

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.60 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.59 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.74 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.63 W/kg

Certificate No: D835V2-4d069_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5 Ω - 1.7 jΩ		
Return Loss	- 33.0 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω - 5.3 jΩ	
Return Loss	- 24.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	0.1

Certificate No: D835V2-4d069_Jul20

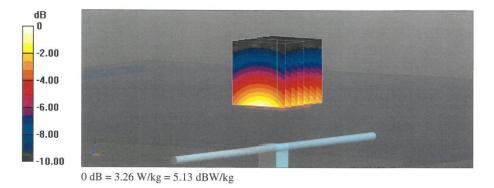
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069

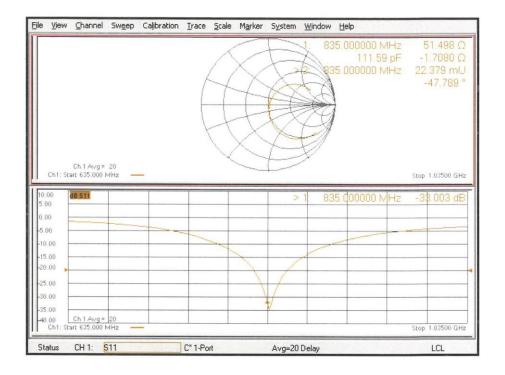

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ε_r = 42.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.14 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.65 W/kg **SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg** Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 3.26 W/kg


Certificate No: D835V2-4d069_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d069_Jul20

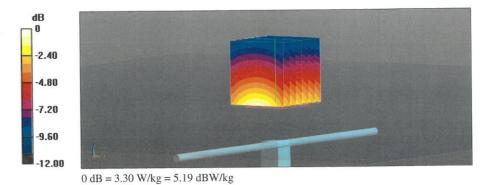
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069

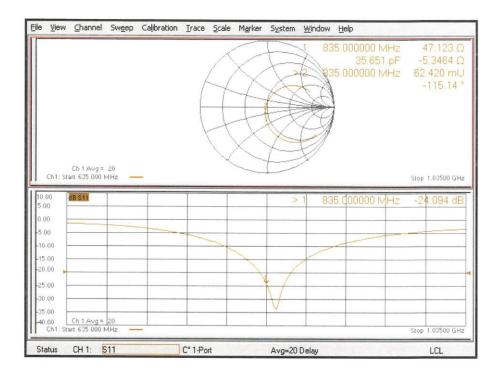

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 1.00 S/m; ϵ_r = 55.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.65, 9.65, 9.65) @ 835 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.60 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.68 W/kg **SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.63 W/kg** Smallest distance from peaks to all points 3 dB below = 16.6 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 3.30 W/kg


Certificate No: D835V2-4d069_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d069_Jul20

Page 8 of 8

1750 MHz Dipole Calibration Certificate

		oration with	中国认可国际互认
	CALIBRA		NAS 校准
Add: No.52 Hua Yua Tel: +86-10-623046: E-mail: cttl@chinatt	33-2079 Fax: -	n District, Beijing, 100191, Ch +86-10-62304633-2504 //www.chinattl.cn	CALIBRATIO CNAS L0570
Client AUDEN	1	Certificate No: Z21	-60254
CALIBRATION CE	RTIFICAT	TE	
Object	D1750	IV2 - SN: 1023	
Calibration Procedure(s)		1-003-01 ation Procedures for dipole validation kits	
Calibration date:		23, 2021	
humidity<70%.		the closed laboratory facility: environment t	emperature (22±3)°C an
humidity<70%. Calibration Equipment used	(M&TE critical	for calibration)	
humidity<70%. Calibration Equipment used			Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards	(M&TE critical	for calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical ID # 106277 104291	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical ID # 106277 104291	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21 Sep-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical ID # 106277 104291 SN 3846	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical ID # 106277 104291 SN 3846 SN 549	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical ID # 106277 104291 SN 3846 SN 549 ID #	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 0 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical ID # 106277 104291 SN 3846 SN 549 ID # MY49071430	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 0 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 0 01-Feb-21 (CTTL, No.J21X00593) 3 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical 1 ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 0 01-Feb-21 (CTTL, No.J21X00593) 3 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	(M&TE critical 1 ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name Zhao Jing	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60002) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 0 01-Feb-21 (CTTL, No.J21X00593) 3 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21 (CTTL-SPEAG,No.Z21-60084) 08-Jan-21 (CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 0 01-Feb-21 (CTTL, No.J21X00593) 3 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60254

Page 1 of 6

©Copyright. All rights reserved by CTTL.

