

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	152.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60231

Page 9 of 9

©Copyright. All rights reserved by CTTL.

Probe 7600 Calibration Certificate

T	TL	In Collaboration	a g		CN	AS	中国认可 国际互认 校准 CALIBRATIC
Add: No.51 Xu Tel: +86-10-623 E-mail: cttl@ch Client	304633-25 ninattl.com	Fax: +86-10-	eijing, 100191, China 62304633-2504 <u>chinattl.cn</u>	Certificate N	lo: Z20-6	0421	CNAS L057
CALIBRATION		TIFICATE					
Object		EX3DV4 - S	N : 7600				
Calibration Procedure(s)		FF-Z11-004 Calibration F	02 Procedures for Dosir	netric E-field Pro	bes		
Calibration date:		November 3	0, 2020				
pages and are part of the All calibrations have be humidity<70%.			closed laboratory fa	acility: environm	ent tempera	ature(22±	:3)°C and
•							
Calibration Equipment us	sed (M8			hy Certificate N		duled C	alibration
Calibration Equipment us	sed (M8	ID #	Cal Date(Calibrated		No.) Sche		alibration
Calibration Equipment us				No.J20X04344)	No.) Sche	duled C Jun-2 Jun-2	1
Calibration Equipment us Primary Standards Power Meter NRP2	91	ID # 101919	Cal Date(Calibrated 16-Jun-20(CTTL, N	No.J20X04344) No.J20X04344)	No.) Sche	Jun-21	1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-25	91 91	ID # 101919 101547	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N	No.J20X04344) No.J20X04344) No.J20X04344)	No.) Sche	Jun-21 Jun-21	1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z	91 91 uator	ID # 101919 101547 101548	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X04344)	No.) Sche	Jun-21 Jun-21 Jun-21	1 1 1 2
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z Reference 10dBAtten Reference 20dBAtten Reference Probe EX3	91 91 uator uator	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAC	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_	May20)	Jun-2 Jun-2 Jun-2 Feb-2 Feb-2 May-2	1 1 2 2 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z Reference 10dBAtten Reference 20dBAtten	91 91 uator uator	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_	May20)	Jun-2 Jun-2 Jun-2 Feb-2 Feb-2	1 1 2 2 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z Reference 10dBAtten Reference 20dBAtten Reference Probe EX3	91 91 uator uator	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAC	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_	May20) Feb20)	Jun-2 Jun-2 Jun-2 Feb-2 Feb-2 May-2	1 1 2 2 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4	91 91 uator uator 8DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAC, 4-Feb-20(SPEAG,	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.)	May20) Feb20)	Jun-2 ⁴ Jun-2 ⁴ Jun-2 ⁴ Feb-2 ⁴ Feb-2 ⁴ Feb-2 ⁴ Feb-2 ⁴	1 1 2 2 1 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4 Secondary Standards	91 91 uator 8DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556 ID #	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAG, 4-Feb-20(SPEAG, Cal Date(Calibrated b	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.) No.J20X04343)	May20) Feb20)	Jun-2' Jun-2' Feb-2: Feb-2: May-2 Feb-2 Feb-2' uled Cal	1 1 2 2 1 1 1 ibration
