





# FCC PART 15C TEST REPORT BLUETOOTH LOW ENERGY (BLE) PART

# No. I22Z62243-IOT02

### for

Honor Device Co., Ltd.

**Smart Phone** 

Model Name: CRT-LX3

FCC ID: 2AYGCCRT-LX3

with

## Hardware Version: HL3CRTM

## Software Version: 6.1.0.90(C900E21R1P2)

## Issued Date: 2022-12-6

#### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

#### CTTL, Telecommunication Technology Labs, CAICT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email:<u>cttl\_terminals@caict.ac.cn</u>, website: www.chinattl.com





## **REPORT HISTORY**

| Report Number   | Revision | Description | Issue Date |
|-----------------|----------|-------------|------------|
| I22Z62243-IOT02 | Rev.0    | 1st edition | 2022-12-6  |





## **CONTENTS**

| 1. Test Laboratory                                         | 4  |
|------------------------------------------------------------|----|
| 1.1. Introduction & Accreditation                          | 4  |
| 1.2. Testing Location                                      | 4  |
| 1.3. Testing Environment                                   | 5  |
| 1.4. Project data                                          | 5  |
| 1.5. Signature                                             | 5  |
| 2. Client Information                                      | 6  |
| 2.1. Applicant Information                                 | 6  |
| 2.2. Manufacturer Information                              | 6  |
| 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) | 7  |
| 3.1. About EUT                                             | 7  |
| 3.2. Internal Identification of EUT                        | 7  |
| 3.3. Internal Identification of AE                         | 7  |
| 3.4. Normal Accessory setting                              | 7  |
| 3.5. General Description                                   | 7  |
| 4. Reference Documents                                     | 8  |
| 4.1. Documents supplied by applicant                       | 8  |
| 4.2. Reference Documents for testing                       | 8  |
| 5. Test Results                                            | 9  |
| 5.1. Summary of EUT Mode                                   | 9  |
| 5.2. Summary of Test Results                               | 9  |
| 5.3. Statements                                            | 9  |
| 6. Test Facilities Utilized                                | 10 |
| 7. Measurement Uncertainty                                 | 11 |
| 7.1. Peak Output Power                                     | 11 |
| 7.2. Frequency Band Edges - Conducted                      | 11 |
| 7.3. Transmitter Spurious Emission - Conducted             | 11 |
| 7.4. 6dB Bandwidth                                         | 11 |
| 7.5. Maximum Power Spectral Density Level                  | 11 |
| ANNEX A: EUT parameters                                    | 12 |
| ANNEX B: Detailed Test Results                             | 13 |
| B.1. Measurement Method                                    | 13 |
| B.2. Peak Output Power                                     | 14 |
| B.3. Frequency Band Edges - Conducted                      | 15 |
| B.4. Transmitter Spurious Emission - Conducted             |    |
| B.5. 6dB Bandwidth                                         | 26 |
| B.6. Maximum Power Spectral Density Level                  | 29 |
| ANNEX C: Accreditation Certificate                         | 32 |





## 1. Test Laboratory

#### 1.1. Introduction & Accreditation

**Telecommunication Technology Labs, CAICT** is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (ISED#: 24849). The detail accreditation scope can be found on NVLAP website.

#### 1.2. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address:

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China100191





#### 1.3. Testing Environment

| Normal Temperature: | <b>20-27</b> ℃ |
|---------------------|----------------|
| Relative Humidity:  | 20-50%         |

#### 1.4. Project data

| Testing Start Date: | 2022-11-21 |
|---------------------|------------|
| Testing End Date:   | 2022-12-6  |

#### 1.5. Signature

>

Wu Le (Prepared this test report)



Sun Zhenyu (Reviewed this test report)

古门晚

Hu Xiaoyu (Approved this test report)





## 2. Client Information

#### 2.1. Applicant Information

| Company Name:  | Honor Device Co., Ltd.                                                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Address /Post: | Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089, Hongli<br>West Road, Xiangmihu Street, Futian District, Shenzhen, P.R.China |
| City:          | Shenzhen                                                                                                                                 |
| Postal Code:   | 1                                                                                                                                        |
| Country:       | China                                                                                                                                    |
| Telephone:     | 1                                                                                                                                        |
| Fax:           | 1                                                                                                                                        |

