

FCC TEST REPORT

FCC ID: 2AYG9-TR08D

IC: 26800-TR08D

On Behalf of

SHENZHEN YECON TECHNOLOGY CO., LTD

Face recognition intelligent terminal

Model No.: TR08D

Prepared for : SHENZHEN YECON TECHNOLOGY CO., LTD

Address 6 floor, East Second, Cuigang Industrial Park, Huai de community,

Fuyong street, Baoan District, Shenzhen

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : A2011230-C01-R22 Date of Receipt : December 15, 2020

Date of Test : December 15, 2020-January 28, 2021

Date of Report : January 28, 2021

Version Number : V0

Contents

1.	Gen	eral Information	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessories of Device (EUT)	6
	1.3.	Ancillary Equipment Details	6
	1.4.	Test Lab Information	6
2.Su	mmar	y of test	7
	2.1.	Summary of test result	7
	2.2.	Block Diagram	7
	2.3.	Test mode	7
	2.4.	Test Conditions	7
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	8
	2.6.	Test Equipment	9
3.Oc	cupie	l bandwidth and 20dB Bandwidth	10
	3.1.	Limit	10
	3.2.	Test Procedure	10
	3.3.	Test Setup	10
	3.4.	Test Result	10
4.Ra	diated	emissions	11
	4.1.	Limit	11
	4.2.	Block Diagram of Test setup	11
	4.3.	Test Procedure	12
	4.4.	Test Result	13
5.Fr	equen	cy stability	17
	5.1.	Test limit	17
	5.2.	Test Procedure	17
	5.3.	Test Setup	17
	5.4.	Test Results	17
6.Po	wer L	ine Conducted Emissions	19
	6.1.	Block Diagram of Test Setup	19
	6.2.	Limit	19
	6.3.	Test Procedure	19
	6.4.	Test Result	20
7. An	tenna	Requirements	22
	7.1.	Limit	22
	7.2.	Antenna Connected Construction	22
	7.3.	Results	22

TEST REPORT DECLARATION

Applicant : SHENZHEN YECON TECHNOLOGY CO., LTD

Address 6 floor, East Second, Cuigang Industrial Park, Huai de community, Fuyong street,

Baoan District, Shenzhen

Manufacturer : SHENZHEN YECON TECHNOLOGY CO., LTD

Address 6 floor, East Second, Cuigang Industrial Park, Huai de community, Fuyong street,

. Baoan District, Shenzhen

EUT Description : Face recognition intelligent terminal

(A) Model No. : TR08D

(B) Trademark : /

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.225 RSS 210 Issue 10, RSS Gen Issue 5, ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Project Engineer

Simple Guan
Project Manager

Date of issue..... January 28, 2021

Revision History

Revision	Issue Date	Revisions	Revised By
V0	January 28, 2021	Initial released Issue	Lucas Pang

1. General Information

1.1. Description of Device (EUT)

EUT : Face recognition intelligent terminal

Model No. : TR08D

DIFF : /

Trade mark : /

Power supply : DC 12V from adapter

NFC

Operation frequency : 13.56MHz
Channel No. : 1 Channel
Modulation : ASK

Antenna Type : Internal antenna, Antenna gain 1dBi.

Software version : V1.0

Hardware Version/ YT-23-MB-V2.3

FVIN

Note: In this report, the main test model is TR08D, and the main test model serial number is YGKJ20208110041.

1.2. Accessories of Device (EUT)

Accessories1 : AC/DC ADAPTER

Manufacturer : Shenzhen Jiuzhou Power Technology Co., LTD

Model : JZB024-120180D

Ratings : Input: 100-240V~ 50/60Hz 0.7A

Output: 12.0V=1.8A

Accessories2 : AC ADAPTER

Manufacturer : Dongguan Guanjin Electronics Technology Co., Ltd

Model : K25V120180E2

Ratings : Input: 100-240V~50/60Hz 0.6A Output: 12.0V=1.8A 21.6W

Note: The two power adapters of the product have been tested. This report only reflects the data of the worst power supply (JZB024-120180D).

1.3. Ancillary Equipment Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1.	N/A	N/A	N/A	N/A	N/A

1.4. Test Lab Information

Shenzhen Alpha Product Testing Co., Ltd

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 15, 2019 Certificated by IC Registration Number: CN0085

2. Summary of test

2.1. Summary of test result

Description of Test Item	Stand	Results	
Description of Test Item	FCC	IC	Results
Conducted Emission	15.207(a)	RSS-GEN 8.8	PASS
Radiated emissions	15.209(a)&15.225	RSS-Gen 8.9	PASS
Fundamental field strength limit	15.225(a)	RSS 210 B.6	PASS
Frequency stability	15.225(e)	RSS 210 B.6	PASS
Band edge compliance	15.225	RSS 210 B.6	PASS
Antenna Requirement	15.203	RSS-GEN(6.8)	PASS

2.2. Block Diagram

EUT

2.3. Test mode

Tested mode, channel, and data rate information						
Mode	Frequency (MHz)					
1	CH1	13.56				
Note: According exploratory test, FUT will have maximum output power in those data						

Note: According exploratory test, EUT will have maximum output power in those data rate. so those data rate were used for all test.