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4 Secondary Standards SignalGenerator MG3 Network Analyzer E50	91 91 uator 8DV4	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556 ID # 6201052605 MY46110673	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAG, 4-Feb-20(SPEAG, Cal Date(Calibrated b 23-Jun-20(CTTL, N	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.) No.J20X04343)	May20) Feb20) Sched	Jun-2' Jun-2' Feb-2' Feb-2' May-2 Feb-2' May-2 Feb-2' uled Cal	1 1 2 2 1 1 1 ibration
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-29 Power sensor NRP-29 Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4 Secondary Standards SignalGenerator MG3 Network Analyzer E50	91 91 uator uator 8DV4 8700A 071C Nan	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556 ID # 6201052605 MY46110673	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAG, 4-Feb-20(SPEAG, Cal Date(Calibrated b 23-Jun-20(CTTL, N 10-Feb-20(CTTL, N	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.) No.J20X04343) No.J20X00515)	May20) Feb20) Sched	Jun-2' Jun-2' Feb-2: Feb-2: May-2 Feb-2 uled Cal Jun-2' Feb-2	1 1 2 2 1 1 1 ibration 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z Power sensor NRP-Z Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4 Secondary Standards SignalGenerator MG3	91 91 uator uator 8DV4 8700A 071C Nan Yu	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556 ID # 6201052605 MY46110673 me	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAG, 4-Feb-20(SPEAG, Cal Date(Calibrated b 23-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.) No.J20X04343) No.J20X00515) er	May20) Feb20) Sched	Jun-2' Jun-2' Feb-2: Feb-2: May-2 Feb-2 Uled Cal Jun-2' Feb-2 Teb-2 nature	1 1 2 2 1 1 1 ibration 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-2 Power sensor NRP-2 Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4 Secondary Standards SignalGenerator MG3 Network Analyzer E50 Calibrated by:	91 91 uator uator 8DV4 8700A 071C Nan Yu Lin	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556 ID # 6201052605 MY46110673 me Zongying	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAG, 4-Feb-20(SPEAG, Cal Date(Calibrated b 23-Jun-20(CTTL, N 10-Feb-20(CTTL, N Function SAR Test Engine	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.) No.J20X04343) No.J20X00515) er	May20) Feb20) Sched	Jun-2' Jun-2' Feb-2: Feb-2: May-2 Feb-2 Uled Cal Jun-2' Feb-2 Teb-2 nature	1 1 2 2 1 1 1 ibration 1
Calibration Equipment us Primary Standards Power Meter NRP2 Power sensor NRP-Z Power sensor NRP-Z Power sensor NRP-Z Reference 10dBAtten Reference 20dBAtten Reference Probe EX3 DAE4 Secondary Standards SignalGenerator MG3 Network Analyzer E50 Calibrated by: Reviewed by:	91 91 uator uator 8DV4 8700A 071C Nan Yu Lin	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1556 ID # 6201052605 MY46110673 me Zongying Hao	Cal Date(Calibrated 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 16-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 29-May-20(SPEAG, 4-Feb-20(SPEAG, Cal Date(Calibrated b 23-Jun-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N 10-Feb-20(CTTL, N SAR Test Engine	No.J20X04344) No.J20X04344) No.J20X04344) No.J20X00525) No.J20X00526) S, No.EX3-7307_ No.DAE4-1556_ y, Certificate No.) No.J20X04343) No.J20X00515) er er	May20) Feb20) Sched	Jun-2' Jun-2' Feb-2: Feb-2: May-2 Feb-2 Feb-2' uled Cal Jun-2' Feb-2 hature	1 1 2 2 1 1 1 1 1

