

Page 1 of 43

FCC TEST REPORT FCC ID:2AYFS-YS06-15

Report Number..... ZKT-2206204225E

Total number of pages...... 43

Test Result.....: PASS

Testing Laboratory...... Shenzhen ZKT Technology Co., Ltd.

Applicant's name: Shenzhen Shi yutong Technology Co. LTD

Lianjian Science and Technology Industrial Park, Dalang Street, Address Longhua District, Shenzhen city , China

Manufacturer's name Shenzhen Shi yutong Technology Co. LTD

Address Lianjian Science and Technology Industrial Park, Dalang Street, Longhua District, Shenzhen city , China

Test specification:

Standard..... FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013

Test procedure....: /

Non-standard test method: N/A

Test Report Form No.....: TRF-EL-110_V0

Test Report Form(s) Originator....: ZKT Testing

Master TRF Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

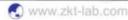
This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name.....: YS series Thermal imager

Trademark N/A

Model/Type reference....: YS06--15

YS03-15, YS03--19, YS03--25, YS06--19, YS06--25


Ratings.....: Input: AC 100 - 240V 50/60Hz or DC 5V/2A, Battery 3.7V/6400mAh

Shenzhen ZKT Technology Co., Ltd.

Page 2 of 43

Testing procedu	re and test	ting location:
-----------------	-------------	----------------

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Address....: 1/F, No. 101, Building B, No. 6, Tangwei Community

Industrial Avenue, Fuhai Street, Bao'an District,

Shenzhen, China

Tested by (name + signature)....: Jim Liu

Jackson Fang

Reviewer (name + signature).................................. Jackson Fang

Approved (name + signature)..... Lake Xie

Shenzhen ZKT Technology Co., Ltd.

Table of Contents

			Page
	1. VERSION	5	
	2. SUMMARY OF TEST RESULTS	6	
	2.1 TEST FACILITY	7	
	2.2 MEASUREMENT UNCERTAINTY	7	
	3. GENERAL INFORMATION	8	
	3.1 GENERAL DESCRIPTION OF EUT	8	
	3.2 DESCRIPTION OF TEST MODES	9	
	3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9	
	3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10	
	3.5EQUIPMENTS LIST FOR ALL TEST ITEMS	11	
	4. EMC EMISSION TEST	12	
	4.1 CONDUCTED EMISSION MEASUREMENT	12	
	4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST PROCEDURE	12	
	4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	12 12	
	4.1.4 TEST SETUP	13	
	4.1.5 EUT OPERATING CONDITIONS	13	
	4.1.6 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT	14	
	4.2.1 RADIATED EMISSION LIMITS	16 16	
	4.2.2 TEST PROCEDURE	16	
	4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	17	
	4.2.5 EUT OPERATING CONDITIONS	17 18	
	4.2.6 TEST RESULTS	18	
	5.RADIATED BAND EMISSIONMEASUREMENT	25	
	5.1 TEST REQUIREMENT:	25	
	5.2 TEST PROCEDURE	25	
	5.3 DEVIATION FROM TEST STANDARD	25	
	5.4 TEST SETUP	26	
	5.5 EUT OPERATING CONDITIONS	26	
	5.6 TEST RESULT	27	
	6.POWER SPECTRAL DENSITY TEST	28	
	6.1 APPLIED PROCEDURES / LIMIT	28	
	6.2 TEST PROCEDURE	28	
	6.3 DEVIATION FROM STANDARD	28	
	6.4 TEST SETUP	28	
She	6.5 EUT OPERATION CONDITIONS	28	

Project No.: ZKT-2206204225E Page 4 of 43

6.6 TEST RESULT	29
7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH	33
7.1 APPLIED PROCEDURES / LIMIT	33
7.2 TEST PROCEDURE	33
7.3 DEVIATION FROM STANDARD	33
7.4 TEST SETUP	33
7.5 EUT OPERATION CONDITIONS	33
7.6 TEST RESULT	34
8.PEAK OUTPUT POWER TEST	36
8.1 APPLIED PROCEDURES/LIMIT	36
8.2 TEST PROCEDURE	36
8.3 DEVIATION FROM STANDARD	36
8.4 TEST SETUP	36
8.5 EUT OPERATION CONDITIONS	36
8.6 TEST RESULT	37
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	38
9.1 APPLICABLE STANDARD	38
9.2 TEST PROCEDURE	38
9.3 DEVIATION FROM STANDARD	38
9.4 TEST SETUP	38
9.5 EUT OPERATION CONDITIONS	38
9.6 TEST RESULTS	38
10. ANTENNA REQUIREMENT	42
11. TEST SETUP PHOTO	43
12. EUT CONSTRUCTIONAL DETAILS	43

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-2206204225E Page 5 of 43

1. VERSION

Report No.	Version	Description	Approved
ZKT-2206204225E	Rev.01	Initial issue of report	Jul. 05, 2022
).			

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Page 6 of 43

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C			
Standard Section	lest Item Result Remark		Remark
FCC part 15.203/15.247 (c)	Antenna requirement PASS		
FCC part 15.207	AC Power Line Conducted Emission PASS		
FCC part 15.247 (b)(3)	Conducted Peak Output Power PASS		
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB PASS		
FCC part 15.247 (e)	Power Spectral Density	PASS	
FCC part 15.247(d)	Band Edge PA		
FCC part 15.205/15.209	Spurious Emission PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Page 7 of 43

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd.