2.4. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

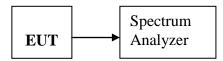
2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.16dB(Polarize: H)
(1GHz to 25GHz)	4.13dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.6. Test Equipment

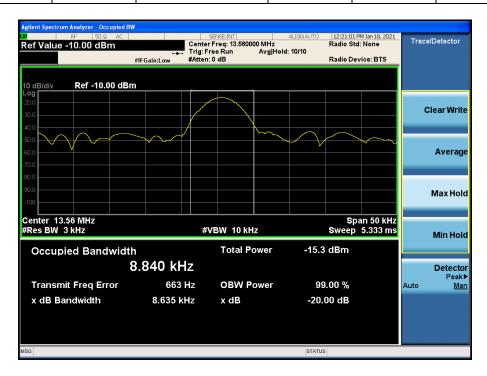
Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2019.09.06	3Year
Spectrum analyzer	ROHDE&SCHW ARZ	FSV40-N	102137	2020.09.02	1Year
Spectrum analyzer	Agilent	N9020A	MY499100060	2020.09.02	1Year
Receiver	ROHDE&SCHW ARZ	ESR	1316.3003K03-10208 2-Wa	2020.09.02	1Year
Receiver	R&S	ESCI	101165	2020.09.02	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2020.04.12	2Year
Horn Antenna	SCHWARZBEC K	BBHA 9120 D	BBHA 9120 D(1201)	2020.04.12	2Year
Active Loop Antenna	SCHWARZBEC K	FMZB 1519B	00059	2019.09.07	2Year
Cable	Resenberger	N/A	No.1	2020.09.02	1Year
Cable	Resenberger	N/A	No.2	2020.09.02	1Year
Cable	Resenberger	N/A	No.3	2020.09.02	1 Year
Pre-amplifier	НР	HP8347A	2834A00455	2020.09.02	1 Year
Pre-amplifier	Agilent	8449B	3008A02664	2020.09.02	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2020.09.02	1 Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2020.09.02	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2020.09.02	1 Year
Horn Antenna	SCHWARZBEC K	BBHA9170	00946	2019.09.07	2 Year
Preamplifier	SKET	LNPA_1840-50	SK2018101801	2020.09.02	1 Year
Power Meter	Agilent	E9300A	MY41496625	2020.09.02	1 Year
Temp. &Humid. Chamber	Weihuang	WHTH-1000-40-8 80	100631	100631 2020.09.02	
Switching Mode Power Supply	JUNKE	JK12010S	20140927-6	2020.09.02	1 Year

3. Occupied bandwidth and 20dB Bandwidth


3.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in FCC part 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

3.2. Test Procedure


The transmitter output was directly connected to a spectrum analyzer with a 50Ω cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3KHz RBW and 10kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

3.3. Test Setup

3.4. Test Result

Mode	Freq 20dB Bandwidth (KHz)		99% Bandwidth	Limit (kHz)	Conclusion
Tx Mode	13.56	8.365	8.840	/	PASS

4. Radiated emissions

4.1. Limit

Г	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	$20\log^{(2400/F(kHz))} + 80$			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	$20\log^{(24000/F(kHz))} + 40$			
1.705 ~ 30	30	30	100 * 30	$20\log^{(30)} + 40$			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

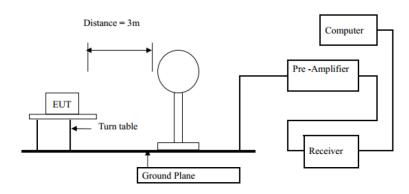
Note:

a) The tighter limit applies at the band edges.

For example: F.S limit at 88MHz is 100uV/m

b) If measurement is made at 3m distance, then F.S Limit at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d2/d1)^2$.

For example:


F.S Limit at 30m(d2) distance is $30uV/m(L_{d2})$, then F.S Limit at 3m(d1) distance is

$$L_{d1} = 30uV/m * (30/3)^2 = 100 * 30uV/m = 69.54 dBuV/m$$

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

4.2. Block Diagram of Test setup

In 3m Anechoic Chamber Test Setup Diagram for below 30MHz

Semi-Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

3.0m

(Reference Point)

EUT

1.5m(L)*1.0m(W)*0.8m(H)

Turn Table (Wood)

0.8m

In 3m Anechoic Chamber Test Setup Diagram for frequency 30MHz-1GHz

4.3. Test Procedure

Procedure of Preliminary Test

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 4.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.

Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.

The antenna was placed at 3 meter away from the EUT as stated in ANSI C63.10:2013. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Receiver quickly scanned from 9KHz to 30MHz and 30MHz to 1GHz The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The test mode(s) described in clause 2.4 were scanned during the preliminary test:

After the preliminary scan, we found the test mode producing the highest emission level. The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

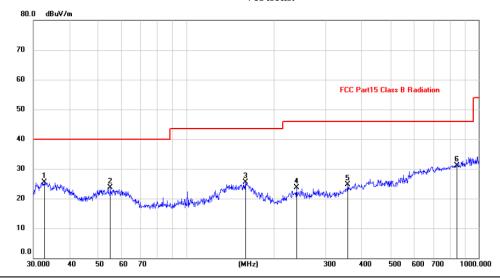
The Receiver scanned from 9KHz to 30MHz and 30MHz to 1GHz. Emissions were scanned and

measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

The test data of the worst-case condition(s) was recorded.

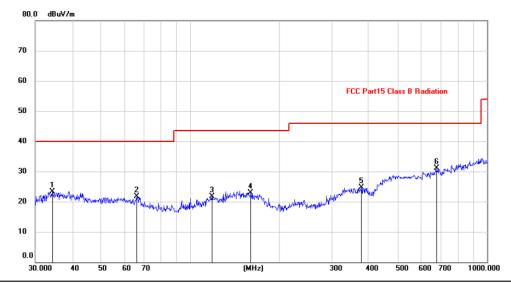
The bandwidth of test receiver is set at 200Hz for 9 KHz to 150 KHz measure, 10 KHz for 150 KHz to 30MHz measure and 120 KHz for 30 MHz to 16GHz measure.


4.4. Test Result

PASS. (See below detailed test result)
Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Vertical:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	32.6340	11.99	13.42	25.41	40.00	-14.59	peak			
2		55.0274	10.40	13.25	23.65	40.00	-16.35	peak			
3		160.3454	10.94	14.56	25.50	43.50	-18.00	peak			
4		239.1468	11.68	11.96	23.64	46.00	-22.36	peak			
5		356.6757	10.32	14.47	24.79	46.00	-21.21	peak			
6		845.0877	8.48	22.68	31.16	46.00	-14.84	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.2760	9.87	13.47	23.34	40.00	-16.66	peak			
2		66.2660	9.90	11.76	21.66	40.00	-18.34	peak			
3	1	118.1860	9.24	12.40	21.64	43.50	-21.86	peak			
4	1	159.7844	8.26	14.58	22.84	43.50	-20.66	peak			
5	3	378.5842	9.33	15.36	24.69	46.00	-21.31	peak			
6	* 6	377.5797	10.18	20.97	31.15	46.00	-14.85	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Field Strength Emissions Result

Temperature		24°C			Relative H	umidity	56%	
Pressure		960hP	a		Distance		3m	
Test Mode TX								
Freq. (MHz)			Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
13.560	60 H		Peak	57.38	-13.94	43.44	124	-80.56
13.560		Н	AV	49.97	-13.94	36.03	104	-67.97
13.110		Н	Peak	50.89	-13.94	36.95	80.5	-43.55
13.410		Н	Peak	50.14	-13.94	36.20	90.5	-54.30
13.553		Н	Peak	48.87	-13.94	34.93	90.5	-55.57
13.567		Н	Peak	45.91	-13.93	31.98	90.5	-58.52
13.710		Н	Peak	44.98	-13.93	31.05	80.5	-49.45
14.010		Н	Peak	44.85	-13.93	30.92	80.5	-49.58
Freq. (MHz)		ition /V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
13.560	.560		Peak	57.66	-13.94	43.72	124	-80.28
13.560		V	AV	50.45	-13.94	36.51	104	-67.49
13.110	110		Peak	51.39	-13.94	37.45	80.5	-43.05
13.410	410		Peak	49.55	-13.94	35.61	90.5	-54.89
13.553		V	Peak	49.16	-13.94	35.22	90.5	-55.28
13.567	13.567		Peak	47.07	-13.93	-13.93 33.14		-57.36
13.710	13.710		Peak	45.10	-13.93	-13.93 31.17		-49.33
14.010		V	Peak	45.38	-13.93	31.45	80.5	-49.05

Note:

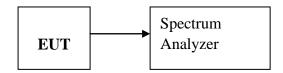
- 1: 30m to 3m correction factor calculation:
 - 40*Log(30m/3m)=40
- 2: --Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 3: Correct Factor=Cable Loss+ Antenna Factor- Amplifier Gain

 $Measurement\ Result = Reading + Correct\ Factor$

Margin=Measurement Result-Limit

5. Frequency stability

5.1. Test limit


Please refer section RSS-Gen & 15.225e.

