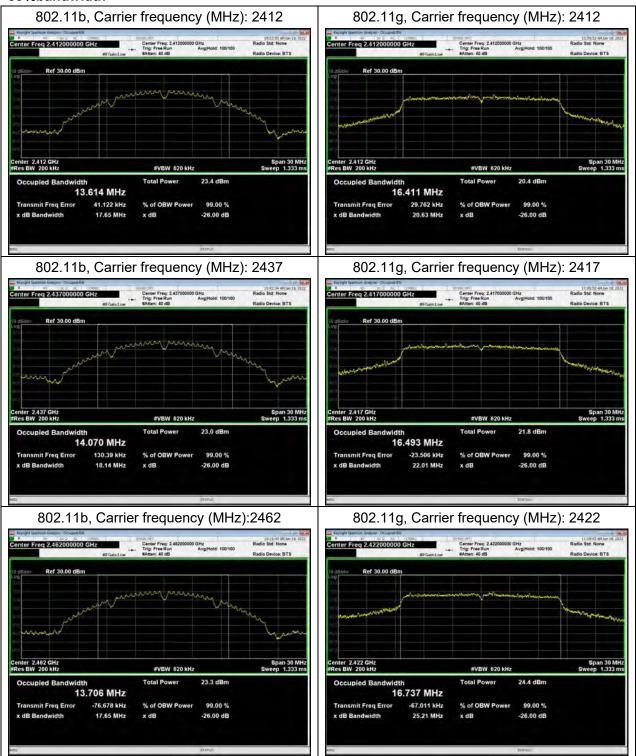
Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

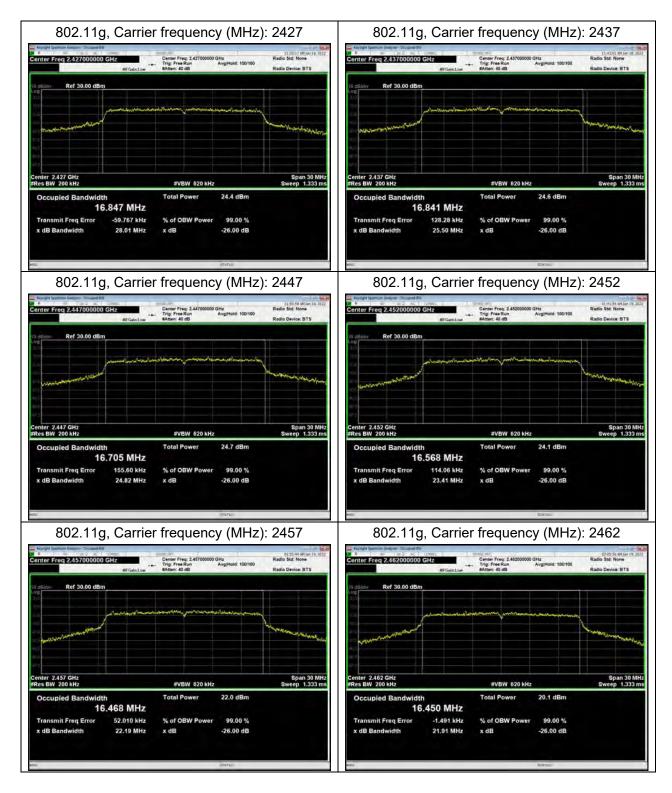
	minimum 6 dB bandwidth	≥ 500 kHz
--	------------------------	-----------

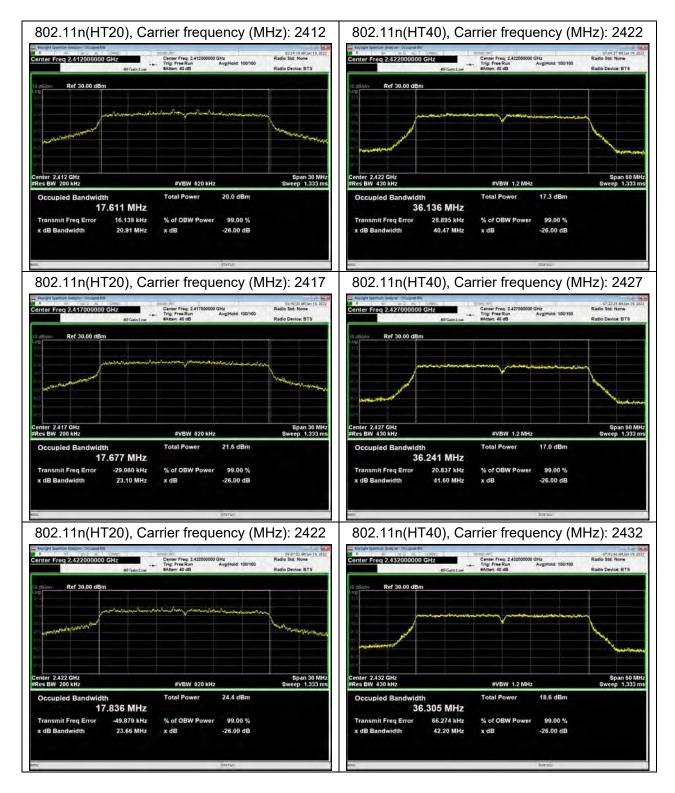
Measurement Uncertainty

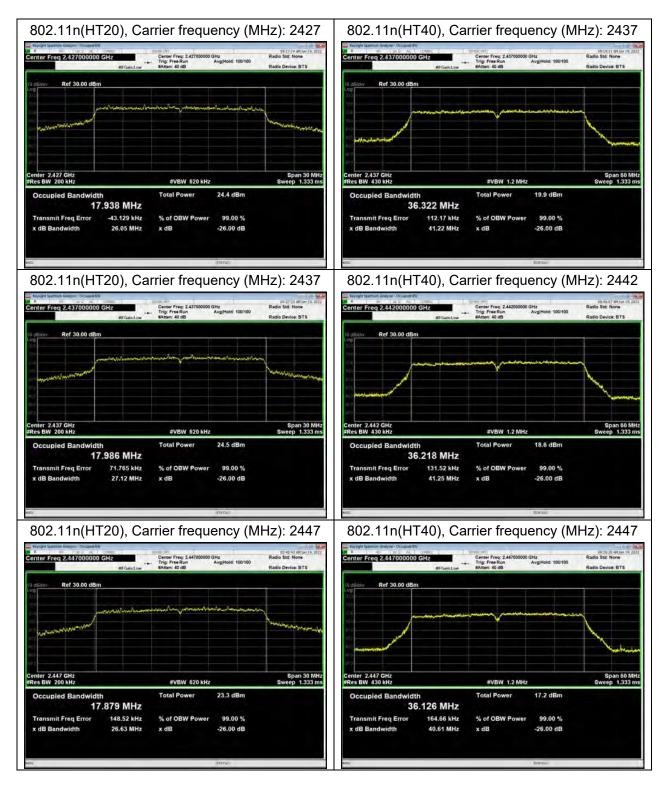
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

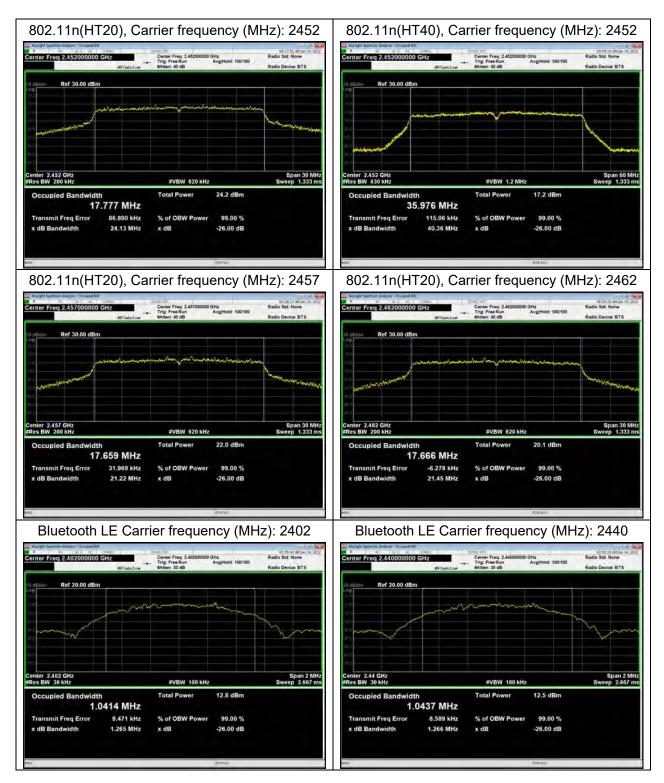


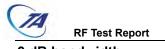
Test Results:

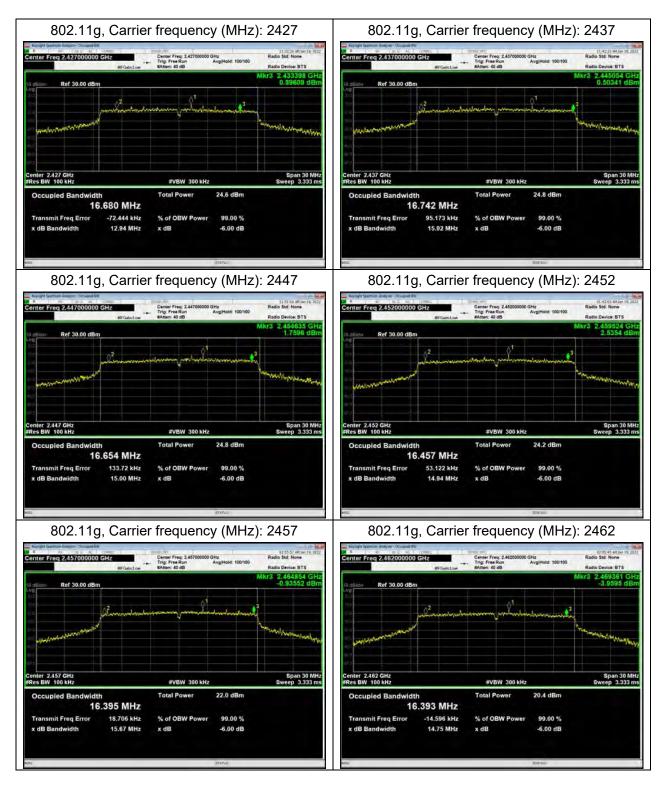

Test Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	2412/CH 1	13.61	8.08	500	PASS
802.11b	2437/CH 6	14.07	9.07	500	PASS
	2462/CH11	13.71	8.54	500	PASS
	2412/CH 1	16.41	16.30	500	PASS
	2417/CH 2	16.49	15.36	500	PASS
	2422/CH 3	16.74	14.48	500	PASS
	2427/CH 4	16.85	12.94	500	PASS
802.11g	2437/CH 6	16.84	15.92	500	PASS
	2447/CH 8	16.71	15.00	500	PASS
	2452/CH 9	16.57	14.94	500	PASS
	2457/CH 10	16.47	15.67	500	PASS
	2462/CH 11	16.45	14.75	500	PASS
	2412/CH 1	17.61	12.58	500	PASS
	2417/CH 2	17.68	16.36	500	PASS
	2422/CH 3	17.84	15.97	500	PASS
000 11-	2427/CH 4	17.94	16.27	500	PASS
802.11n HT20	2437/CH 6	17.99	17.56	500	PASS
H120	2447/CH 8	17.88	16.00	500	PASS
	2452/CH 9	17.78	14.78	500	PASS
	2457/CH 10	17.66	15.10	500	PASS
	2462/CH 11	17.67	15.37	500	PASS
	2422/CH 3	36.14	35.09	500	PASS
	2427/CH 4	36.24	35.74	500	PASS
802.11n	2432/CH 5	36.30	36.34	500	PASS
	2437/CH 6	36.32	36.33	500	PASS
HT40	2442/CH 7	36.22	36.32	500	PASS
	2447/CH 8	36.13	35.34	500	PASS
	2452/CH 9	35.98	35.11	500	PASS
Divotesth	2402/CH 0	1.04	0.65	500	PASS
Bluetooth	2440/CH 19	1.04	0.65	500	PASS
(Low Energy)	2480/CH 39	1.05	0.65	500	PASS


99%bandwidth

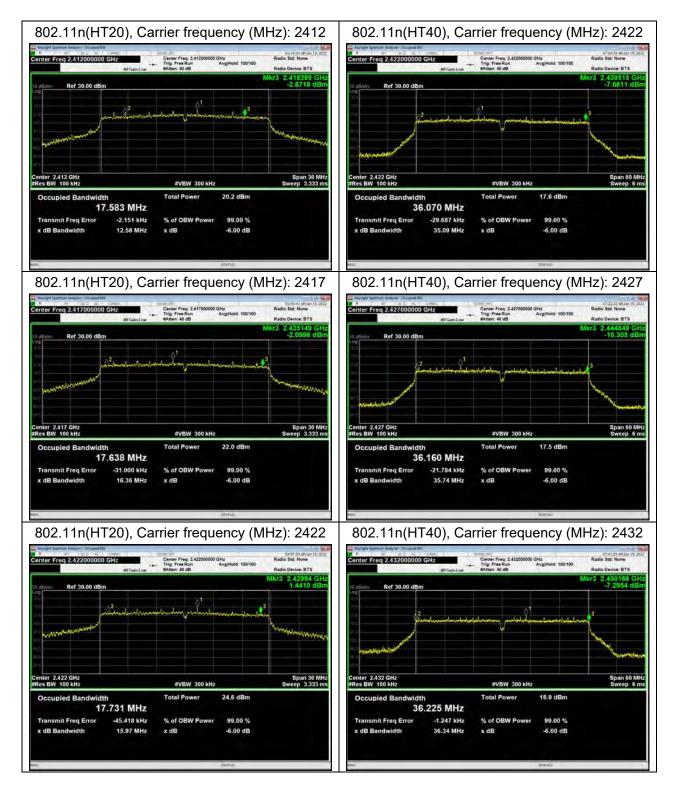


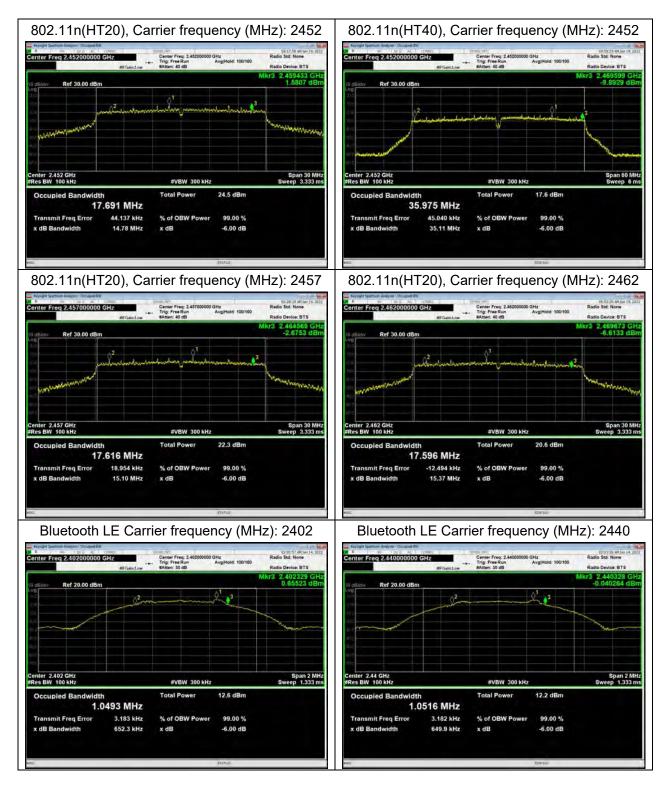





Bluetooth LE Carrier frequency (MHz): 2480

nter Freq 2.48000000	GHZ #FGaintow	Center Freq: 2.480000000 Trig: Free Run &Atten: 30 dB	GHz Avg Hold: 100/100	Radio Std: None Radio Device: BTS
dBlave Ref 20.00 dBm				
	mm	man	m	
1	1			5
mont				han
nter 2.48 GHz es BW 30 kHz		#VBW 100 kHz		Span 2 M Sweep 2.667 r
Occupied Bandwidth	1	Total Power	13.4 dBm	
1.0	458 MHz			
Transmit Freq Error	8.894 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	1.264 MHz	x dB	-26.00 dB	

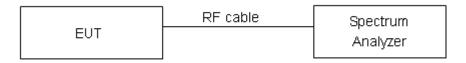




Bluetooth LE Carrier frequency (MHz): 2480

GHZ #FGain1.ow		GHz Avg/Hold: 100/100	Radio Std: None Radio Device: BTS
			Mkr3 2.480328 GH 1.3010 dBr
22mm		no3	
		-	
			- marine
	#VBW 300 kHz		Span 2 MH Sweep 1.333 m
h	Total Power	13.2 dBm	
0542 MHz			
3.139 kHz	% of OBW Power	99.00 %	
649.2 kHz	x dB	-6.00 dB	
	BTCanico Control Distance Distance S.139 kHz	Trig Free Sion attractions on the States 30 dB attraction of	Trig Free Run Avgehold: 100100 Avgehold: 10000 Avgehold: 100000 Avgehold: 10000 Avgehold: 100000 Av

5.3. Band Edge


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

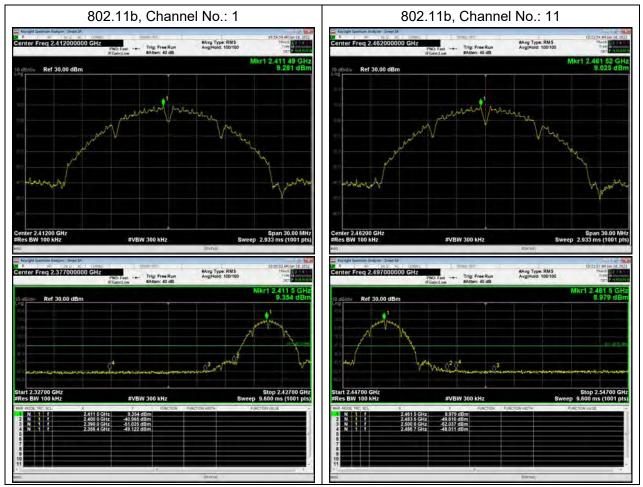
The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