### 2.2. Manufacturer Information

| Company Name:  | Honor Device Co., Ltd.                                                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Address /Post: | Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089, Hongli<br>West Road, Xiangmihu Street, Futian District, Shenzhen, P.R.China |
| City:          | Shenzhen                                                                                                                                 |
| Postal Code:   | 1                                                                                                                                        |
| Country:       | China                                                                                                                                    |
| Telephone:     | 1                                                                                                                                        |
| Fax:           | 1                                                                                                                                        |





## 3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

#### 3.1. About EUT

| Description                 | Smart Phone                 |
|-----------------------------|-----------------------------|
| Model Name                  | CRT-LX3                     |
| FCC ID                      | 2AYGCCRT-LX3                |
| Frequency Band              | ISM 2400MHz~2483.5MHz       |
| Type of Modulation(LE mode) | GFSK (Bluetooth Low Energy) |
| Number of Channels(LE mode) | 40                          |
| Power Supply                | 3.89V DC by Battery         |
| Antenna gain                | -1.5dBi                     |
|                             |                             |

#### 3.2. Internal Identification of EUT

| EUT ID* | SN or IMEI       | HW Version | SW Version            | Date of receipt |
|---------|------------------|------------|-----------------------|-----------------|
| EUT1    | 866902060024817/ | HL3CRTM    | 6.1.0.90(C900E21R1P2) | 2022-11-21      |
|         | 866902060025111  |            |                       |                 |

\*EUT ID: is used to identify the test sample in the lab internally.

#### 3.3. Internal Identification of AE

| AE ID* | Description |   |         |
|--------|-------------|---|---------|
| AE1    | Battery     | 1 | Inbuilt |

\*AE ID: is used to identify the test sample in the lab internally.

#### 3.4. Normal Accessory setting

Fully charged battery is used during the test.

#### 3.5. General Description

The Equipment Under Test (EUT) is a model of Smart Phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfill the test. Samples undergoing test were selected by the Client.





### 4. <u>Reference Documents</u>

#### 4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

#### 4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

| Reference   | Title                                                                                          | Version   |
|-------------|------------------------------------------------------------------------------------------------|-----------|
|             | FCC CFR 47, Part 15, Subpart C:                                                                |           |
|             | 15.205 Restricted bands of operation;                                                          |           |
| FCC Part15  | 15.209 Radiated emission limits, general                                                       | 2021      |
| FCC Part 15 | requirements;                                                                                  | 2021      |
|             | 15.247 Operation within the bands 902–928MHz,                                                  |           |
|             | 2400–2483.5 MHz, and 5725–5850 MHz.                                                            |           |
| ANSI C63.10 | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | June,2013 |
|             | Compliance realing of Childenbed Wireless Devices                                              |           |





### 5. <u>Test Results</u>

#### 5.1. Summary of EUT Mode

Two modes are provided:

| Mode   | Conditions |
|--------|------------|
| Mode A | 1Mbps      |
| Mode B | 2Mbps      |

\*For the test results, the EUT had been tested all conditions. But only the worst case(Mode B) was shown in test report except the " Peak Output Power " test was shown all conditions.

#### 5.2. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- **NA** Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL

| SUMMARY OF MEASUREMENT RESULTS            | Sub-clause    | Verdict |
|-------------------------------------------|---------------|---------|
| Peak Output Power                         | 15.247 (b)(1) | Р       |
| Frequency Band Edges- Conducted           | 15.247 (d)    | Р       |
| Transmitter Spurious Emission - Conducted | 15.247 (d)    | Р       |
| 6dB Bandwidth                             | 15.247 (a)(2) | Р       |
| Maximum Power Spectral Density Level      | 15.247(e)     | Р       |

Please refer to **ANNEX A** for detail.

The measurement is made according to ANSI C63.10.

#### 5.3. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2





## 6. <u>Test Facilities Utilized</u>

## Conducted test system

| No. | Equipment                 | Model | Serial<br>Number | Manufacturer | Calibration<br>Period | Calibration<br>Due date |
|-----|---------------------------|-------|------------------|--------------|-----------------------|-------------------------|
| 1   | Vector Signal<br>Analyzer | FSQ26 | 100024           | R&S          | 1 year                | 2023-03-23              |
| 2   | Shielding Room            | S81   | /                | ETS-Lindgren | /                     | /                       |