Certificate No: Z20-60421

Page 1 of 9

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

Glossary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60421

Page 2 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.70	0.65	0.67	±10.0%
DCP(mV) ^B	109.4	109.2	108.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	225.0	±2.1%
		Y	0.0	0.0	1.0		206.5	7
		Z	0.0	0.0	1.0		212.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60421

Page 3 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Calibration Parameter Determined in Head Tissue Simulating Media

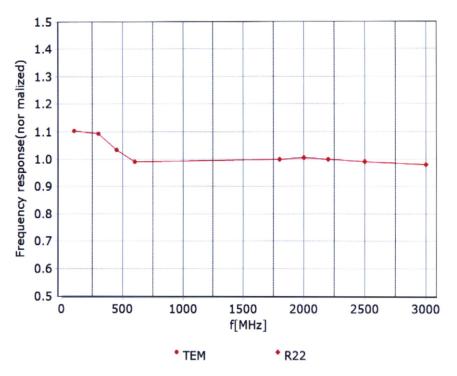
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.88	10.88	10.88	0.40	0.77	±12.1%
900	41.5	0.97	10.45	10.45	10.45	0.17	1.31	±12.1%
1450	40.5	1.20	9.28	9.28	9.28	0.10	1.40	±12.1%
1640	40.3	1.29	9.10	9.10	9.10	0.21	1.03	±12.1%
1750	40.1	1.37	9.01	9.01	9.01	0.20	1.11	±12.1%
1900	40.0	1.40	8.70	8.70	8.70	0.26	1.03	±12.1%
2000	40.0	1.40	8.68	8.68	8.68	0.21	1.16	±12.1%
2300	39.5	1.67	8.19	8.19	8.19	0.37	0.88	±12.1%
2450	39.2	1.80	7.79	7.79	7.79	0.35	1.00	±12.1%
2600	39.0	1.96	7.67	7.67	7.67	0.46	0.80	±12.1%
3300	38.2	2.71	7.35	7.35	7.35	0.43	0.95	±13.3%
3500	37.9	2.91	7.01	7.01	7.01	0.44	0.94	±13.3%
3700	37.7	3.12	6.77	6.77	6.77	0.42	1.02	±13.3%
3900	37.5	3.32	6.85	6.85	6.85	0.35	1.30	±13.3%
4100	37.2	3.53	6.75	6.75	6.75	0.40	1.15	±13.3%
4200	37.1	3.63	6.65	6.65	6.65	0.35	1.35	±13.3%
4400	36.9	3.84	6.54	6.54	6.54	0.35	1.35	±13.3%
4600	36.7	4.04	6.39	6.39	6.39	0.45	1.25	±13.3%
4800	36.4	4.25	6.34	6.34	6.34	0.40	1.42	±13.3%
4950	36.3	4.40	6.01	6.01	6.01	0.45	1.30	±13.3%
5250	35.9	4.71	5.68	5.68	5.68	0.45	1.30	±13.3%
5600	35.5	5.07	5.11	5.11	5.11	0.50	1.25	±13.3%
5750	35.4	5.22	5.07	5.07	5.07	0.50	1.25	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