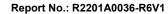
Test Setup

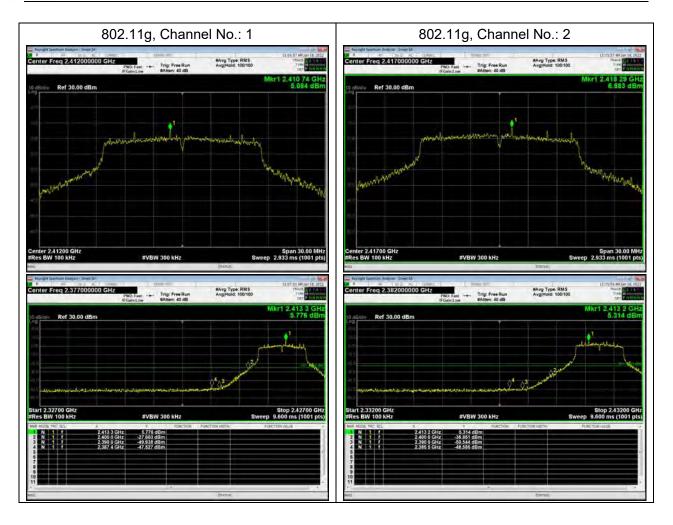
Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

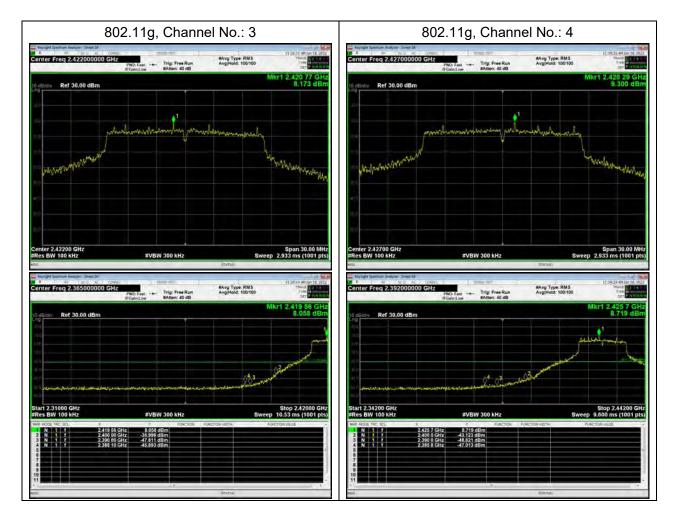
Measurement Uncertainty

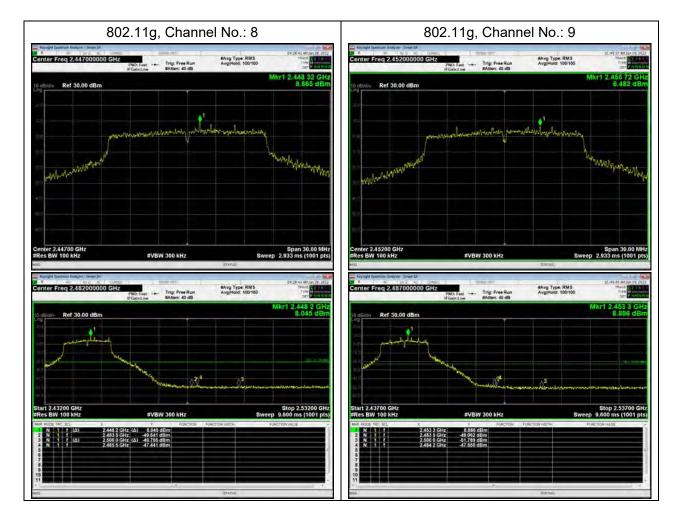

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

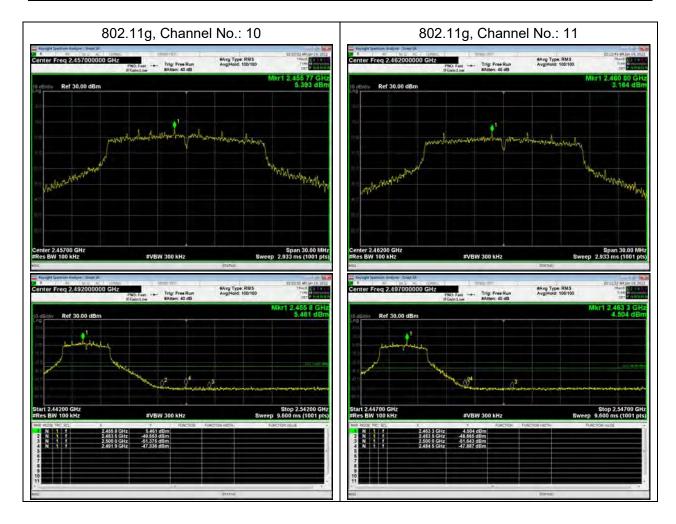

Frequency	Uncertainty
2GHz-3GHz	1.407 dB

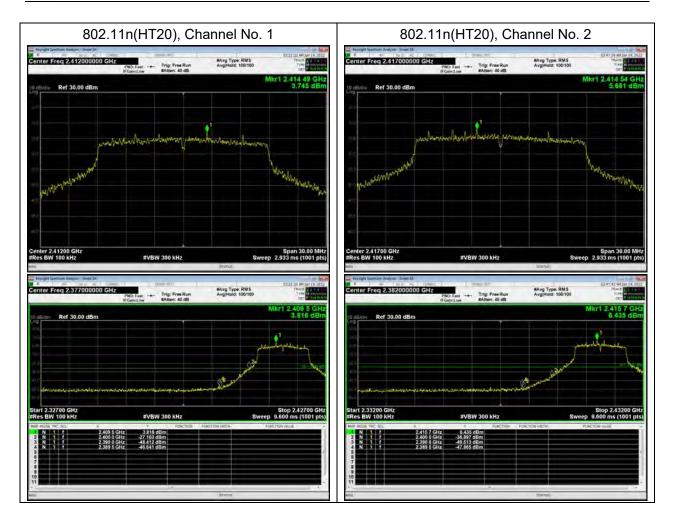

Report No.: R2201A0036-R6V1

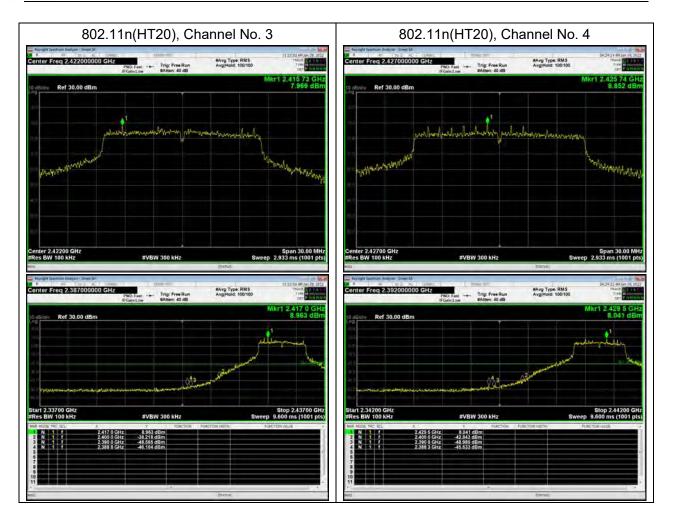
Test Results: PASS

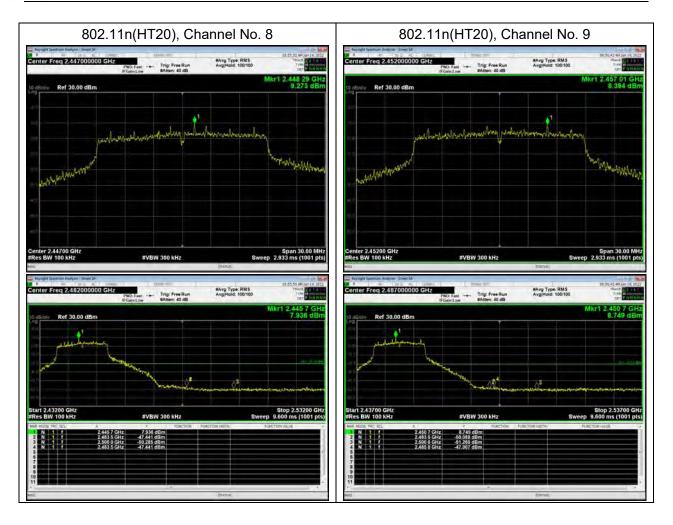


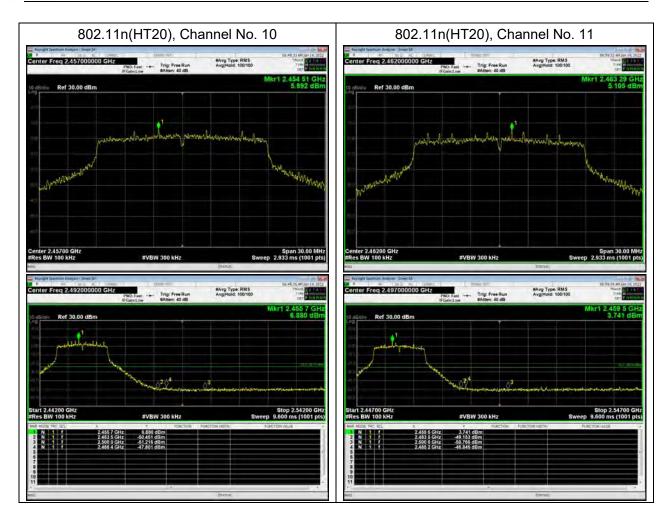


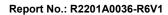




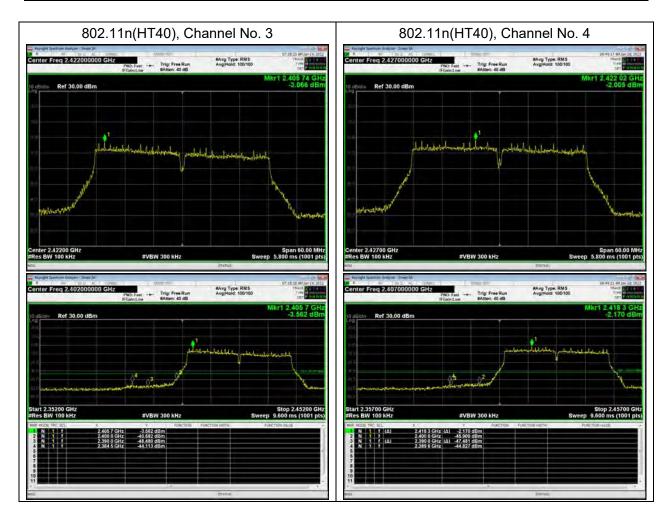


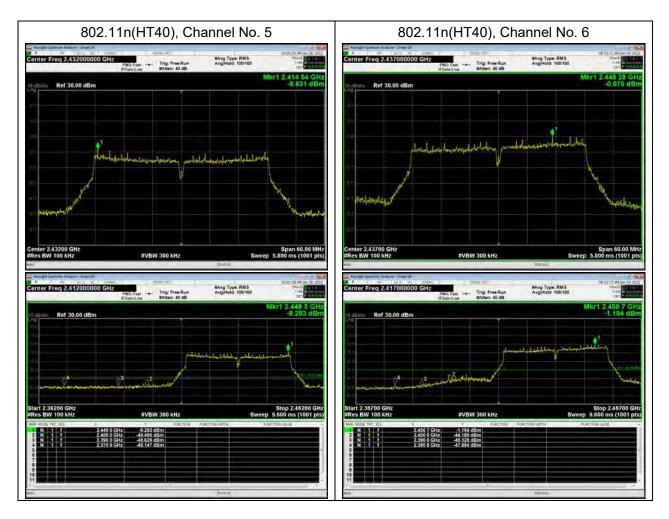

RF Test Report

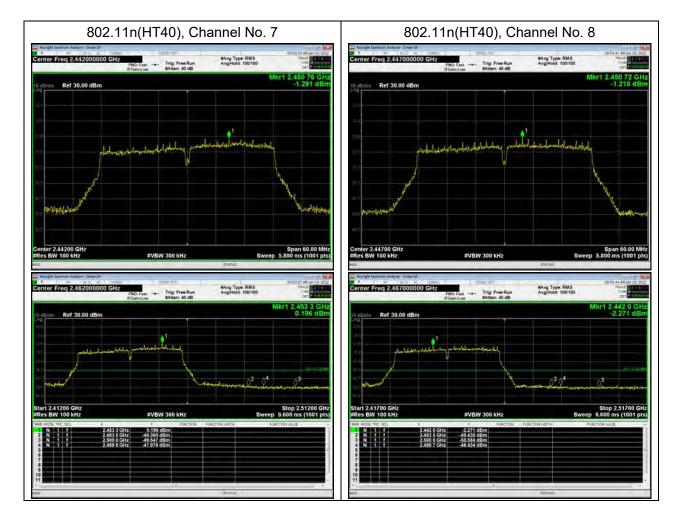

RF Test Report

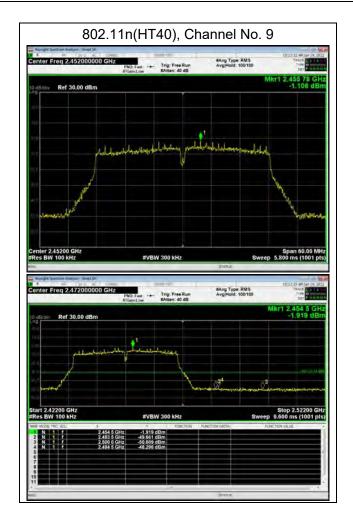


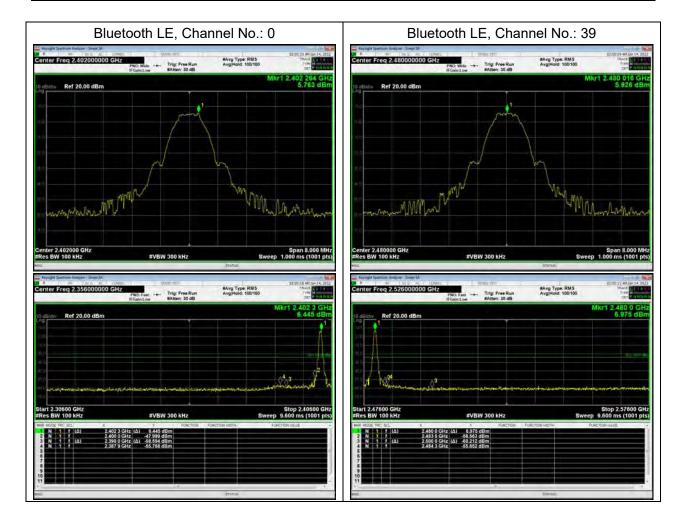
RF Test Report











5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

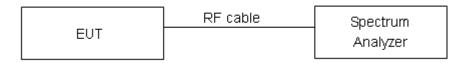
During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss.

The EUT is max power transmission with proper modulation.

Method AVGPSD-1 was used for this test.

- a) Set instrument center frequency to DTS channel center frequency