### 7. <u>Measurement Uncertainty</u>

#### 7.1. Peak Output Power

#### Measurement Uncertainty:

| Measurement Uncertainty (k=2) 0.66dB |  |
|--------------------------------------|--|
|--------------------------------------|--|

#### 7.2. Frequency Band Edges - Conducted

#### Measurement Uncertainty:

| Measurement Uncertainty (k=2) 0.66dB |
|--------------------------------------|
|--------------------------------------|

#### 7.3. Transmitter Spurious Emission - Conducted

#### **Measurement Uncertainty:**

| Frequency Range   | Uncertainty (k=2) |  |
|-------------------|-------------------|--|
| 30 MHz ~ 8 GHz    | 1.22dB            |  |
| 8 GHz ~ 12.75 GHz | 1.51dB            |  |
| 12.7GHz ~ 26 GHz  | 1.51dB            |  |

#### 7.4. 6dB Bandwidth

#### Measurement Uncertainty:

| Measurement Uncertainty (k=2) | 61.936Hz |
|-------------------------------|----------|
|-------------------------------|----------|

#### 7.5. Maximum Power Spectral Density Level

#### Measurement Uncertainty:

| Measurement Uncertainty (k=2) | 0.66dB |
|-------------------------------|--------|
|-------------------------------|--------|





## **ANNEX A: EUT parameters**

Disclaimer: The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.





## **ANNEX B: Detailed Test Results**

#### **B.1. Measurement Method**

#### **B.1.1. Conducted Measurements**

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer







#### B.2. Peak Output Power

#### B.2.1. Peak Output Power - Conducted Method of Measurement: See ANSI C63.10-clause 11.9.1.1

- a) Set the RBW = 3 MHz.
- b) Set VBW = 10 MHz.
- c) Set span = 10 MHz.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

#### Measurement Limit:

| Standard              | Limit (dBm) |  |
|-----------------------|-------------|--|
| FCC Part 15.247(b)(3) | < 30        |  |

#### Measurement Results:

#### For **GFSK**

| Sample<br>Rate | Channel<br>No. | Frequency<br>(MHz) | Peak Conducted Output Power<br>(dBm) | Conclusion |
|----------------|----------------|--------------------|--------------------------------------|------------|
|                | 0              | 2402               | 6.05                                 | Р          |
| 1Mbps          | 19             | 2440               | 7.41                                 | Р          |
|                | 39             | 2480               | 6.09                                 | Р          |
|                | 0              | 2402               | 6.17                                 | Р          |
| 2Mbps          | 19             | 2440               | 7.44                                 | Р          |
|                | 39             | 2480               | 6.18                                 | Р          |

**Conclusion: PASS** 

#### B.2.2. E.I.R.P.

#### The radiated E.I.R.P. is listed below:

Antenna gain = -1.5dBi

#### For GFSK

| Sample<br>Rate | Channel<br>No. | Frequency<br>(MHz) | E.I.R.P. (dBm) | Conclusion |
|----------------|----------------|--------------------|----------------|------------|
|                | 0              | 2402               | 4.55           | Р          |
| 1Mbps          | 19             | 2440               | 5.91           | Р          |
|                | 39             | 2480               | 4.59           | Р          |
|                | 0              | 2402               | 4.67           | Р          |
| 2Mbps          | 19             | 2440               | 5.94           | Р          |
|                | 39             | 2480               | 4.68           | Р          |

Note: E.I.R.P. are calculated with the antenna gain.

©Copyright. All rights reserved by CTTL.





#### B.3. Frequency Band Edges - Conducted

#### Method of Measurement: See ANSI C63.10-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

- a) Set Span = 8MHz
- b) Sweep Time: Auto
- c) Set the RBW= 100 kHz
- c) Set the VBW= 300 kHz
- d) Detector: Peak
- e) Trace: Max hold

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

#### **Measurement Limit:**

| Standard                   | Limit (dBc) |
|----------------------------|-------------|
| FCC 47 CFR Part 15.247 (d) | < -20       |

#### Measurement Result:

For GFSK

| Channel<br>No. | Frequency<br>(MHz) | Hopping     |       | ge Power<br>Bc) | Conclusion |
|----------------|--------------------|-------------|-------|-----------------|------------|
| 0              | 2402               | Hopping OFF | Fig.1 | -30.12          | Р          |
| 39             | 2480               | Hopping OFF | Fig.2 | -53.15          | Р          |