Add.: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an

District, Shenzhen, China

FCC Test Firm Registration Number: 692225

Designation Number: CN1299 IC Registered No.: 27033 CAB identifier: CN0110

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4	3m chamber Radiated spurious emission(6GHz-40GHz) U=5.0dB	
5	Conducted disturbance	U=3.2dB
6	RF Band Edge	U=1.68dB
7	RF power conducted	U=1.86dB
8	RF conducted Spurious Emission	U=2.2dB
9	RF Occupied Bandwidth	U=1.8dB
10	RF Power Spectral Density	U=1.75dB
11	humidity uncertainty	U=5.3%
12	Temperature uncertainty	U=0.59°C

3. GENERAL INFORMATION

Project No.: ZKT-2206204225E Page 8 of 43

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	YS series Thermal imager
Madal Na .	YS0615
Model No.:	YS03-15, YS0319, YS0325, YS0619, YS0625
Model Different.:	Only the model name and lens pixels are different.
Serial No.:	N/A
Hardware Version:	H1.0
Software Version:	S1.0
Sample(s) Status:	Engineer sample
Channel numbers:	802.11b/802.11g:11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum(DSSS)
	802.11g: Orthogonal Frequency Division Multiplexing(OFDM)
Antenna Type:	FPCB Antenna
Antenna gain:	3dBi
Power supply:	Input: AC 100–240V 50/60Hz or DC 5V/2A, Battery 3.7V/6400mAh

Operation Frequency each of channel							
Channel	Frequency	Chann el	Frequency	Chann el	Frequency	Chann el	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequenc	cy (MHz)
802.11b	802.11b	802.11g
Lowest channel	2412MHz	2412MHz
Middle channel	2437MHz	2437MHz
Highest channel	2462MHz	2462MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
Remark: During the test	, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the
nominal rated cumply yo	Itage, and found that the worst case was under the nominal rated supply

nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g
Data rate	1Mbps	6Mbps

Test Software	Realtek Test Tool
Power level setup	<13dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

AC Line **EUT**

Radiated Emission

DC Line **EUT**

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Page 10 of 43

Conducted Spurious

DC Line	EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	YS series Thermal imager	N/A	YS06-15	N/A	EUT
A-1	Power Adapter	HUANAN	HNT-M520RZ	N/A	Auxiliary
	100		6313		672

Item	Shielded Type	Ferrite Core	Length	Note
		600		07103
				600.

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Page 11 of 43

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Rat	diation Test equipment	L				
Ite m	Equipment	Manufacture r	Type No.	Serial No.	Last calibratio n	Calibrate d until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	Oct. 18, 2021	Oct. 17, 2022
2	Spectrum Analyzer (1GHz-40GHz)	R&S	FSQ	100363	Oct. 17, 2021	Oct. 16, 2022
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 18, 2021	Oct. 17, 2022
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbec k	VULB9168	N/A	Oct. 17, 2021	Oct. 16, 2022
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	Oct. 17, 2021	Oct. 16, 2022
6	Loop Antenna	TESEQ	HLA6121	58357	Oct. 17, 2021	Oct. 16, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Oct. 18, 2021	Oct. 17, 2022
8	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	Oct. 18, 2021	Oct. 17, 2022
9	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Oct. 18, 2021	Oct. 17, 2022
10	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Oct. 18, 2021	Oct. 17, 2022
11	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Oct. 18, 2021	Oct. 17, 2022
12	ESG Signal Generator	Agilent	E4421B	N/A	Oct. 22, 2021	Oct. 21, 2022
13	Signal Generator	Agilent	N5182A	N/A	Oct. 22, 2021	Oct. 21, 2022
14	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	Oct. 17, 2021	Oct. 16, 2022
15	MWRF Power Meter Test system	MW	MW100-RPC B	N/A	Oct. 22, 2021	Oct. 21, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	N/A	1	\
17	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	١	١
18	RF Software	MW	MTS8310	V2.0.0.0	\	\
19	Turntable	MF	MF-7802BS	N/A	\	١
20	Antenna tower	MF	MF-7802BS	N/A	\	\

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 22, 2021	Oct. 21, 2022
2	LISN	CYBERTEK	EM5040A	E185040014 9	Oct. 22, 2021	Oct. 21, 2022
3	Test Cable	N/A	C01	N/A	Oct. 18, 2021	Oct. 17, 2022
4	Test Cable	N/A	C02	N/A	Oct. 18, 2021	Oct. 17, 2022
5	EMI Test Receiver	R&S	ESCI3	101393	Oct. 17, 2021	Oct. 16, 2022
6	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	١	1

Shenzhen ZKT Technology Co., Ltd.

Page 12 of 43

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

EDEOLIENOV (MILE)	Limit (Standard	
FREQUENCY (MHz)	Quasi-peak		
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

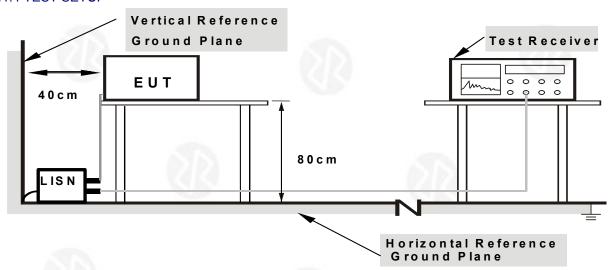
(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation



Project No.: ZKT-2206204225E Page 13 of 43

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

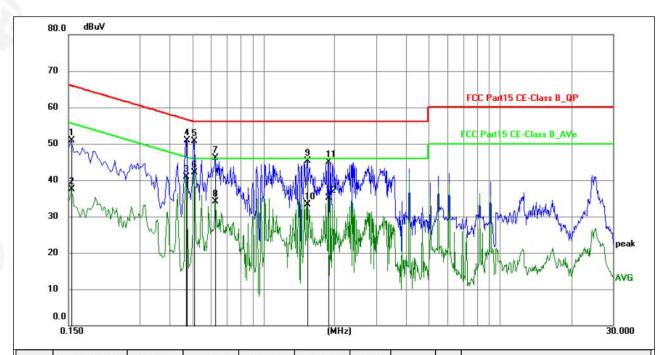
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

Shenzhen ZKT Technology Co., Ltd.