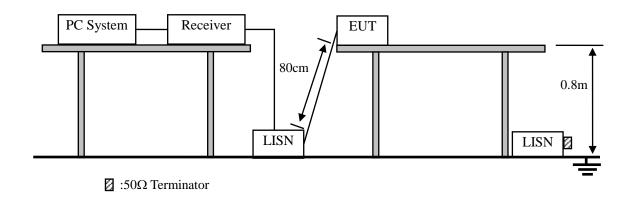
Regulation 15.225(e) The frequency tolerance of the carrier signal shall be maintained within \pm 0.01%(\pm 100 ppm) of the operating frequency over a temperature variation of \pm 20 degrees to \pm 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.2. Test Procedure

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3. Test Setup

5.4. Test Results


PASS.

Detailed information please see the following page.

Assigned Frequency(MHz): 13.56MHz							
Voltage	Temperature	Measured Frequency (MHz)	Frequency stability	Limit			
Low DC 10.8V	+20°C	13.560633	0.000633				
	-10°C	13.560901	0.000901				
	-5℃	13.560566	0.000566				
	0℃	13.560399	0.000399				
	+10°C	13.560524	0.000524				
Normal DC 12V	+20°C	13.560408	0.000408	±100 ppm ±0.001356MHz			
50121	+30℃	13.560444	0.000444				
	+40°C	13.559798	-0.000202				
	+50°C	13.560524	0.000524				
	+60°C	13.560599	0.000599				
High DC 13.2V	+20°C	13.560679	0.000679				

6. Power Line Conducted Emissions

6.1. Block Diagram of Test Setup

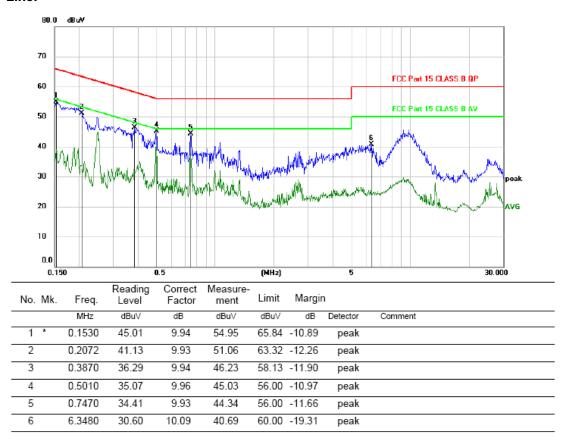
6.2. Limit

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	$dB(\mu V)$	$dB(\mu V)$		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes: 1. * Decreasing linearly with logarithm of frequency.

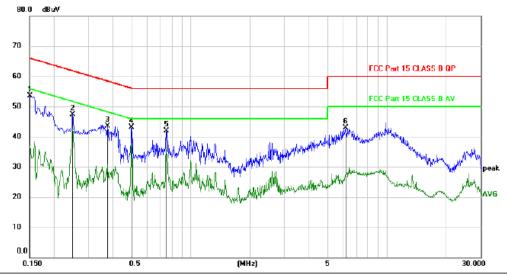
2. The lower limit shall apply at the transition frequencies.

6.3. Test Procedure


- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N1), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C64.10:2013 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

6.4. Test Result

PASS. (See below detailed test data)


Note: If peak Result comply with AV limit, QP and AV Result is deemed to comply with AV limit

Line:

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Neutral:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1	
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	*	0.1508	43.54	9.94	53.48	65.96	-12.48	peak	
2		0.2490	37.26	9.97	47.23	61.79	-14.56	peak	
3		0.3750	33.64	9.94	43.58	58.39	-14.81	peak	
4		0.4980	33.07	9.96	43.03	56.03	-13.00	peak	
5		0.7500	32.05	9.94	41.99	56.00	-14.01	peak	
6		6.1260	32.88	10.08	42.96	60.00	-17.04	peak	

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

7. Antenna Requirements

7.1. Limit

For intentional device, according to RSS-Gen Section 6.8 and FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.209, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.2. Antenna Connected Construction

The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.

7.3. Results

The EUT antenna is Internal Antenna. It complies with the standard requirement.

-----END OF THE REPORT-----