**Conclusion: PASS** 





#### Test graphs as below

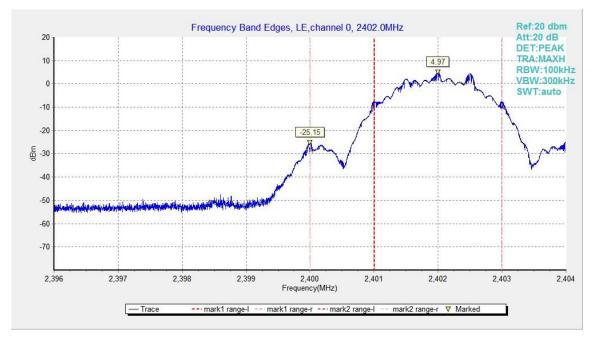



Fig.1. Frequency Band Edges: GFSK, 2402 MHz, Hopping Off

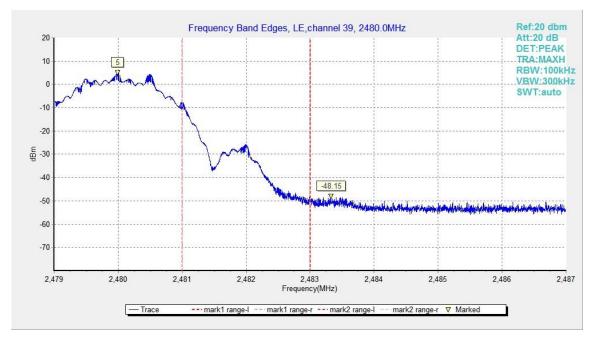



Fig.2. Frequency Band Edges: GFSK, 2480 MHz, Hopping Off





#### **B.4. Transmitter Spurious Emission - Conducted**

#### Method of Measurement: See ANSI C63.10-clause 11.11.2 and clause 11.11.3 Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to  $\geq$ 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8. Use the peak marker function to determine the maximum PSD level. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

#### Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

#### **Measurement Limit:**

| Standard                   | Limit                                             |  |
|----------------------------|---------------------------------------------------|--|
| FCC 47 CFR Part 15.247 (d) | 20dB below peak output power in 100 kHz bandwidth |  |





#### **Measurement Results:**

| Channel No. | Frequency (MHz) | Frequency Range  | Test Results | Conclusion |
|-------------|-----------------|------------------|--------------|------------|
| 0           | 2402            | Center Frequency | Fig.3        | Р          |
|             |                 | 30 MHz ~ 1 GHz   | Fig.4        | Р          |
|             |                 | 1 GHz ~ 3 GHz    | Fig.5        | Р          |
|             |                 | 3 GHz ~ 10 GHz   | Fig.6        | Р          |
|             |                 | 10GHz ~ 26 GHz   | Fig.7        | Р          |
| 19          | 2440            | Center Frequency | Fig.8        | Р          |
|             |                 | 30 MHz ~ 1 GHz   | Fig.9        | Р          |
|             |                 | 1 GHz ~ 3 GHz    | Fig.10       | Р          |
|             |                 | 3 GHz ~ 10 GHz   | Fig.11       | Р          |
|             |                 | 10GHz ~ 26 GHz   | Fig.12       | Р          |
| 39          | 2480            | Center Frequency | Fig.13       | Р          |
|             |                 | 30 MHz ~ 1 GHz   | Fig.14       | Р          |
|             |                 | 1 GHz ~ 3GHz     | Fig.15       | Р          |
|             |                 | 3 GHz ~ 10 GHz   | Fig.16       | Р          |
|             |                 | 10 GHz ~ 26 GHz  | Fig.17       | Р          |