4.1.6 TEST RESULT

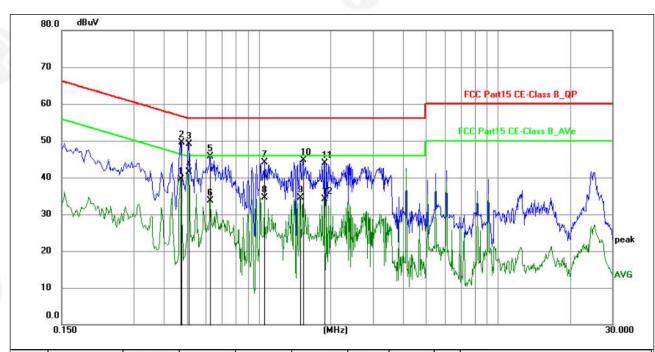
Temperature :	26℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1544	37.99	12.91	50.90	65.76	-14.86	QP	Р	
2	0.1544	24.69	12.91	37.60	55.76	-18.16	AVG	Р	
3	0.4694	30.28	10.68	40.96	46.52	-5.56	AVG	Р	
4	0.4739	40.32	10.66	50.98	56.45	-5.47	QP	Р	
5	0.5100	40.09	10.54	50.63	56.00	-5.37	QP	Р	
6	0.5100	31.55	10.54	42.09	46.00	-3.91	AVG	Р	
7	0.6269	35.60	10.51	46.11	56.00	-9.89	QP	Р	
8	0.6269	23.62	10.51	34.13	46.00	-11.87	AVG	Р	
9	1.5314	34.97	10.31	45.28	56.00	-10.72	QP	Р	
10	1.5314	23.06	10.31	33.37	46.00	-12.63	AVG	Р	
11	1.8824	34.74	10.22	44.96	56.00	-11.04	QP	Р	
12	1.8824	24.79	10.22	35.01	46.00	-10.99	AVG	Р	

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.



Temperature :	26℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz		(4)(4)

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
0.4693	28.78	10.68	39.46	46.53	-7.07	AVG	Р	
0.4738	38.82	10.66	49.48	56.45	-6.97	QP	Р	
0.5100	38.59	10.54	49.13	56.00	-6.87	QP	Р	
0.5100	30.94	10.54	41.48	46.00	-4.52	AVG	Р	
0.6269	35.10	10.51	45.61	56.00	-10.39	QP	Р	
0.6269	23.12	10.51	33.63	46.00	-12.37	AVG	Р	
1.0587	33.66	10.43	44.09	56.00	-11.91	QP	Р	
1.0587	24.04	10.43	34.47	46.00	-11.53	AVG	Р	
1.4907	24.19	10.32	34.51	46.00	-11.49	AVG	Р	
1.5314	34.47	10.31	44.78	56.00	-11.22	QP	Р	
1.8824	33.74	10.22	43.96	56.00	-12.04	QP	Р	
1.8824	23.79	10.22	34.01	46.00	-11.99	AVG	Р	
	(MHz) 0.4693 0.4738 0.5100 0.5100 0.6269 0.6269 1.0587 1.0587 1.4907 1.5314 1.8824	(MHz) (dBuV) 0.4693 28.78 0.4738 38.82 0.5100 30.94 0.6269 35.10 0.6269 23.12 1.0587 33.66 1.0587 24.04 1.4907 24.19 1.5314 34.47 1.8824 33.74	(MHz) (dBuV) (dB) 0.4693 28.78 10.68 0.4738 38.82 10.66 0.5100 38.59 10.54 0.5100 30.94 10.54 0.6269 35.10 10.51 0.6269 23.12 10.51 1.0587 33.66 10.43 1.0587 24.04 10.43 1.4907 24.19 10.32 1.5314 34.47 10.31 1.8824 33.74 10.22	(MHz) (dBuV) (dB) (dBuV) 0.4693 28.78 10.68 39.46 0.4738 38.82 10.66 49.48 0.5100 38.59 10.54 49.13 0.5100 30.94 10.54 41.48 0.6269 35.10 10.51 45.61 0.6269 23.12 10.51 33.63 1.0587 33.66 10.43 44.09 1.0587 24.04 10.43 34.47 1.4907 24.19 10.32 34.51 1.5314 34.47 10.31 44.78 1.8824 33.74 10.22 43.96	(MHz) (dBuV) (dB) (dBuV) (dBuV) 0.4693 28.78 10.68 39.46 46.53 0.4738 38.82 10.66 49.48 56.45 0.5100 38.59 10.54 49.13 56.00 0.5100 30.94 10.54 41.48 46.00 0.6269 35.10 10.51 45.61 56.00 0.6269 23.12 10.51 33.63 46.00 1.0587 33.66 10.43 44.09 56.00 1.0587 24.04 10.43 34.47 46.00 1.4907 24.19 10.32 34.51 46.00 1.5314 34.47 10.31 44.78 56.00 1.8824 33.74 10.22 43.96 56.00	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) 0.4693 28.78 10.68 39.46 46.53 -7.07 0.4738 38.82 10.66 49.48 56.45 -6.97 0.5100 38.59 10.54 49.13 56.00 -6.87 0.5100 30.94 10.54 41.48 46.00 -4.52 0.6269 35.10 10.51 45.61 56.00 -10.39 0.6269 23.12 10.51 33.63 46.00 -12.37 1.0587 33.66 10.43 44.09 56.00 -11.91 1.0587 24.04 10.43 34.47 46.00 -11.53 1.4907 24.19 10.32 34.51 46.00 -11.49 1.5314 34.47 10.31 44.78 56.00 -11.22 1.8824 33.74 10.22 43.96 56.00 -12.04	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) Detector 0.4693 28.78 10.68 39.46 46.53 -7.07 AVG 0.4738 38.82 10.66 49.48 56.45 -6.97 QP 0.5100 38.59 10.54 49.13 56.00 -6.87 QP 0.5100 30.94 10.54 41.48 46.00 -4.52 AVG 0.6269 35.10 10.51 45.61 56.00 -10.39 QP 0.6269 23.12 10.51 33.63 46.00 -12.37 AVG 1.0587 33.66 10.43 44.09 56.00 -11.91 QP 1.0587 24.04 10.43 34.47 46.00 -11.53 AVG 1.4907 24.19 10.32 34.51 46.00 -11.49 AVG 1.5314 34.47 10.31 44.78 56.00 -11.22 QP 1.8824 33.74 1	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) PP 0.4693 28.78 10.68 39.46 46.53 -7.07 AVG P 0.4738 38.82 10.66 49.48 56.45 -6.97 QP P 0.5100 38.59 10.54 49.13 56.00 -6.87 QP P 0.5100 30.94 10.54 41.48 46.00 -4.52 AVG P 0.6269 35.10 10.51 45.61 56.00 -10.39 QP P 0.6269 23.12 10.51 33.63 46.00 -12.37 AVG P 1.0587 33.66 10.43 44.09 56.00 -11.91 QP P 1.4907 24.19 10.32 34.51 46.00 -11.49 AVG P 1.5314 34.47 10.31 44.78 56.00 -11.22 QP P 1.8824 33.74 10.22

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.