- b) Set span to at least 1.5 times the OBW
- c) Set RBW to:3kHz≤RBW≤100kHz
- d) Set VBW≥[3x RBW]
- e) Detector=power averaging(rms) or sample detector(when rms not available)
- f) Ensure that the number of measurement points in the sweep 2[2 X span/RBWT]
- g)Sweep time auto couple
- h) Employ trace averaging(rms) mode over a minimum of 100 traces
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat(note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Method AVGPSD-2 was used for this test.


- a) Measure the duty cycle(D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c)Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz≤RBW≤100Kh
- e) Set VBW≥[3x RBW]
- f)Detector= power averaging(rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep 2[2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging(rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level
- I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to

compute the average PSD during the actual transmission time

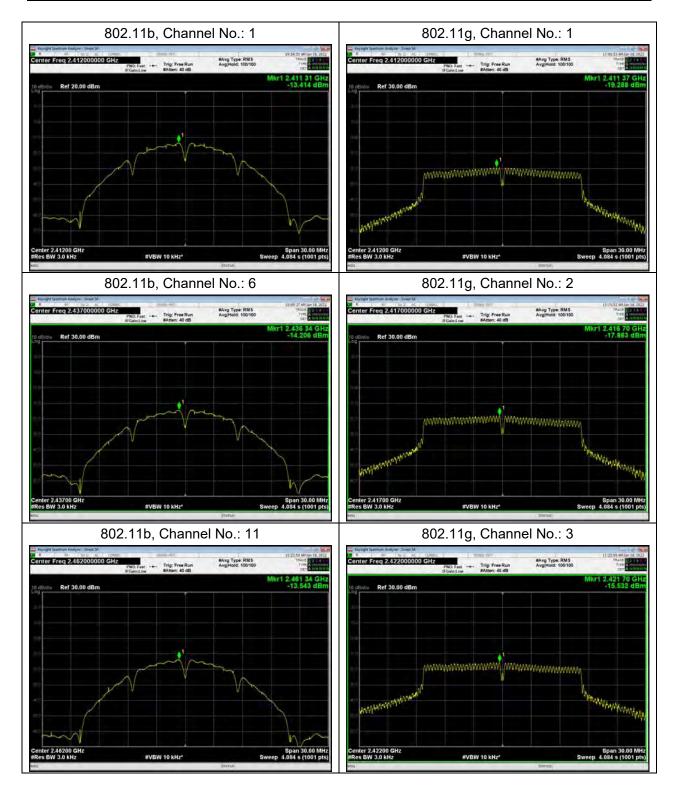
m) If measured value exceeds requirement specified by regulatory agency then reduce RBW(but o less than 3 kHz) and repeat(note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Test setup