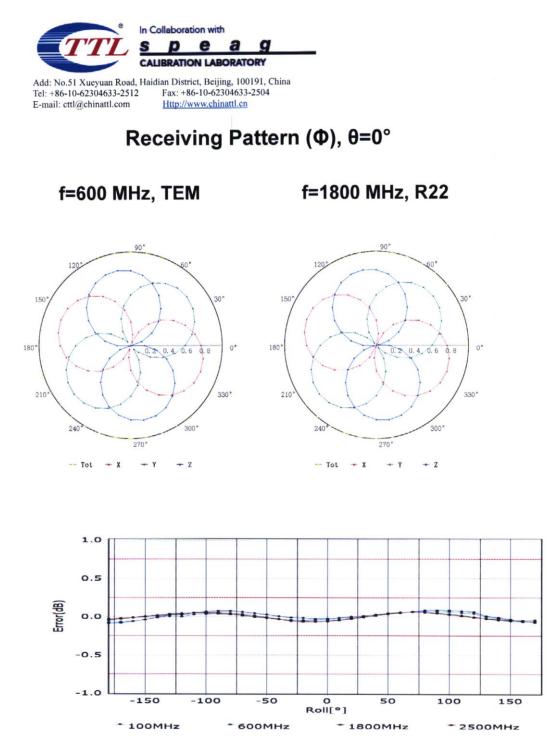
Certificate No:Z20-60421

Page 4 of 9



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

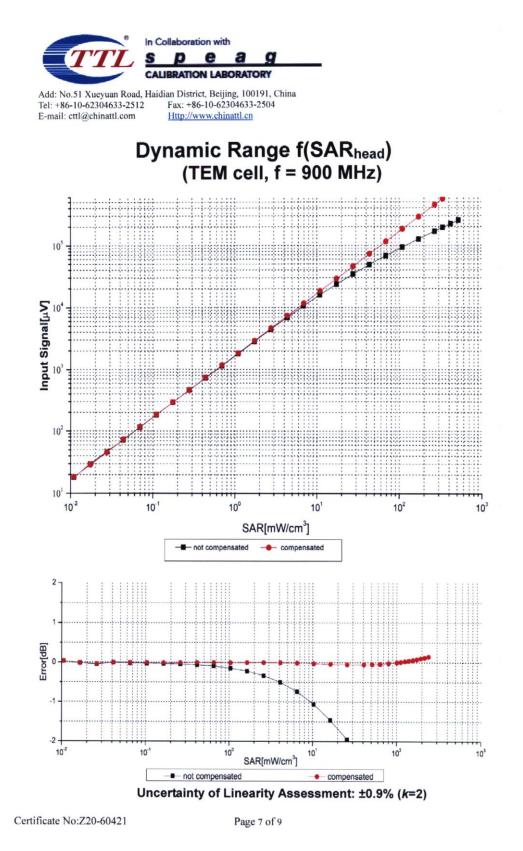
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z20-60421

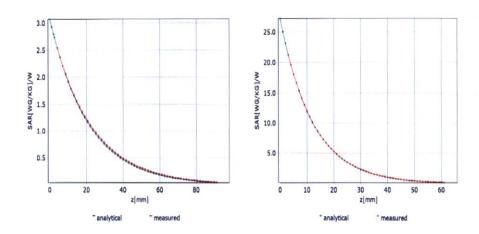
Page 5 of 9

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

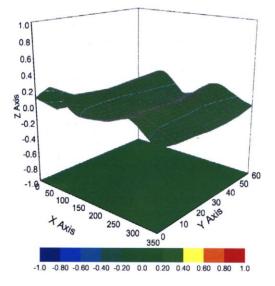

Certificate No:Z20-60421

Page 6 of 9

I



E-mail: cttl@chinattl.com


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z20-60421

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	40.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60421

Page 9 of 9

ANNEX H Dipole Calibration Certificate

750 MHz Dipole Calibration Certificate

		ATION LABORATORY	CNAS 校准
Add: No.51 Xueyu Tel: +86-10-62304		strict, Beijing, 100191, China	CALIBRATION
E-mail: cttl@china		+86-10-62304633-2504	CNAS L0570
Client AU	DEN	Certificate No: 2	Z20-60484
CALIBRATION C	ERTIFICA	TE	
Object	D750\	/3 - SN: 1132	
Calibration Procedure(s)			
Calibration Frocedure(s)	FF-Z1	1-003-01	
	Calibra	ation Procedures for dipole validation kits	
Calibration date:	Decem	nber 23, 2020	
This calibration Certificate	documents the	traceability to national standards, which re-	aglize the physical write of
measurements(SI). The me	asurements and	the uncertainties with confidence probabilit	ty are given on the following
pages and are part of the c		and ancertainties with confidence probabilit	ly are given on the following
All calibrations have beer	n conducted in	the closed laboratory facility: environmer	nt temperature(22±3)℃ and
	n conducted in	the closed laboratory facility: environment	nt temperature(22±3) $^{\circ}\!\mathrm{C}$ and
	n conducted in	the closed laboratory facility: environmer	nt temperature(22±3)°C and
humidity<70%.			nt temperature(22±3)℃ and
humidity<70%. Calibration Equipment used		or calibration)	
humidity<70%. Calibration Equipment usec	l (M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards	I (M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	Scheduled Calibration May-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I (M&TE critical f ID # 106276	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	Scheduled Calibration May-21 May-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	ID # 106276 101369	or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965)	Scheduled Calibration May-21 May-21 Jan-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4	ID # 106276 101369 SN 3617 SN 771	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017)	Scheduled Calibration May-21 May-21 Jan-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards	ID # 106276 101369 SN 3617 SN 771 ID #	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516)	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards	ID # 106276 101369 SN 3617 SN 771 ID #	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515)	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515)	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00516) SAR Test Engineer	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00516) SAR Test Engineer	Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21