4.2 RADIATED EMISSION MEASUREMENT

Project No.: ZKT-2206204225E Page 16 of 43

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

EDECHENCY (MUz)	Limit (dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

Shenzhen ZKT Technology Co., Ltd.

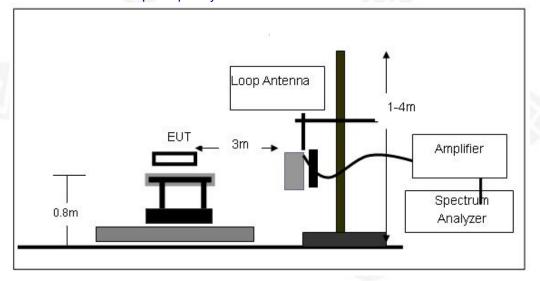
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

Note

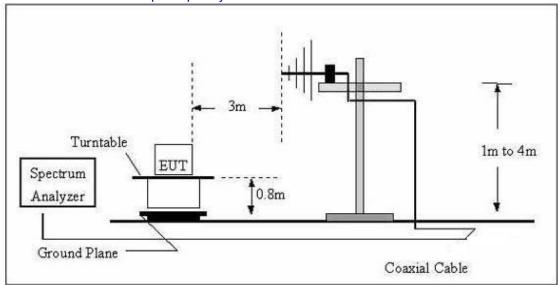

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

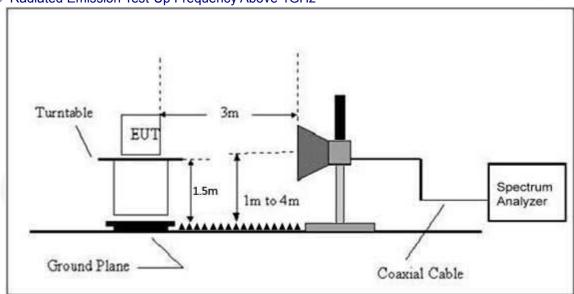
4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz





(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

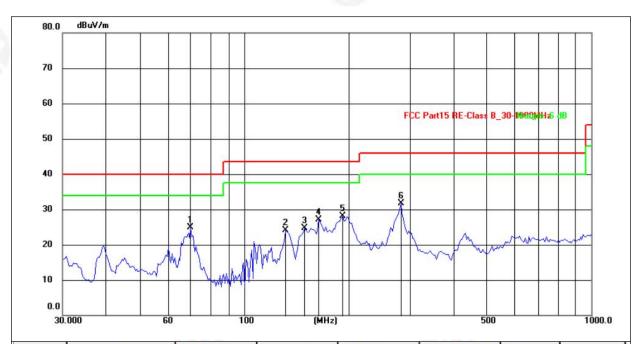
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS

Between 9KHz - 30MHz

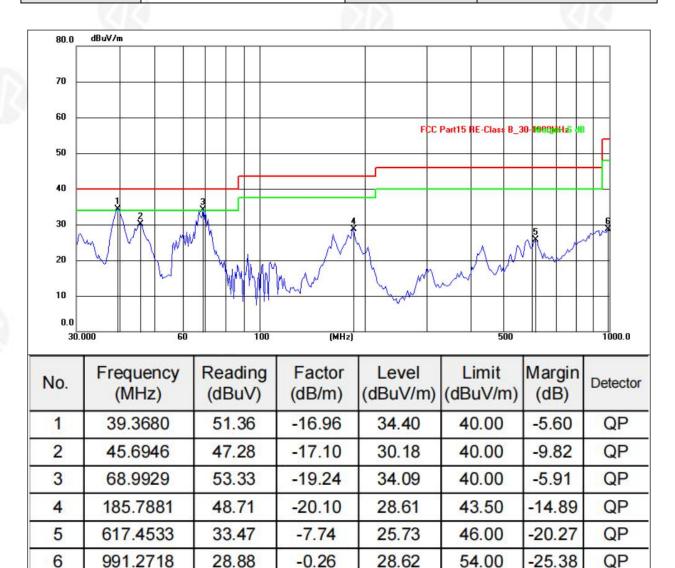
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Shenzhen ZKT Technology Co., Ltd.



Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	Battery 3.7V	Test Mode	Working



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	70.2132	41.79	-16.95	24.84	40.00	-15.16	QP
2	131.9889	41.60	-17.59	24.01	43.50	-19.49	QP
3	149.2238	41.27	-16.59	24.68	43.50	-18.82	QP
4	164.3301	43.67	-16.54	27.13	43.50	-16.37	QP
5	192.4183	46.61	-18.44	28.17	43.50	-15.33	QP
6	282.9849	46.51	-14.73	31.78	46.00	-14.22	QP

Project No.: ZKT-2206204225E Page 20 of 43

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	Battery 3.7V	Test Mode	Working

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data shows only the worst case 802.11b and AC 120V mode