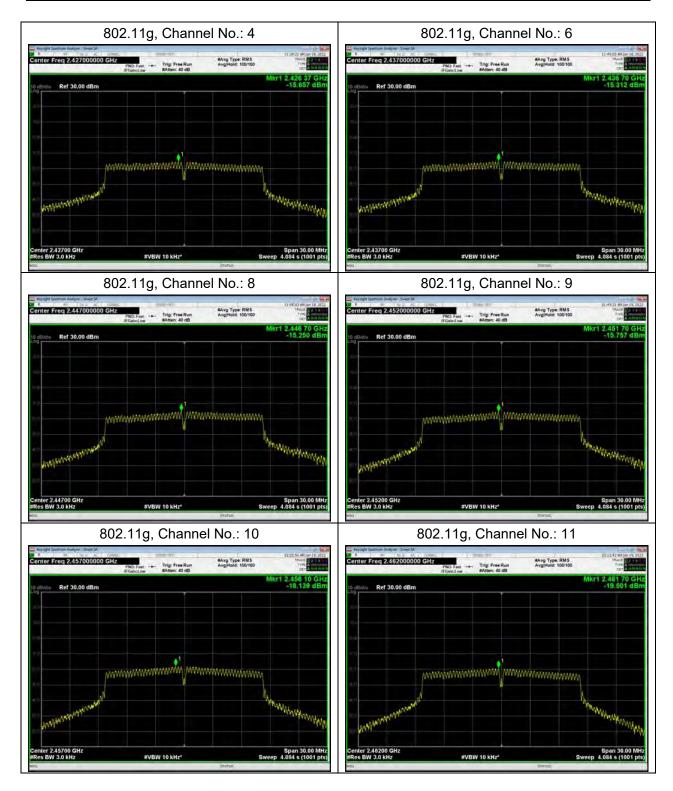
Limits

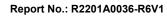
Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

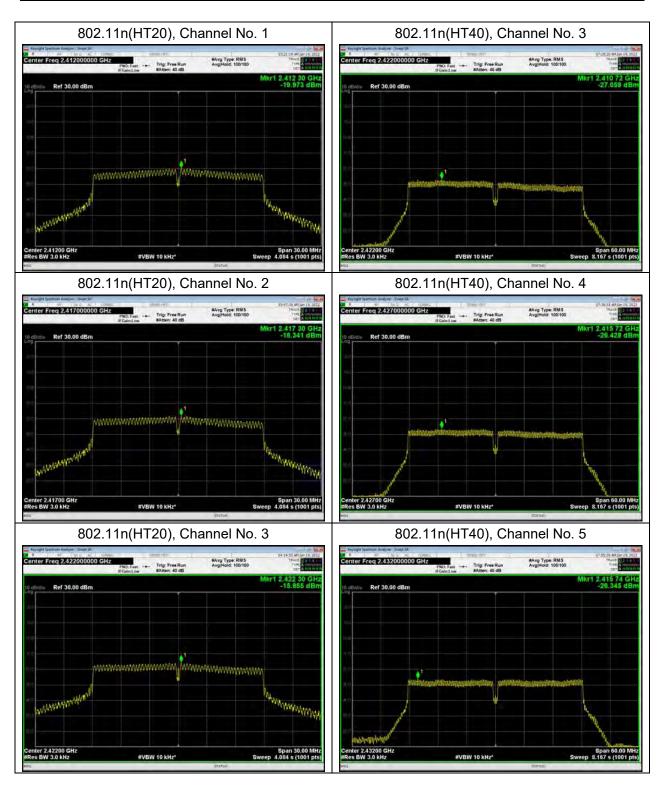
|--|

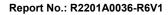

Measurement Uncertainty

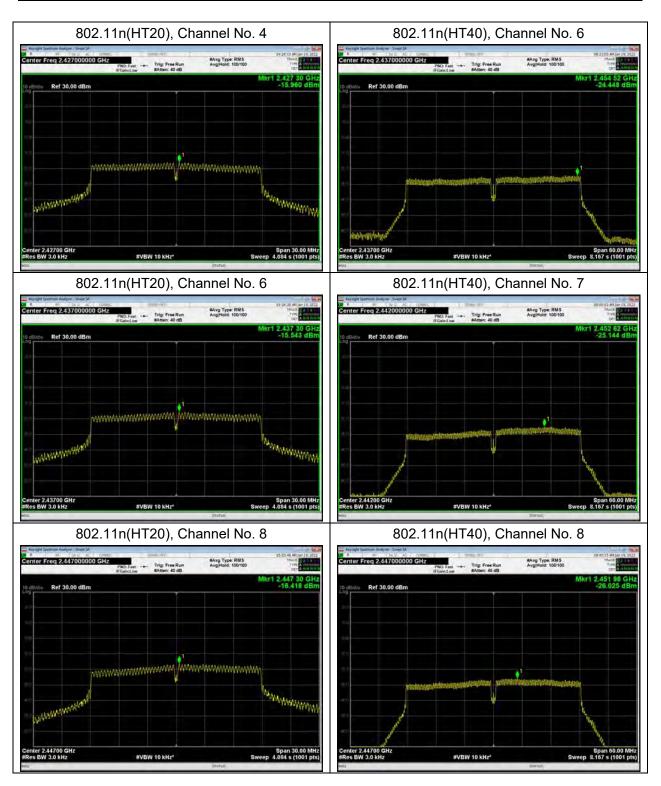
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

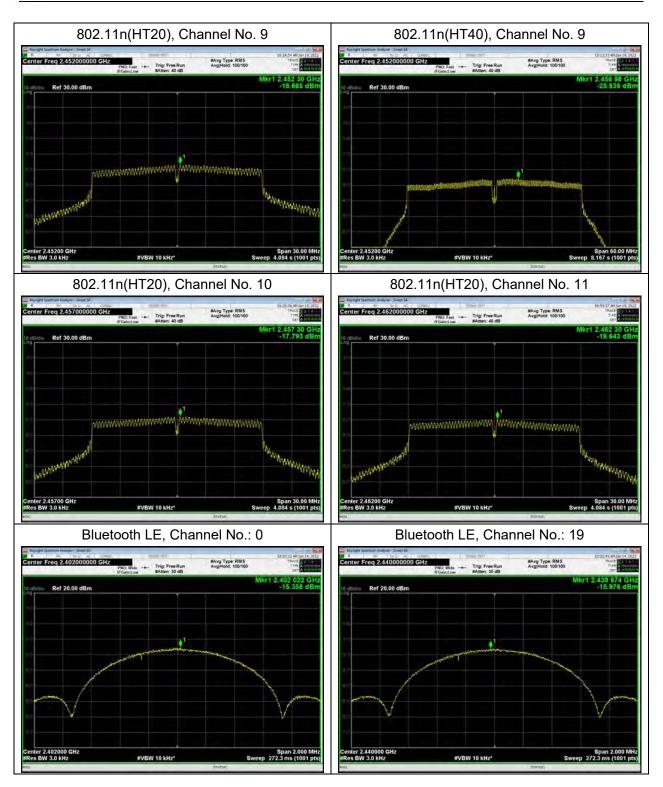


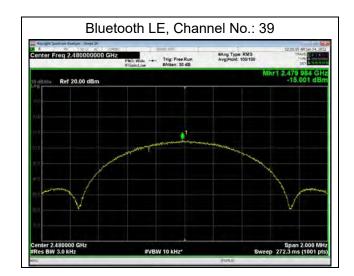

Test Mode	Channel Number	Read Value (dBm / 3kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	2412/CH 1	-13.41	-13.41	8	PASS
802.11b	2437/CH 6	-14.21	-14.21	8	PASS
	2462/CH11	-13.54	-13.54	8	PASS
	2412/CH 1	-19.29	-19.29	8	PASS
	2417/CH 2	-17.86	-17.86	8	PASS
	2422/CH 3	-15.53	-15.53	8	PASS
	2427/CH 4	-15.66	-15.66	8	PASS
802.11g	2437/CH 6	-15.31	-15.31	8	PASS
	2447/CH 8	-15.25	-15.25	8	PASS
	2452/CH 9	-15.76	-15.76	8	PASS
	2457/CH 10	-18.14	-18.14	8	PASS
	2462/CH 11	-19.50	-19.50	8	PASS
	2412/CH 1	-19.97	-19.97	8	PASS
	2417/CH 2	-18.34	-18.34	8	PASS
	2422/CH 3	-15.86	-15.86	8	PASS
000.44	2427/CH 4	-15.96	-15.96	8	PASS
802.11n	2437/CH 6	-15.54	-15.54	8	PASS
HT20	2447/CH 8	-16.42	-16.42	8	PASS
	2452/CH 9	-16.67	-16.67	8	PASS
	2457/CH 10	-17.79	-17.79	8	PASS
	2462/CH 11	-19.64	-19.64	8	PASS
	2422/CH 3	-27.06	-26.82	8	PASS
	2427/CH 4	-26.43	-26.19	8	PASS
000 44-	2432/CH 5	-26.35	-26.11	8	PASS
802.11n	2437/CH 6	-24.45	-24.21	8	PASS
HT40	2442/CH 7	-25.14	-24.90	8	PASS
	2447/CH 8	-26.03	-25.79	8	PASS
	2452/CH 9	-25.84	-25.60	8	PASS
Divisite ette	2402/CH 0	-15.36	-14.70	8	PASS
Bluetooth	2440/CH 19	-15.98	-15.32	8	PASS
(Low Energy)	2480/CH 39	-15.00	-14.34	8	PASS
Note: Power Spectra	I Density =Re	ad Value+Duty	cycle correction fa	actor	