#### **Conclusion: PASS**

Test graphs as below

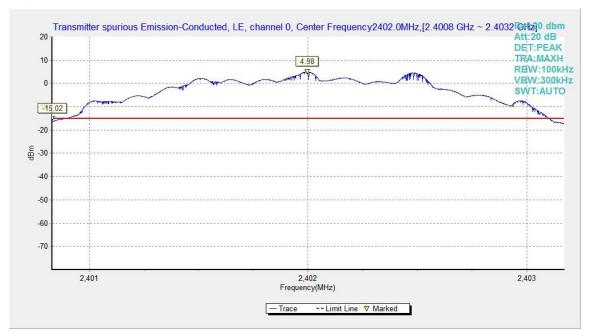



Fig.3. Transmitter Spurious Emission - Conducted: GFSK,2402MHz





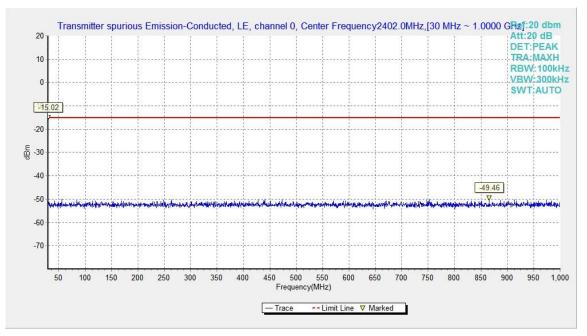



Fig.4. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz, 30MHz - 1GHz

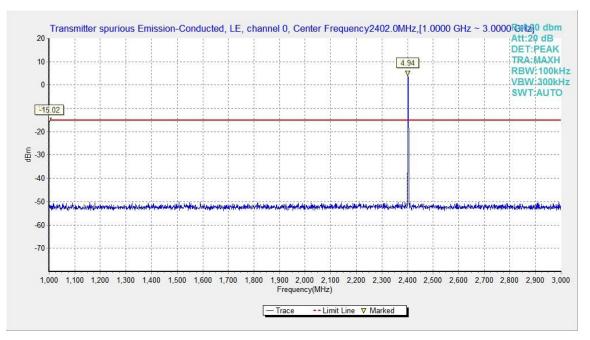



Fig.5. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,1GHz - 3GHz





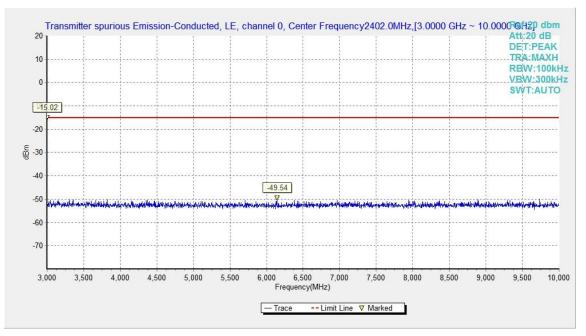



Fig.6. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,3GHz - 10GHz

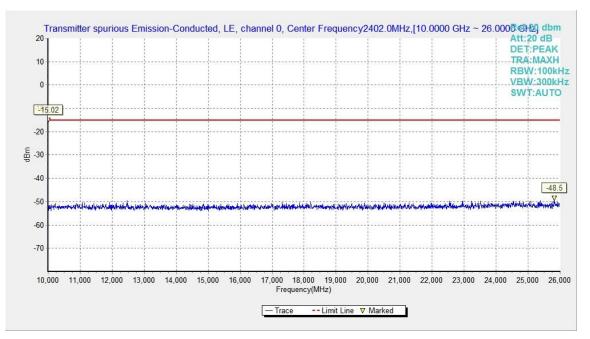



Fig.7. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,10GHz - 26GHz





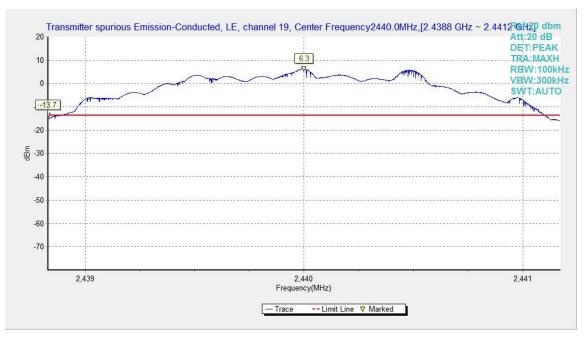



Fig.8. Transmitter Spurious Emission - Conducted: GFSK, 2440MHz

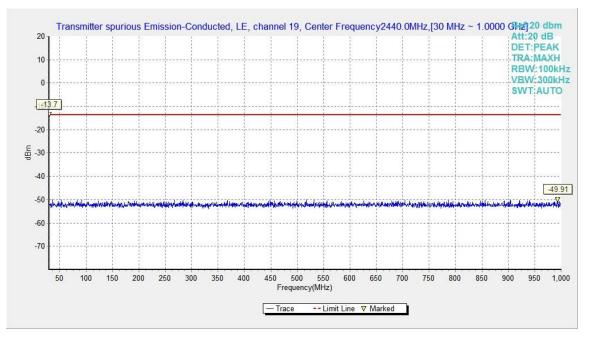



Fig.9. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 30MHz - 1GHz





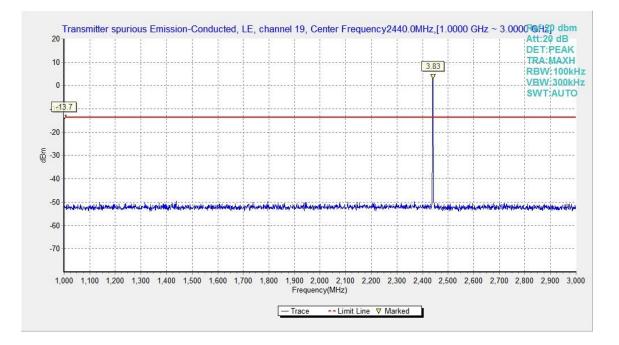