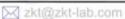
1GHz~25GHz

802.11b

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect			
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре			
			L	ow Chan	nel:2412MH	Z						
V	1 10 10 10 10 10 10 10 10 10 10 10 10 10											
V	4824.00	43.77	30.55	5.77	24.66	43.65	54.00	-10.35	AV			
V	7236.00	51.30	30.33	6.32	24.55	51.84	74.00	-22.16	PK			
V	7236.00	43.63	30.33	6.32	24.55	44.17	54.00	-9.83	AV			
V	9648.00	50.70	30.85	7.45	24.69	51.99	74.00	-22.01	PK			
V	9648.00	43.90	30.85	7.45	24.69	45.19	54.00	-8.81	AV			
V	12060.00	52.05	31.02	8.99	25.57	55.59	74.00	-18.41	PK			
V	12060.00	43.97	31.02	8.99	25.57	47.51	54.00	-6.49	AV			
Н	4824.00	51.69	30.55	5.77	24.66	51.57	74.00	-22.43	PK			
Н	4824.00	43.17	30.55	5.77	24.66	43.05	54.00	-10.95	AV			
Н	7236.00	53.95	30.33	6.32	24.55	54.49	74.00	-19.51	PK			
Н	7236.00	43.50	30.33	6.32	24.55	44.04	54.00	-9.96	AV			
Н	9648.00	54.50	30.85	7.45	24.69	55.79	74.00	-18.21	PK			
Н	9648.00	43.75	30.85	7.45	24.69	45.04	54.00	-8.96	AV			
Н	12060.00	50.10	31.02	8.99	25.57	53.64	74.00	-20.36	PK			
Н	12060.00	43.58	31.02	8.99	25.57	47.12	54.00	-6.88	AV			

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:2437M	Hz			
V	4874.00	51.57	30.55	5.77	24.66	51.45	74.00	-22.55	PK
V	4874.00	43.03	30.55	5.77	24.66	42.91	54.00	-11.09	AV
V	7311.00	54.47	30.33	6.32	24.55	55.01	74.00	-18.99	PK
V	7311.00	43.89	30.33	6.32	24.55	44.43	54.00	-9.57	AV
V	9748.00	53.16	30.85	7.45	24.69	54.45	74.00	-19.55	PK
V	9748.00	43.06	30.85	7.45	24.69	44.35	54.00	-9.65	AV
V	12185.00	52.73	31.02	8.99	25.57	56.27	74.00	-17.73	PK
V	12185.00	43.52	31.02	8.99	25.57	47.06	54.00	-6.94	AV
Н	4874.00	53.57	30.55	5.77	24.66	53.45	74.00	-20.55	PK
Н	4874.00	43.63	30.55	5.77	24.66	43.51	54.00	-10.49	AV
Н	7311.00	51.31	30.33	6.32	24.55	51.85	74.00	-22.15	PK
Н	7311.00	43.32	30.33	6.32	24.55	43.86	54.00	-10.14	AV
Н	9748.00	50.62	30.85	7.45	24.69	51.91	74.00	-22.09	PK
Н	9748.00	43.06	30.85	7.45	24.69	44.35	54.00	-9.65	AV
Н	12185.00	53.99	31.02	8.99	25.57	57.53	74.00	-16.47	PK
Н	12185.00	43.30	31.02	8.99	25.57	46.84	54.00	-7.16	AV

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


Page 22 of 43

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	7.41	4	Н	ligh Chan	nel:2462MF	lz		CO IN	
V	4924.00	54.10	30.55	5.77	24.66	53.98	74.00	-20.02	PK
V	4924.00	43.83	30.55	5.77	24.66	43.71	54.00	-10.29	AV
V	7386.00	50.38	30.33	6.32	24.55	50.92	74.00	-23.08	PK
V	7386.00	43.34	30.33	6.32	24.55	43.88	54.00	-10.12	AV
V	9848.00	53.00	30.85	7.45	24.69	54.29	74.00	-19.71	PK
V	9848.00	43.18	30.85	7.45	24.69	44.47	54.00	-9.53	AV
V	12310.00	52.51	31.02	8.99	25.57	56.05	74.00	-17.95	PK
V	12310.00	43.05	31.02	8.99	25.57	46.59	54.00	-7.41	AV
Н	4924.00	52.86	30.55	5.77	24.66	52.74	74.00	-21.26	PK
Н	4924.00	43.29	30.55	5.77	24.66	43.17	54.00	-10.83	AV
Н	7386.00	50.15	30.33	6.32	24.55	50.69	74.00	-23.31	PK
Н	7386.00	43.95	30.33	6.32	24.55	44.49	54.00	-9.51	AV
Н	9848.00	50.87	30.85	7.45	24.69	52.16	74.00	-21.84	PK
Н	9848.00	43.76	30.85	7.45	24.69	45.05	54.00	-8.95	AV
Н	12310.00	51.81	31.02	8.99	25.57	55.35	74.00	-18.65	PK
Н	12310.00	43.76	31.02	8.99	25.57	47.30	54.00	-6.70	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

802.11g

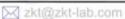
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect			
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре			
	Low Channel:2412MHz											
V	4824.00	51.59	30.55	5.77	24.66	51.47	74.00	-22.53	PK			
V	4824.00	43.36	30.55	5.77	24.66	43.24	54.00	-10.76	AV			
V	7236.00	54.33	30.33	6.32	24.55	54.87	74.00	-19.13	PK			
V	7236.00	43.49	30.33	6.32	24.55	44.03	54.00	-9.97	AV			
V	9648.00	53.72	30.85	7.45	24.69	55.01	74.00	-18.99	PK			
V	9648.00	43.66	30.85	7.45	24.69	44.95	54.00	-9.05	AV			
V	12060.00	54.08	31.02	8.99	25.57	57.62	74.00	-16.38	PK			
V	12060.00	43.32	31.02	8.99	25.57	46.86	54.00	-7.14	AV			
Н	4824.00	54.35	30.55	5.77	24.66	54.23	74.00	-19.77	PK			
Н	4824.00	43.15	30.55	5.77	24.66	43.03	54.00	-10.97	AV			
Н	7236.00	54.45	30.33	6.32	24.55	54.99	74.00	-19.01	PK			
Н	7236.00	43.52	30.33	6.32	24.55	44.06	54.00	-9.94	AV			
Н	9648.00	51.04	30.85	7.45	24.69	52.33	74.00	-21.67	PK			
Н	9648.00	43.98	30.85	7.45	24.69	45.27	54.00	-8.73	AV			
Н	12060.00	52.28	31.02	8.99	25.57	55.82	74.00	-18.18	PK			
Н	12060.00	43.87	31.02	8.99	25.57	47.41	54.00	-6.59	AV			