5.5. Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test setup

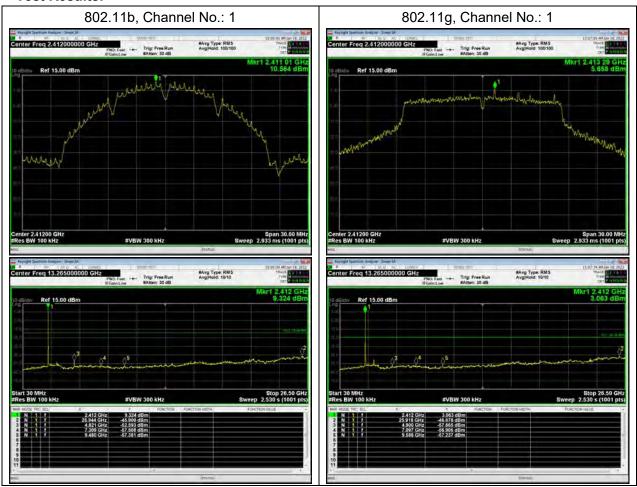
Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

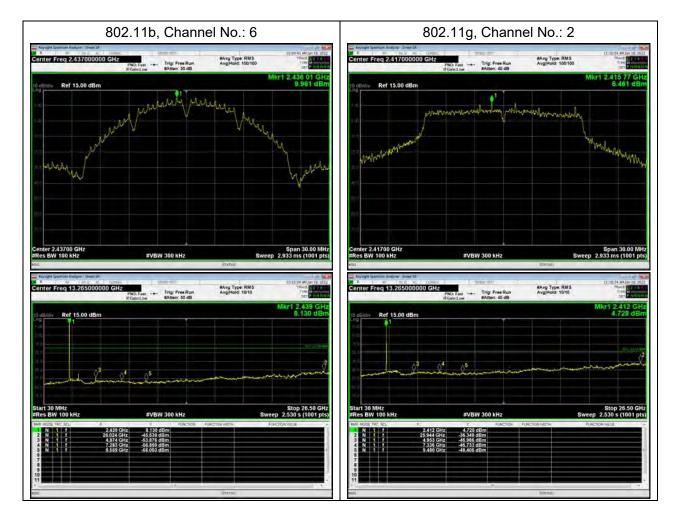
Antenna 1

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit	
	2412/CH 1	10.56	-19.44	
802.11b	2437/CH 6	9.96	-20.04	
	2462/CH11	10.41	-19.59	
	2412/CH 1	5.66	-24.34	
	2417/CH 2	6.46	-23.54	
	2422/CH 3	7.50	-22.50	
902 11a	2427/CH 4	9.13	-20.87	
802.11g	2437/CH 6	8.43	-21.57	
	2447/CH 8	9.29	-20.71	
	2452/CH 9	7.93	-22.07	
	2457/CH 10	3.82	-26.18	

RF Test Report		R	eport No.: R2201A0
	2462/CH 11	2.40	-27.60
	2412/CH 1	5.44	-24.56
	2417/CH 2	5.78	-24.22
	2422/CH 3	8.24	-21.76
000 11-	2427/CH 4	8.15	-21.85
802.11n HT20	2437/CH 6	8.50	-21.50
11120	2447/CH 8	7.75	-22.25
	2452/CH 9	9.86	-20.14
	2457/CH 10	7.49	-22.5
	2462/CH 11	5.19	-24.8
	2422/CH 3	-2.97	-32.97
	2427/CH 4	-1.97	-31.9
802.11n	2432/CH 5	-1.50	-31.50
802.11h HT40	2437/CH 6	0.28	-29.72
11140	2442/CH 7	-0.54	-30.54
	2447/CH 8	-1.30	-31.30
	2452/CH 9	-1.22	-31.22
Divisionath	2402/CH 0	6.31	-23.69
Bluetooth	2440/CH 19	6.00	-24.00
(Low Energy)	2480/CH 39	6.90	-23.10

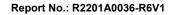

Measurement Uncertainty

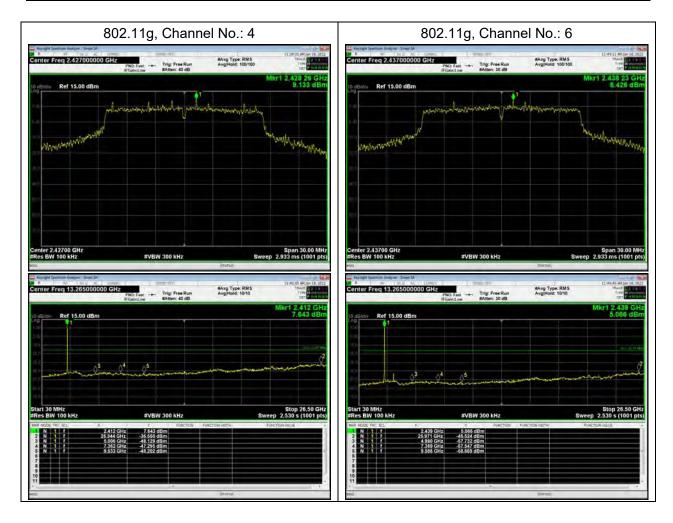
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

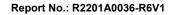

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

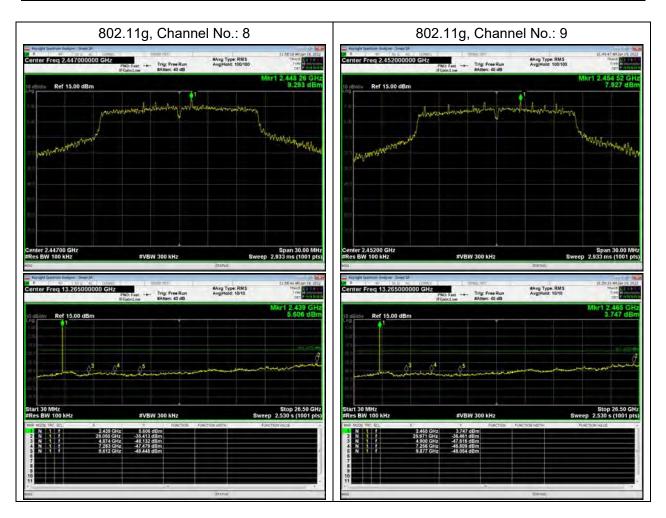
Report No.: R2201A0036-R6V1

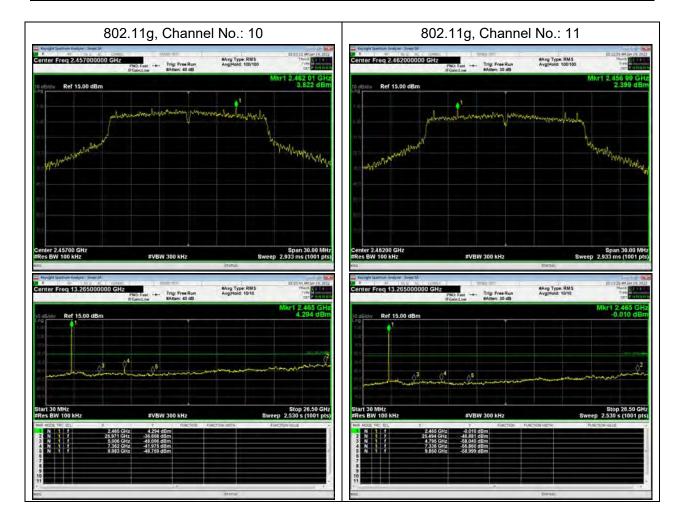

Test Results:

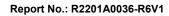


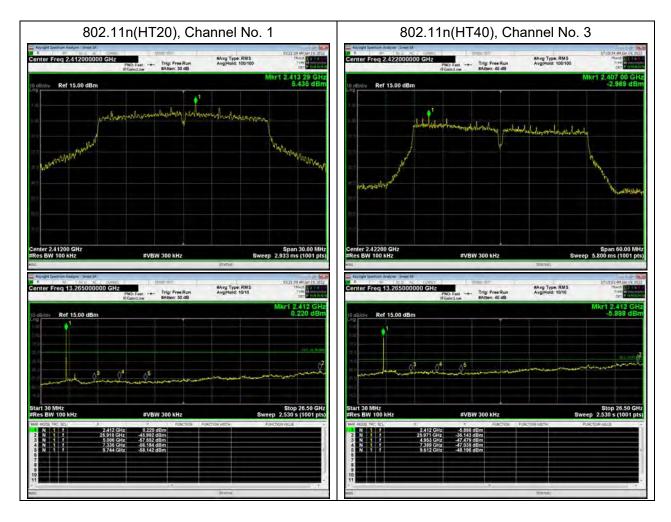


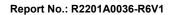


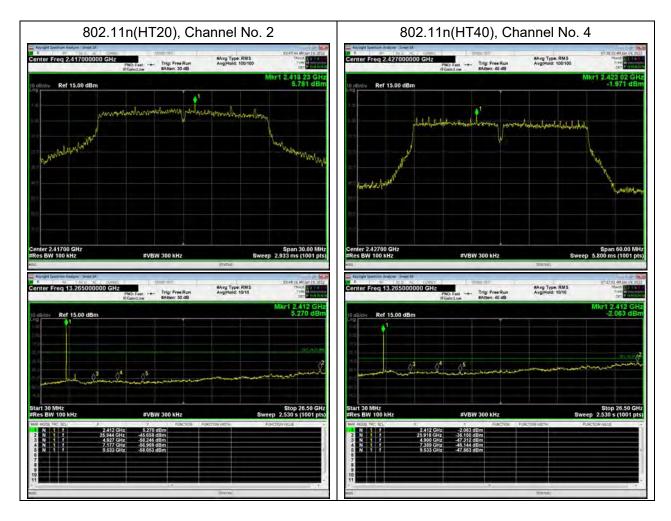


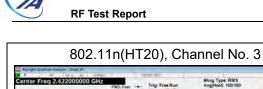




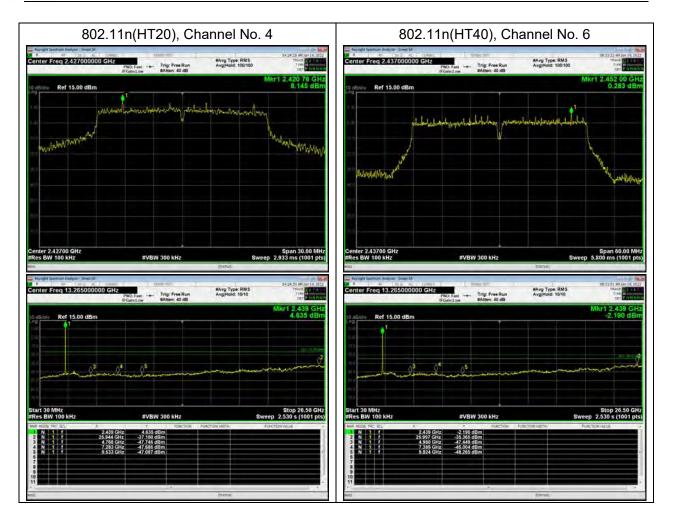


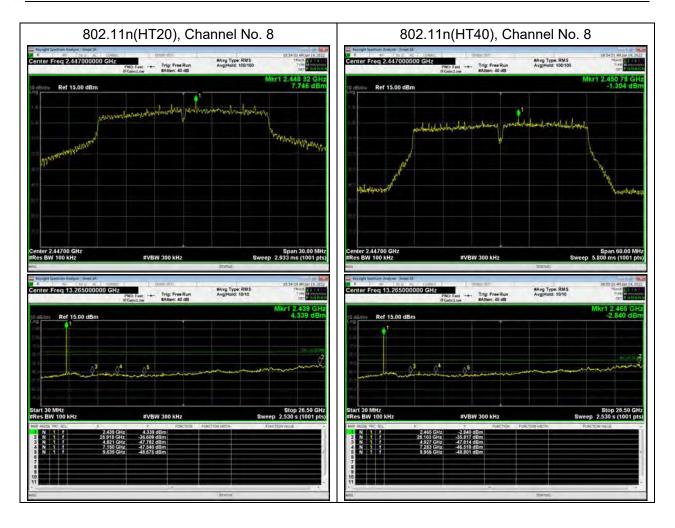


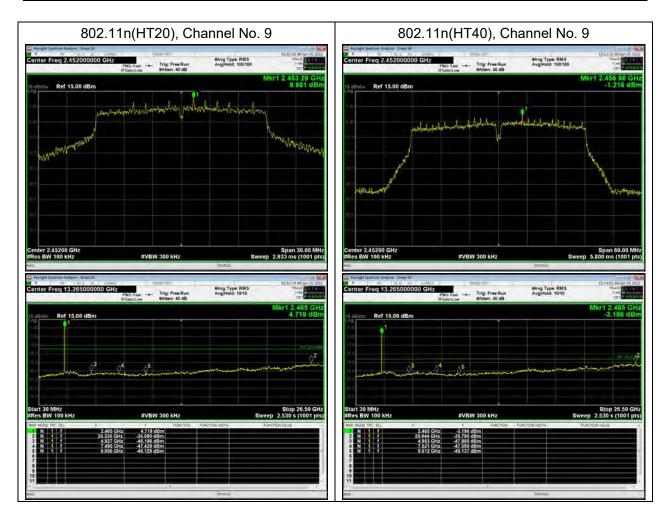


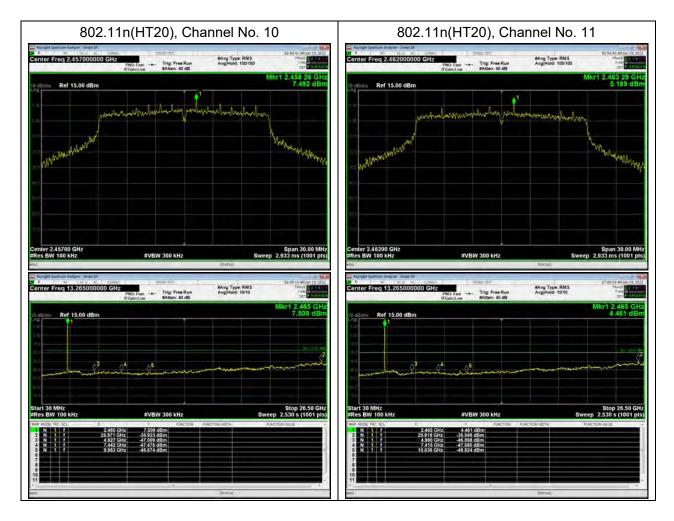


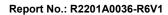


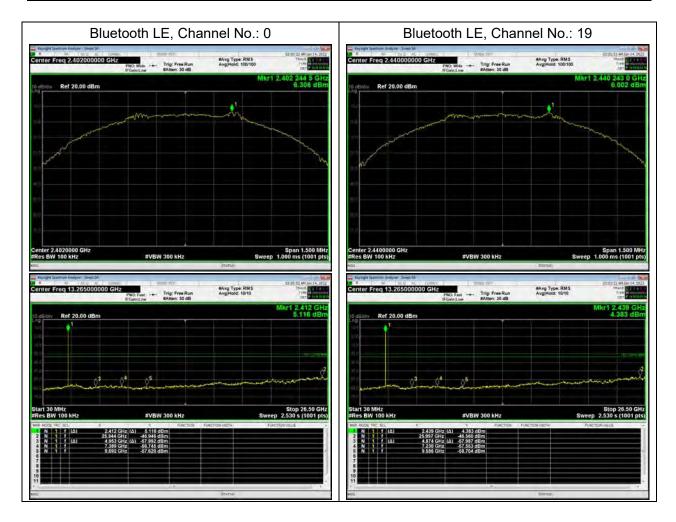


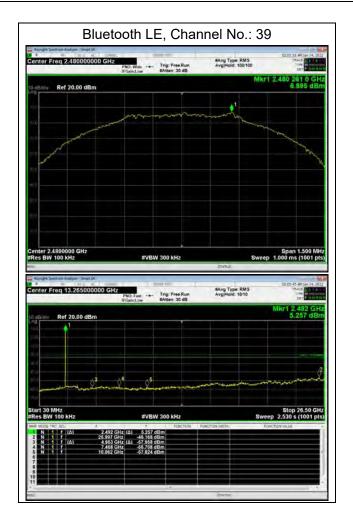

802.11n(HT40), Channel No. 5











5.6. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10. The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: Set the spectrum analyzer in the following: 9kHz~150 kHz RBW=200Hz, VBW=1kHz/ Sweep=AUTO 150 kHz~30MHz RBW=9KHz, VBW=30KHz,/ Sweep=AUTO Below 1GHz RBW=100kHz / VBW=300kHz / Sweep=AUTO a) Peak emission levels are measured by setting the instrument as follows: Above 1GHz PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO b) Average emission levels are measured by setting the instrument as follows: Above 1GHz AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage

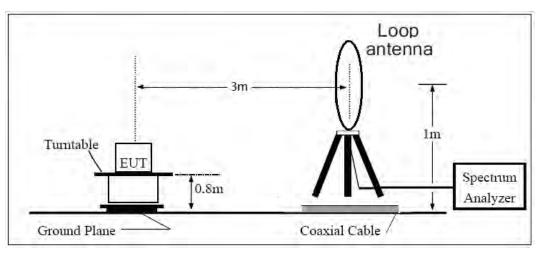
averaging. Log or dB averaging shall not be used.)

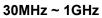
e) Sweep time = auto.

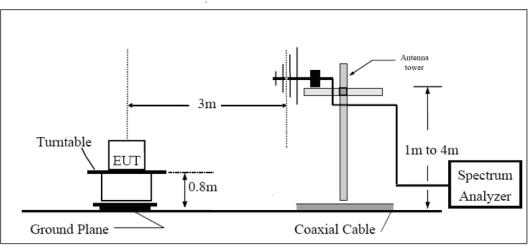
f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

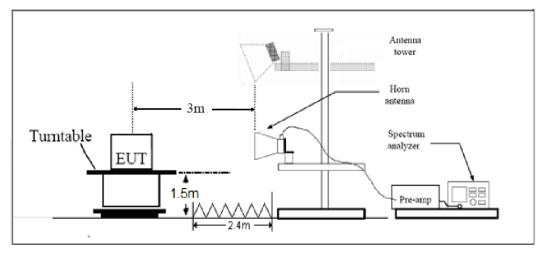
g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.