Certificate No: Z20-60484

Page 1 of 6

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to
- 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60484

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

	Те	mperature	Permittiv	ity	Conductivity
Nominal Head TSL parameters	2	22.0 °C	41.9		0.89 mho/m
Measured Head TSL parameters	(22.	0 ± 0.2) °C	41.5 ± 6	%	0.89 mho/m ± 6 %
Head TSL temperature change during test		<1.0 °C			
AR result with Head TSL					
SAR averaged over 1 cm^3 (1 g) of Head TSL	_	Condi	tion		
SAR measured		250 mW in	put power		2.15 W/kg
SAR for nominal Head TSL parameters		normalize	ed to 1W	8.59	W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head T	SL	Condi	tion		
SAR measured		250 mW in	put power		1.44 W/kg
SAR for nominal Head TSL parameters		normalize	ed to 1W	5.76	W/kg ± 18.7 % (k=2)

Certificate No: Z20-60484

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1Ω- 1.24jΩ	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.996 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

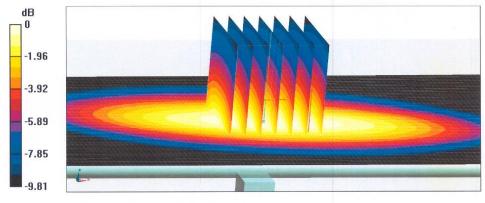
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Page 4 of 6

DASY5 Validation Report for Head TSL


Date: 12.23.2020

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1132** Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.888$ S/m; $\epsilon_r = 41.46$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration:

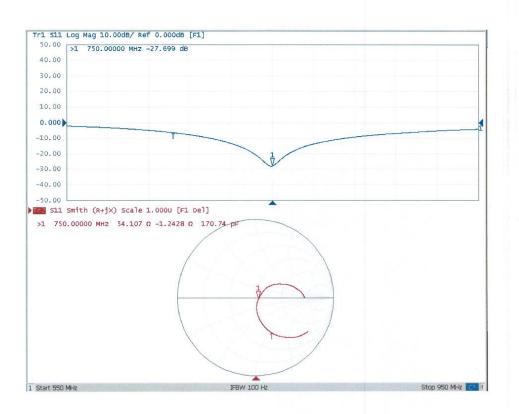
- Probe: EX3DV4 SN3617; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.54 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.10 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.44 W/kg Smallest distance from peaks to all points 3 dB below = 17.5 mm Ratio of SAR at M2 to SAR at M1 = 69.3% Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Certificate No: Z20-60484


Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: Z20-60484

Page 6 of 6

835 MHz Dipole Calibration Certificate

Client AUDI	EN	//www.chinattl.cn Certificate No: 2	221-60237
CALIBRATION C	ERTIFICA	TE	
Dbject	D835\	/2 - SN: 4d120	
Calibration Procedure(s)		1-003-01	
Calibration date:		ation Procedures for dipole validation kits 23, 2021	
umidity<70%.	conducted in	the closed laboratory facility: environmen	t temperature (22±3)℃ an
Calibration Equipment used		,	0.1.1.1.0.11.1
Primary Standards Power Meter NRP2	ID #	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21 Sep-21
Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 549	08-Jan-21(CTTL-SPEAG,No.Z21-60002)	Jan-22
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
	Name	Function	Signature
			Jak .
alibrated by:	Zhao Jing	SAR Test Engineer	1 ZA 21
calibrated by: Reviewed by:	Zhao Jing Lin Hao	SAR Test Engineer	A 38
			A HAYS

©Copyright. All rights reserved by CTTL.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary: TSL

N/A

tissue simulating liquid ConvF sensitivity in TSL / NORMx.v.z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60237

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	la contra da
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.49 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60237

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8Ω- 0.87jΩ	
Return Loss	- 28.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.307 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Manufactured by		SPEAG	
	and the second second		
	125		
	and the state of the		
Certificate No: Z21-60237	Page 4 of 6		