Polar	Frequency	Meter Reading	Pre-amp lifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:2437M	Hz			
V	4874.00	50.19	30.55	5.77	24.66	50.07	74.00	-23.93	PK
V	4874.00	43.86	30.55	5.77	24.66	43.74	54.00	-10.26	AV
V	7311.00	53.09	30.33	6.32	24.55	53.63	74.00	-20.37	PK
V	7311.00	43.56	30.33	6.32	24.55	44.10	54.00	-9.90	AV
V	9748.00	53.53	30.85	7.45	24.69	54.82	74.00	-19.18	PK
V	9748.00	43.02	30.85	7.45	24.69	44.31	54.00	-9.69	AV
V	12185.00	53.00	31.02	8.99	25.57	56.54	74.00	-17.46	PK
V	12185.00	43.04	31.02	8.99	25.57	46.58	54.00	-7.42	AV
Н	4874.00	52.83	30.55	5.77	24.66	52.71	74.00	-21.29	PK
Н	4874.00	43.51	30.55	5.77	24.66	43.39	54.00	-10.61	AV
Н	7311.00	51.66	30.33	6.32	24.55	52.20	74.00	-21.80	PK
Н	7311.00	43.63	30.33	6.32	24.55	44.17	54.00	-9.83	AV
Н	9748.00	51.05	30.85	7.45	24.69	52.34	74.00	-21.66	PK
Н	9748.00	43.82	30.85	7.45	24.69	45.11	54.00	-8.89	AV
Н	12185.00	54.96	31.02	8.99	25.57	58.50	74.00	-15.50	PK
Н	12185.00	43.75	31.02	8.99	25.57	47.29	54.00	-6.71	AV

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-2206204225E Page 24 of 43

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	100		Н	ligh Chan	nel:2462MF	z			
V	4924.00	51.79	30.55	5.77	24.66	51.67	74.00	-22.33	PK
V	4924.00	43.50	30.55	5.77	24.66	43.38	54.00	-10.62	AV
V	7386.00	52.81	30.33	6.32	24.55	53.35	74.00	-20.65	PK
V	7386.00	43.21	30.33	6.32	24.55	43.75	54.00	-10.25	AV
V	9848.00	54.02	30.85	7.45	24.69	55.31	74.00	-18.69	PK
V	9848.00	43.13	30.85	7.45	24.69	44.42	54.00	-9.58	AV
V	12310.00	50.73	31.02	8.99	25.57	54.27	74.00	-19.73	PK
V	12310.00	43.66	31.02	8.99	25.57	47.20	54.00	-6.80	AV
Н	4924.00	50.63	30.55	5.77	24.66	50.51	74.00	-23.49	PK
Н	4924.00	43.62	30.55	5.77	24.66	43.50	54.00	-10.50	AV
Н	7386.00	54.66	30.33	6.32	24.55	55.20	74.00	-18.80	PK
Н	7386.00	43.89	30.33	6.32	24.55	44.43	54.00	-9.57	AV
Н	9848.00	53.24	30.85	7.45	24.69	54.53	74.00	-19.47	PK
Н	9848.00	43.68	30.85	7.45	24.69	44.97	54.00	-9.03	AV
Н	12310.00	54.51	31.02	8.99	25.57	58.05	74.00	-15.95	PK
Н	12310.00	43.58	31.02	8.99	25.57	47.12	54.00	-6.88	AV


Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Shenzhen ZKT Technology Co., Ltd.

Page 25 of 43

5.RADIATED BAND EMISSIONMEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	Section 15.209	and 15.205		(4)(4)				
Test Method:	ANSI C63.10: 2	2013							
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	Above	Peak	1MHz	3MHz	Peak				
	1GHz	Average	1MHz	3MHz	Average				

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

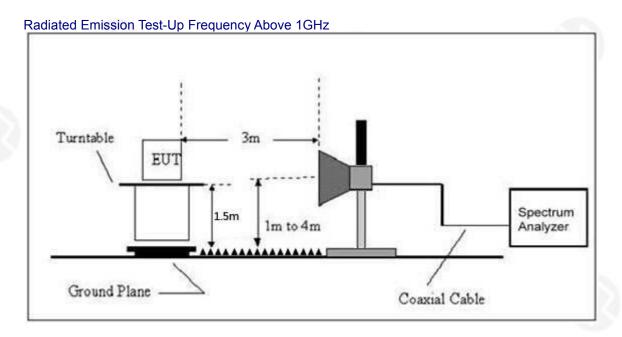
- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

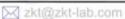
5.3 DEVIATION FROM TEST STANDARD

No deviation

Shenzhen ZKT Technology Co., Ltd.