2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.


3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.


The test is in transmitting mode.


Test setup 9KHz ~ 30MHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

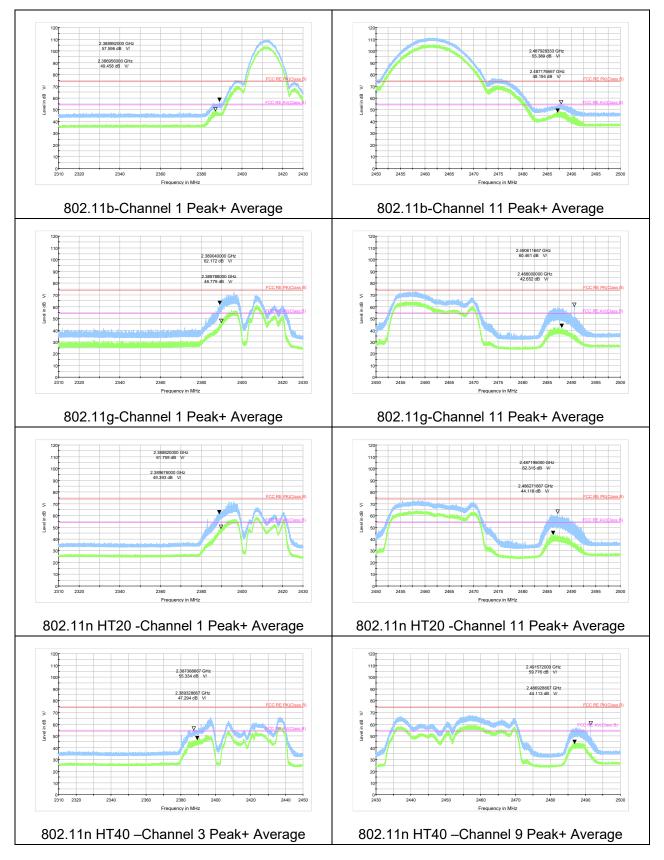
There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m

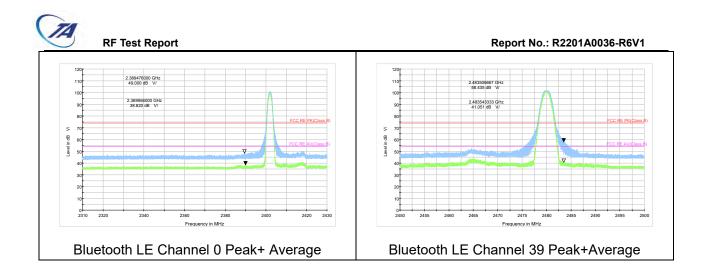
Average Limit=54 dBuV/m

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

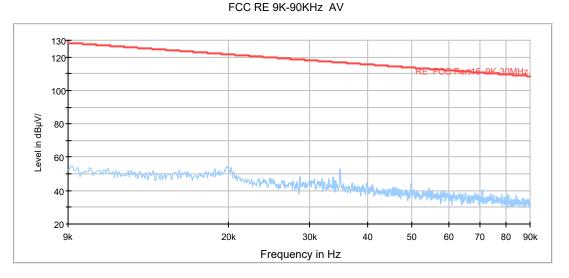

Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.17 dB
200MHz-1GHz	4.84 dB
1-18GHz	4.35 dB
18-26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results:

A font (^{dB} V/)in the test plot =(dB μ V/m)

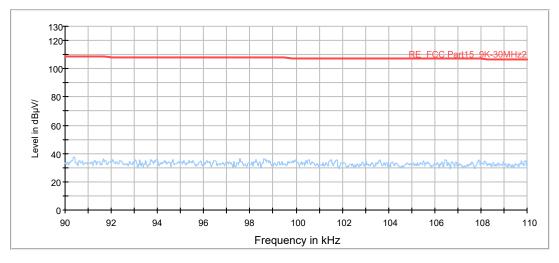
Result of RE

Test result

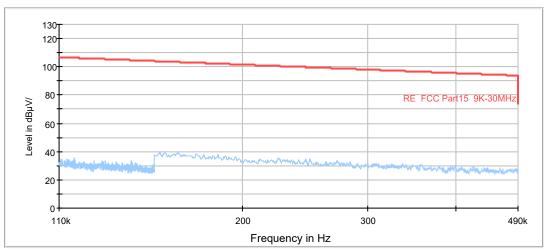

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11g CH6 and Bluetooth LE-Channel 0 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. A font (Level in dB μ V/) in the test plot =(level in dB μ V/m)

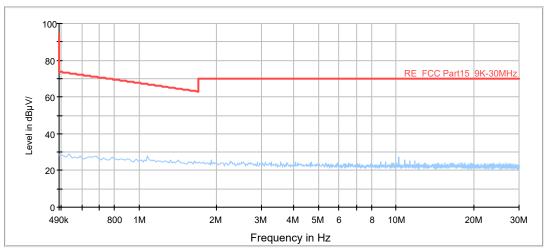

A font (dB V/)in the test plot =($^{dB} \mu$ V/m)

Continuous TX mode:

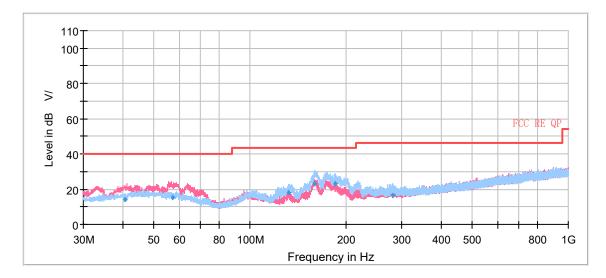


Radiates Emission from 9KHz to 90KHz

FCC RE 90K-110KHz QP



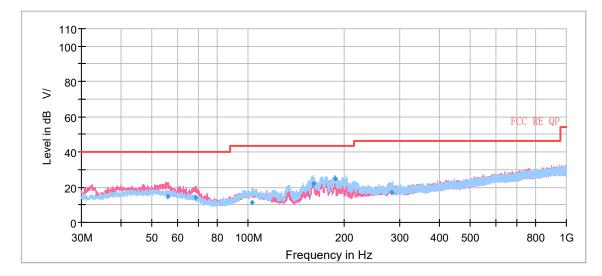
Radiates Emission from 90KHz to 110KHz


FCC RE 110K-490KHz AV

Radiates Emission from 110KHz to 490KHz

FCC RE 490K-30MHz QP

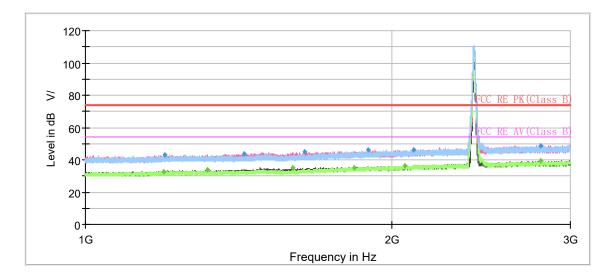
Radiates Emission from 490KHz to 30MHz



Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
40.635000	14.33	100.0	V	13.0	20	25.67	40.00
57.082667	15.49	110.0	V	0.0	20	24.51	40.00
132.801333	18.06	225.0	Н	85.0	15	25.44	43.50
159.879667	23.26	175.0	Н	237.0	15	20.24	43.50
185.311333	23.08	175.0	Н	83.0	17	20.42	43.50
281.631667	16.19	110.0	Н	64.0	20	29.81	46.00

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak


Bluetooth LE:

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
55.874333	14.75	100.0	V	88.0	20	25.25	40.00
68.531000	13.94	100.0	V	21.0	17	26.06	40.00
103.287000	11.54	210.0	Н	244.0	19	31.96	43.50
160.832667	22.27	184.0	Н	76.0	15	21.23	43.50
187.704000	24.86	175.0	Н	76.0	17	18.64	43.50
283.764667	17.12	100.0	Н	60.0	20	28.88	46.00

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak RF Test Report 802.11b CH1

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Frequency (MHz)	MaxPeak (dB	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1193.133333		32.86	54.00	21.14	200.0	Н	0.0	-8
1196.066667	43.15		74.00	30.85	100.0	V	185.0	-8
1317.733333		33.75	54.00	20.25	200.0	Н	104.0	-7
1432.333333	43.57		74.00	30.43	100.0	V	266.0	-6
1600.066667		35.08	54.00	18.92	100.0	V	185.0	-5
1641.666667	44.77		74.00	29.23	100.0	V	2.0	-5
1839.133333		35.33	54.00	18.67	100.0	V	38.0	-4
1897.533333	46.11		74.00	27.89	100.0	V	68.0	-4
2060.600000		36.30	54.00	17.70	100.0	Н	119.0	-3
2105.333333	45.95		74.00	28.05	200.0	V	268.0	-2
2802.333333		39.60	54.00	14.40	200.0	Н	82.0	1
2803.333333	48.82		74.00	25.18	200.0	Н	0.0	1

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)