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60254

Page 2 of 6

©Copyright. All rights reserved by CTTL.

Measurement Conditions

 DASY system configuration, as far as not given on page 1.

 DASY Version
 DASY52
 V52.10.4

 Extrapolation
 Advanced Extrapolation

 Phantom
 Triple Flat Phantom 5.1C

 Distance Dipole Center - TSL
 10 mm
 with Spacer

 Zoom Scan Resolution
 dx, dy, dz = 5 mm

 Frequency
 1750 MHz ± 1 MHz

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	10
SAR measured	250 mW input power	4.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60254

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω- 1.44jΩ
Return Loss	- 32.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.122 ns
	•

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Manufactured by	07510	
Manufactured by	SPEAG	
rtificate No: Z21-60254	Page 4 of 6	

Additional EUT Data

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

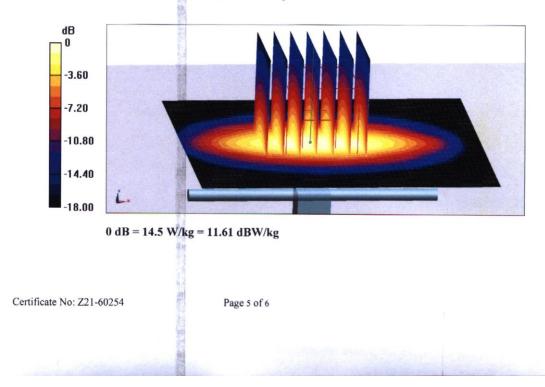
 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 06.23.2021

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1023

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.387 S/m; ϵ_r = 40.41; ρ = 1000 kg/m³

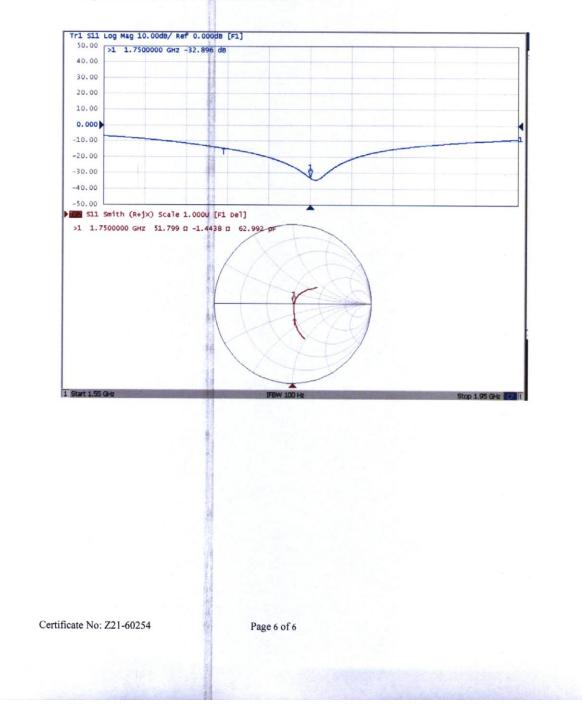

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 98.85 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.75 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.6% Maximum value of SAR (measured) = 14.5 W/kg



Impedance Measurement Plot for Head TSL

©Copyright. All rights reserved by CTTL.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CTTL-BJ (Auden) Client Certificate No: D1750V2-1003_Jul20 **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1003 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: July 24, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID # Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 7349 29-Jun-20 (No. EX3-7349 Jun20) Jun-21 DAE4 SN: 601 27-Dec-19 (No. DAE4-601 Dec19) Dec-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 SN: MY41092317 Power sensor HP 8481A 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20 Name Function Signature Calibrated by: Michael Weber Laboratory Technician MWGGer Katia Pokovic Approved by: Technical Manager Issued: July 27, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1003_Jul20

Page 1 of 8

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary:

and a dan y i	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1003_Jul20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.75 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	4.95 W/kg