5.4 TEST SETUP


5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

5.6 TEST RESULT

Project No.: ZKT-2206204225E

Page 27 of 43

	Polar	Frequenc	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission level	Limit (dBuV	Detec tor	Result
	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	Туре	
		(******=/	(5.2.5.7)	` '	, ,	el 2412MHz	,	,	. 715 5	
	Н	2390.00	53.98	30.22	4.85	23.98	52.59	74.00	PK	PASS
	H	2390.00	44.09	30.22	4.85	23.98	42.70	54.00	AV	PASS
	H	2400.00	53.45	30.22	4.85	23.98	52.06	74.00	PK	PASS
100	H	2400.00	44.44	30.22	4.85	23.98	43.05	54.00	AV	PASS
1 100	V	2390.00	54.73	30.22	4.85	23.98	53.34	74.00	PK	PASS
	V	2390.00	44.87	30.22	4.85	23.98	43.48	54.00	AV	PASS
	V	2400.00	53.61	30.22	4.85	23.98	52.22	74.00	PK	PASS
802.11b	V	2400.00	44.52	30.22	4.85	23.98	43.13	54.00	AV	PASS
002.115		2100.00	11.02			el 2462MHz		01.00	7.0	17.00
	Н	2483.50	53.42	30.22	4.85	23.98	52.03	74.00	PK	PASS
	Н	2483.50	44.94	30.22	4.85	23.98	43.55	54.00	AV	PASS
	Н	2500.00	54.30	30.22	4.85	23.98	52.91	74.00	PK	PASS
	Н	2500.00	44.50	30.22	4.85	23.98	43.11	54.00	AV	PASS
	V	2483.50	54.83	30.22	4.85	23.98	53.44	74.00	PK	PASS
	V	2483.50	44.03	30.22	4.85	23.98	42.64	54.00	AV	PASS
	V	2500.00	54.48	30.22	4.85	23.98	53.09	74.00	PK	PASS
	V	2500.00	44.07	30.22	4.85	23.98	42.68	54.00	AV	PASS
12				Low	/ Channe	el 2412MHz				
	Н	2390.00	53.44	30.22	4.85	23.98	52.05	74.00	PK	PASS
	Н	2390.00	44.11	30.22	4.85	23.98	42.72	54.00	AV	PASS
	Н	2400.00	53.98	30.22	4.85	23.98	52.59	74.00	PK	PASS
	Н	2400.00	44.59	30.22	4.85	23.98	43.20	54.00	AV	PASS
	V	2390.00	53.56	30.22	4.85	23.98	52.17	74.00	PK	PASS
	V	2390.00	44.11	30.22	4.85	23.98	42.72	54.00	AV	PASS
	V	2400.00	54.41	30.22	4.85	23.98	53.02	74.00	PK	PASS
802.11g	V	2400.00	44.10	30.22	4.85	23.98	42.71	54.00	AV	PASS
20	4.0				Channe	el 2462MHz	_			
	H	2483.50	54.82	30.22	4.85	23.98	53.43	74.00	PK	PASS
	Н	2483.50	44.20	30.22	4.85	23.98	42.81	54.00	AV	PASS
	Н	2500.00	54.11	30.22	4.85	23.98	52.72	74.00	PK	PASS
	Н	2500.00	44.46	30.22	4.85	23.98	43.07	54.00	AV	PASS
	V	2483.50	53.73	30.22	4.85	23.98	52.34	74.00	PK	PASS
	V	2483.50	44.03	30.22	4.85	23.98	42.64	54.00	AV	PASS
	V	2500.00	53.26	30.22	4.85	23.98	51.87	74.00	PK	PASS
	V	2500.00	44.84	30.22	4.85	23.98	43.45	54.00	AV	PASS

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

Shenzhen ZKT Technology Co., Ltd.

Page 28 of 43

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz) Result						
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

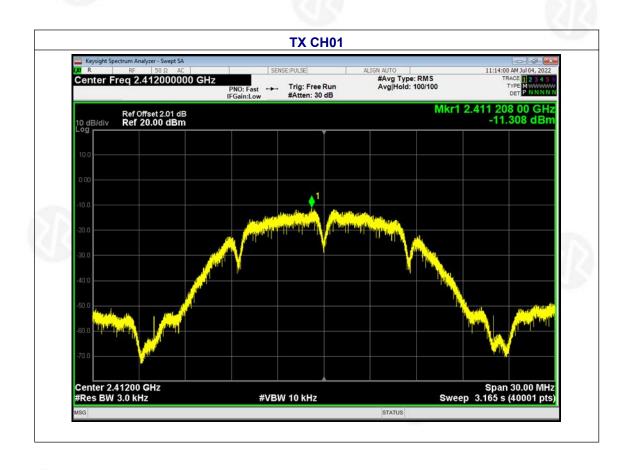
No deviation.

6.4 TEST SETUP

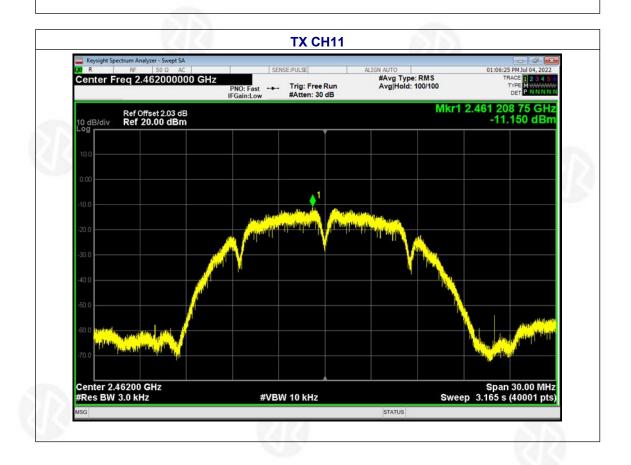
6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

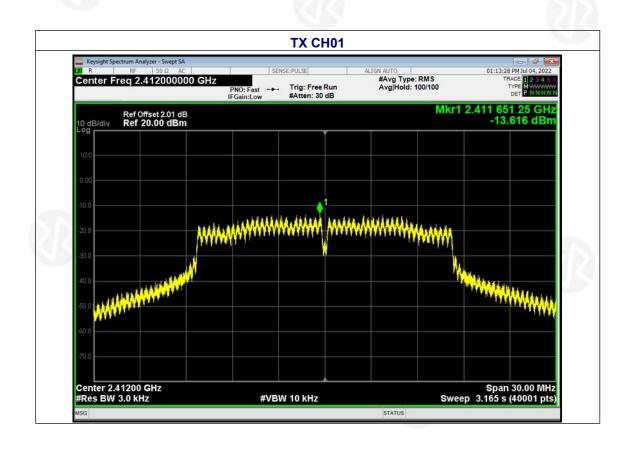
Shenzhen ZKT Technology Co., Ltd.