Fig.10. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 1GHz – 3GHz

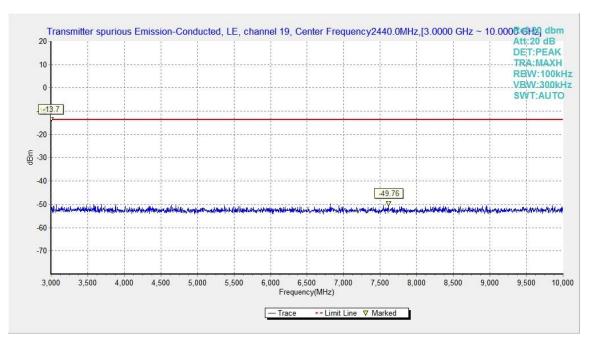



Fig.11. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 3GHz - 10GHz





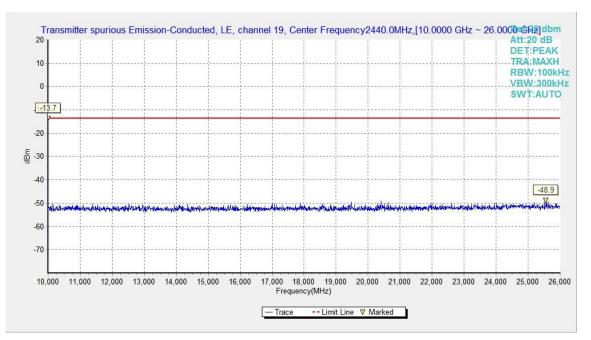



Fig.12. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 10GHz - 26GHz

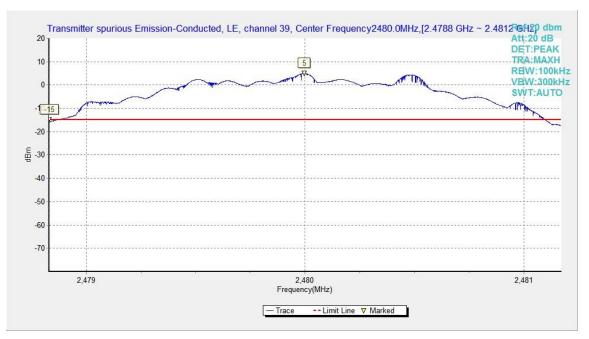



Fig.13. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz





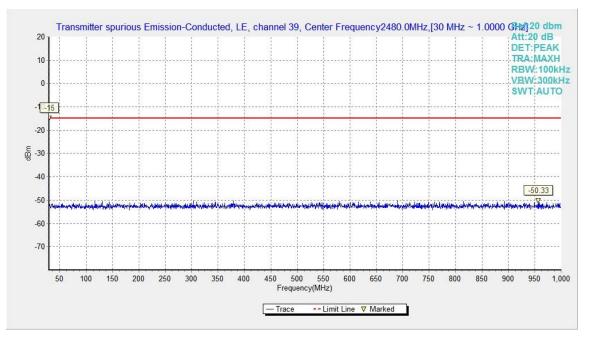



Fig.14. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 30MHz - 1GHz

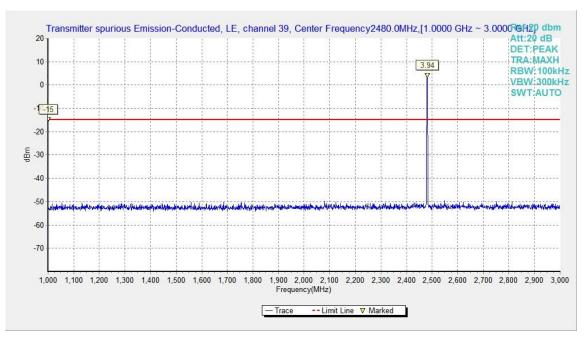



Fig.15. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 1GHz - 3GHz





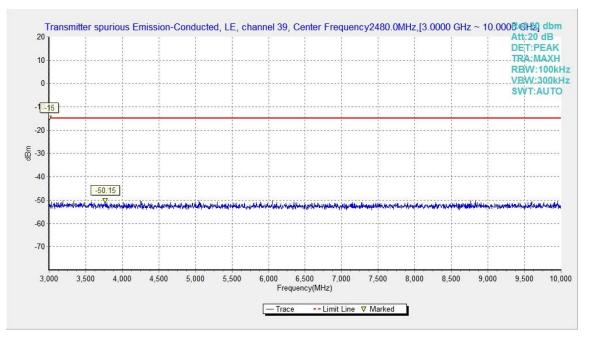



Fig.16. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 3GHz - 10GHz

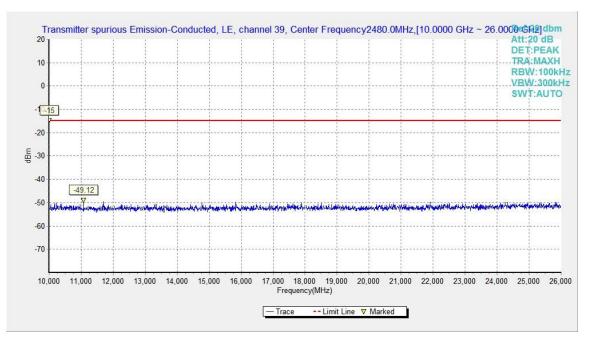



Fig.17. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 10GHz - 26GHz





#### B.5. 6dB Bandwidth

#### Method of Measurement:

The measurement is made according to ANSI C63.10 clause 11.8.1

- 1.Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) = 300 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### **Measurement Limit:**

| Standard                     | Limit     |  |
|------------------------------|-----------|--|
| FCC 47 CFR Part 15.247(a)(2) | >= 500KHz |  |

#### **Measurement Results:**

#### For GFSK

| Channel No. | Frequency (MHz) | 6dB Bandwidth (kHz) |         | Conclusion |
|-------------|-----------------|---------------------|---------|------------|
| 0           | 2402            | Fig.18              | 1162.00 | Р          |
| 19          | 2440            | Fig.19              | 1162.00 | Р          |
| 39          | 2480            | Fig.20              | 1162.50 | Р          |

Conclusion: PASS

Test graphs as below:





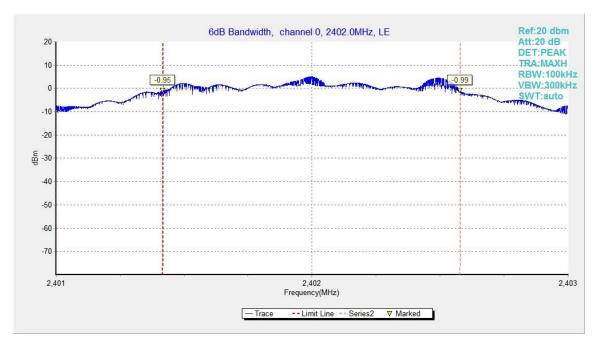



Fig.18. 6dB Bandwidth: GFSK, 2402 MHz

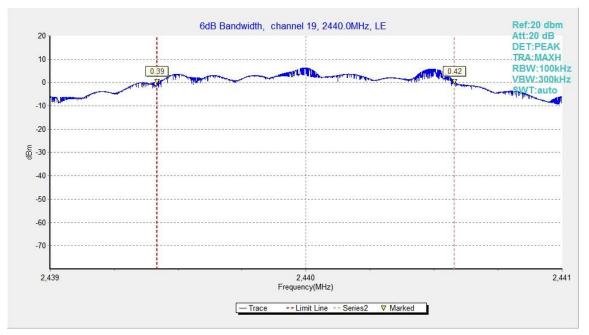



Fig.19. 6dB Bandwidth: GFSK, 2440 MHz





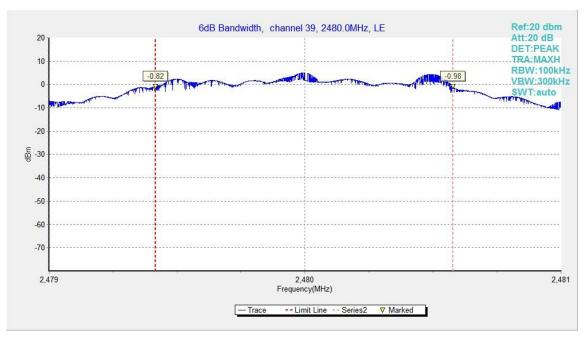



Fig.20. 6dB Bandwidth: GFSK, 2480 MHz





#### **B.6. Maximum Power Spectral Density Level**

#### Method of Measurement:

The measurement is made according to ANSI C63.10 clause 11.10.2

- 1. Set the RBW = 3 kHz.
- 2. Set the VBW = 10 kHz.
- 3. Set the span to 2 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.

#### **Measurement Limit:**

| Standard                  | Limit         |
|---------------------------|---------------|
| FCC 47 CFR Part 15.247(e) | <=8.0dBm/3kHz |

#### Measurement Results:

#### For GFSK

| Channel No. | Frequency (MHz) | Maximum Power Spectral Density<br>Level(dBm/3kHz) |        | Conclusion |
|-------------|-----------------|---------------------------------------------------|--------|------------|
| 0           | 2402            | Fig.21                                            | -13.19 | Р          |
| 19          | 2440            | Fig.22                                            | -11.80 | Р          |
| 39          | 2480            | Fig.23                                            | -13.07 | Р          |

Test graphs as below:





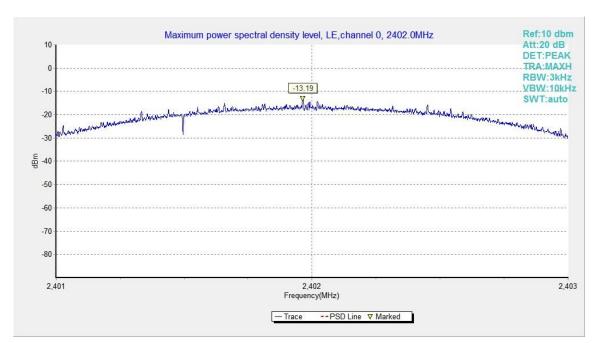



Fig.21. Maximum Power Spectral Density Level Function: GFSK, 2402 MHz

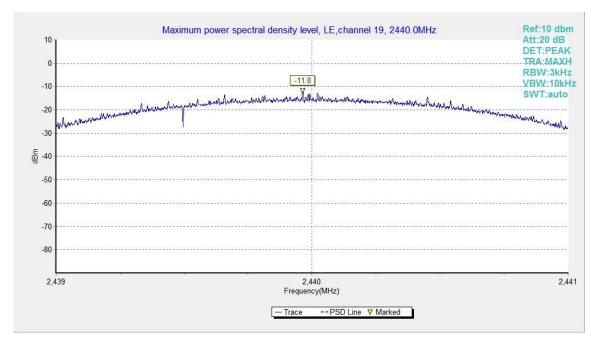



Fig.22. Maximum Power Spectral Density Level Function: GFSK, 2440 MHz





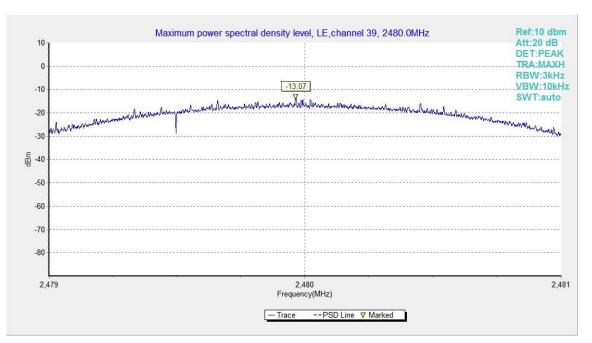



Fig.23. Maximum Power Spectral Density Level Function: GFSK, 2480 MHz





## **ANNEX C: Accreditation Certificate**



\*\*\*END OF REPORT\*\*\*