Certificate No: D1750V2-1003_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω + 0.8 jΩ	
Return Loss	- 39.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω + 0.0 jΩ	
Return Loss	- 27.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.213 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	SPEAG

Certificate No: D1750V2-1003_Jul20

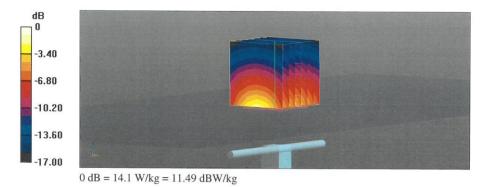
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 22.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003

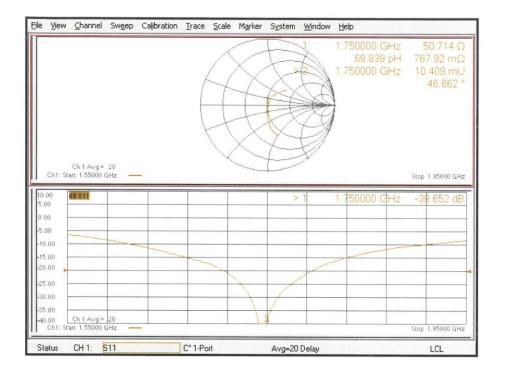

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.35 S/m; ϵ_r = 40.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.58, 8.58, 8.58) @ 1750 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.8 W/kg **SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.75 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 14.1 W/kg


Certificate No: D1750V2-1003_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1003_Jul20

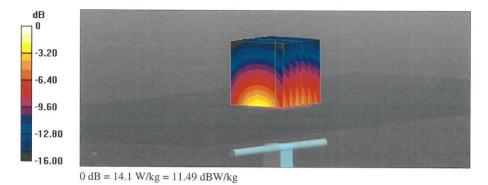
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003

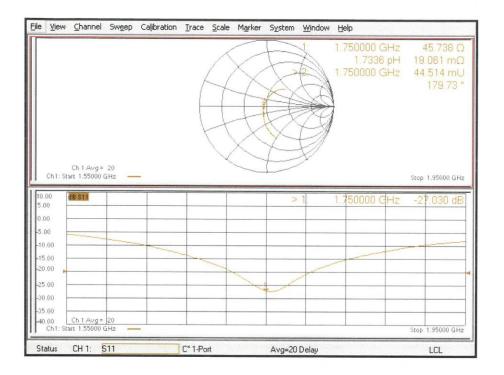

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 1750 MHz} \\ \mbox{Medium parameters used: } f = 1750 MHz; \sigma = 1.47 S/m; \epsilon_r = 54; \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.36, 8.36, 8.36) @ 1750 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.6 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.31 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 56.5% Maximum value of SAR (measured) = 14.1 W/kg


Certificate No: D1750V2-1003_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1750V2-1003_Jul20

Page 8 of 8

1900 MHz Dipole Calibration Certificate

			NAS 肉麻互认 枚准
Add: No.52 HuaYua Tel: +86-10-623046 E-mail: cttl@chinatt	33-2079 Fax: +	District, Beijing, 100191, Chi 86-10-62304633-2504 www.chinattl.cn	CALIBRATION CNAS L0570
Client AUD	And the second second second		21-60238
CALIBRATION CE	RTIFICAT	E	
Dbject	D1900\	/2 - SN: 5d142	
Calibration Procedure(s)	FF-Z11	-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	June 25	5, 2021	
All calibrations have been numidity<70%. Calibration Equipment used		he closed laboratory facility: environment	temperature (22±3)°C and
umidity<70%. Calibration Equipment used	(M&TE critical fo	or calibration)	
umidity<70%. Calibration Equipment used Primary Standards	(M&TE critical fo	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
umidity<70%. alibration Equipment used rimary Standards Power Meter NRP2	(M&TE critical fo ID # 106277	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21
umidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21 Sep-21
umidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21
umidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID #	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical for ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60238

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

lossary:

TSL

N/A

tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60238

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60238

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9Ω+ 4.05jΩ	
Return Loss	- 25.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.103 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