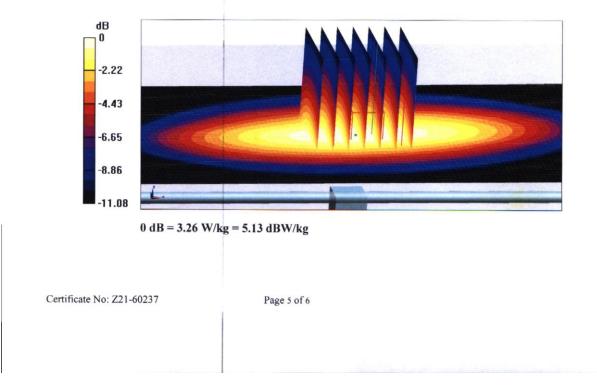
©Copyright. All rights reserved by CTTL.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 06.23.2021

Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d120

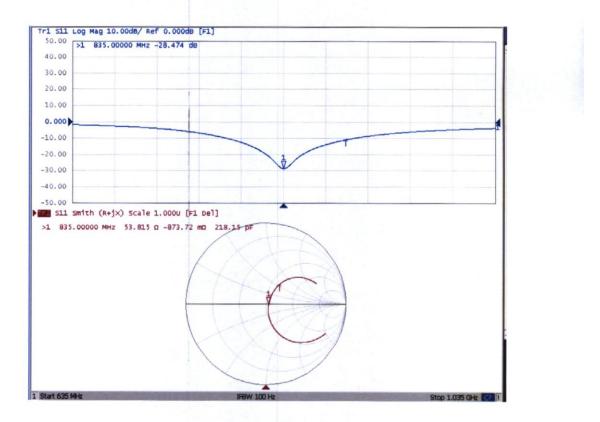

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 40.96$; $\rho = 1000$ kg/m³ Phantom section: Right Section

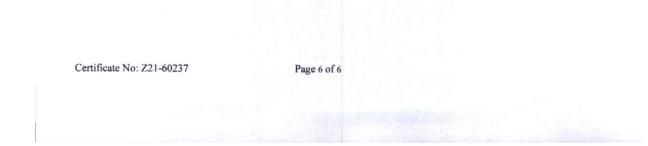
DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.80 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.78 W/kgSAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.52 W/kgSmallest distance from peaks to all points 3 dB below = 16.8 mmRatio of SAR at M2 to SAR at M1 = 62.3%Maximum value of SAR (measured) = 3.26 W/kg





Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIDDATION O	n)	Certificate N	o: D835V2-4d069_Jul20
ALIBRATION C	ERTIFICATE		
Object	D835V2 - SN:4d	069	
Calibration procedure(s)	QA CAL-05.v11		
Calibration procedure(s)		edure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	July 24, 2020		
This calibration contificate desume	nto the treeshills, to esti		
The measurements and the uncer	tainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar	nts of measurements (SI). Ind are part of the certificate.
All calibrations have been conduct	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
ower sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
ower sensor NRP-Z91			- +- · - ·
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Reference 20 dB Attenuator ype-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	
leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4	SN: 310982 / 06327 SN: 7349		Apr-21
leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21 Apr-21
leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 IAE4 econdary Standards	SN: 310982 / 06327 SN: 7349	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20)	Apr-21 Apr-21 Jun-21
teference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 0AE4 econdary Standards lower meter E4419B	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19)	Apr-21 Apr-21 Jun-21 Dec-20
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe EX3DV4 AAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292317	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19)	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe EX3DV4 AE4 Secondary Standards Yower meter E4419B Yower sensor HP 8481A Prower sensor HP 8481A Regenerator R&S SMT-06	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe EX3DV4 AE4 Secondary Standards Yower meter E4419B Yower sensor HP 8481A Prower sensor HP 8481A Regenerator R&S SMT-06	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292317	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 7349 SN: 601 SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20

Certificate No: D835V2-4d069_Jul20

Page 1 of 8

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary:

en o o o o o o o o	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d069_Jul20

Page 2 of 8