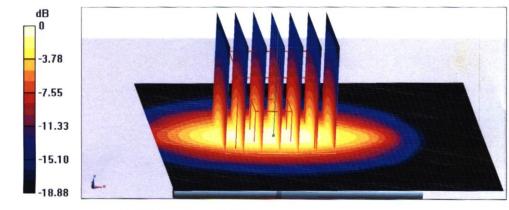
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG	
Certificate No: Z21-60238	Page 4 of 6		

DASY5 Validation Report for Head TSL

Date: 06.25.2021


Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.392$ S/m; $\varepsilon_r = 39.81$; $\rho = 1000$ kg/m³ Phantom section: Center Section

DASY5 Configuration:

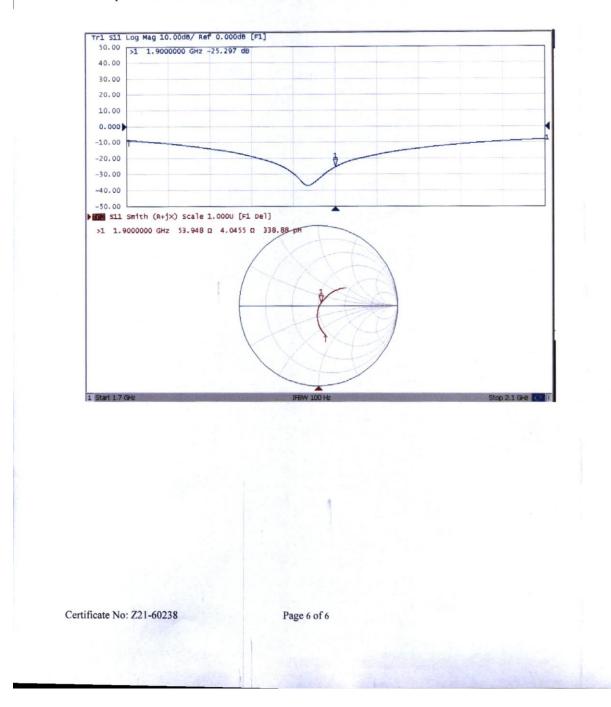
- Probe: EX3DV4 SN3846; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.83 V/m; Power Drift = 0.04 dBPeak SAR (extrapolated) = 19.9 W/kg**SAR(1 g) = 10 \text{ W/kg}; SAR(10 g) = 5.06 \text{ W/kg}** Smallest distance from peaks to all points 3 dB below = 10 mmRatio of SAR at M2 to SAR at M1 = 50.2%Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

Certificate No: Z21-60238


Page 5 of 6

Impedance Measurement Plot for Head TSL

©Copyright. All rights reserved by CTTL.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D1900V2-5d101_Jul20

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ent CTTL-BJ (Auden			
ALIBRATION CE	ERTIFICATE		
Dbject	D1900V2 - SN:5d	101	
Calibration procedure(s)	QA CAL-05.v11		
	Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	July 28, 2020		
This calibration certificate document	its the traceability to natio	onal standards, which realize the physical un	its of measurements (SI).
The measurements and the uncerta	ainties with confidence pr	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature $(22 \pm 3)^{\circ}$	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	29-Jun-20 (No. EX3-7349_Jun20)	Jun-21
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
	SN: US37292783		
Power sensor HP 8481A	314. 0331232103	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A			
	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06	SN: MY41092317 SN: 100972 SN: US41080477	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: MY41092317 SN: 100972 SN: US41080477 Name	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06	SN: MY41092317 SN: 100972 SN: US41080477	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: MY41092317 SN: 100972 SN: US41080477 Name	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: MY41092317 SN: 100972 SN: US41080477 Name	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20

Certificate No: D1900V2-5d101_Jul20

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d101_Jul20

Page 2 of 8

Measurement Conditions

ASY system configuration, as far as not	given on page 1.	
DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)
OAITIOI nonimal nead the parameters		J
	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.13 W/kg

Body TSL parameters The following parameters and calculations were applied.

X !	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.16 W/kg

Certificate No: D1900V2-5d101_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω + 5.6 jΩ	
Return Loss	- 25.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.4 Ω + 5.7 jΩ	
Return Loss	- 22.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

1	Manufactured by	SPEAG
	manadoratog	

Certificate No: D1900V2-5d101_Jul20

Page 4 of 8