Page 29 of 43


Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Test Voltage :	Battery 3.7V
Test Mode :	TX b Mode	3.57	

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-11.308	8	PASS
2437 MHz	-10.869	8	PASS
2462 MHz	-11.150	8	PASS

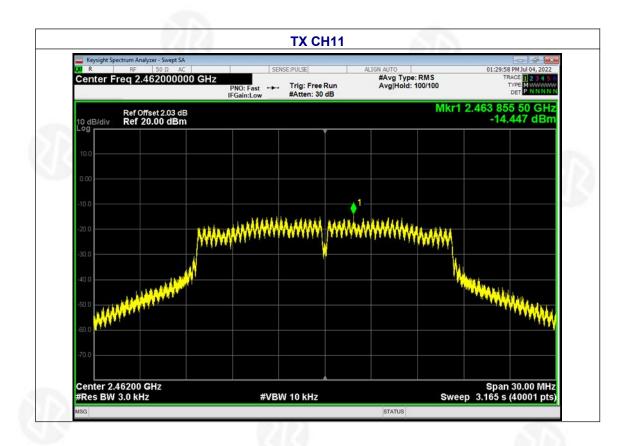

Shenzhen ZKT Technology Co., Ltd.

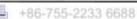
Page 31 of 43

			· • • • • • • • • • • • • • • • • • • •
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Test Voltage :	Battery 3.7V
Test Mode :	TX g Mode		12,127

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-13.616	8	PASS
2437 MHz	-11.224	8	PASS
2462 MHz	-14.447	8	PASS

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China




TX CH06

| TX CH06 | TX Ch

Shenzhen ZKT Technology Co., Ltd.

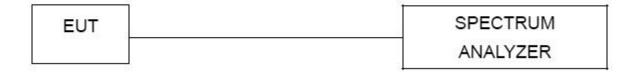
Page 33 of 43

7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS


7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

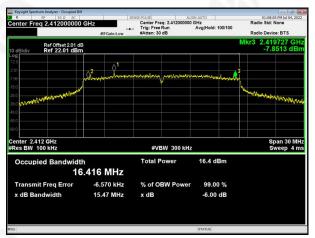
7.6 TEST RESULT

Project No.: ZKT-2206204225E Page 34 of 43

Temperature :	26℃	Relative Humidity:	54%
Pressure :	101kPa	Test Voltage :	Battery 3.7V
Test Mode :	TX	8.84	

Toot CU	dB Occupy Bandwidth (MHz)			
Test CH	802.11b	802.11g	Limit(KHz)	Result
Lowest	9.092	15.467		
Middle	9.423	15.032	>500	Pass
Highest	10.029	13.245		

Test plot as follows:


Project No.: ZKT-2206204225E

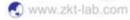
Page 35 of 43

802.11b 802.11g

Lowest channel

Middle channel

Highest channel



Shenzhen ZKT Technology Co., Ltd.

Page 36 of 43

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

8.1 APPLIED PROCEDURES/LIMIT

_					
	FCC Part15 (15.247) , Subpart C				
	Section	Test Item	Limit	Frequency Range (MHz)	Result
	15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	POWER METER
-----	-------------

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

8.6 TEST RESULT

Project No.: ZKT-2206204225E Page 37 of 43

Temperature :	26℃	Relative Humidity:	54%
Pressure :	101kPa	Test Voltage :	Battery 3.7V

Test CH	Peak Output Power (dBm)		Limit/dDm)	Dooult
	802.11b	802.11g	Limit(dBm)	Result
Lowest	8.452	7.263		
Middle	8.525	6.772	30.00	Pass
Highest	7.975	6.359		

Page 38 of 43

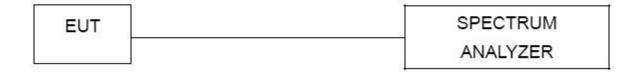
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE


Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

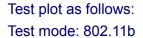
9.4 TEST SETUP

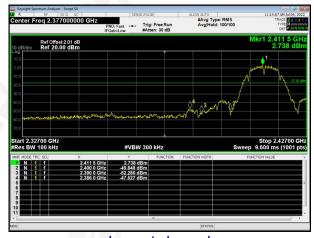
9.5 EUT OPERATION CONDITIONS

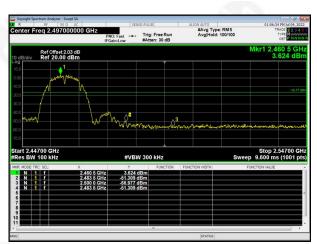
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

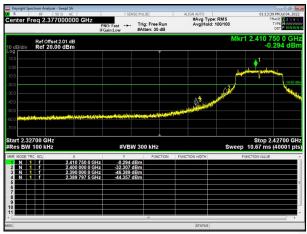
Shenzhen ZKT Technology Co., Ltd.



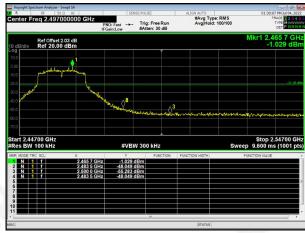




Page 39 of 43



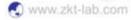
Lowest channel



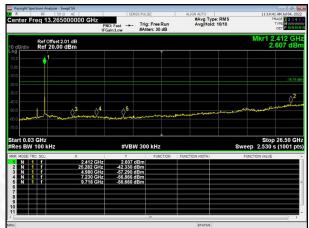
Highest channel

Test mode: 802.11g

Lowest channel

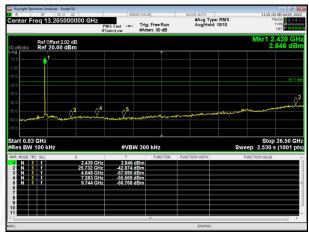

Highest channel

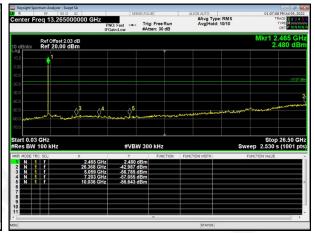
Shenzhen ZKT Technology Co., Ltd.



Test plot as follows:

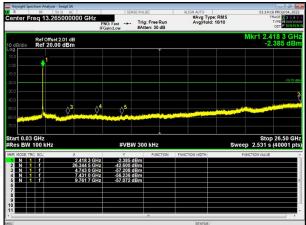
802.11b

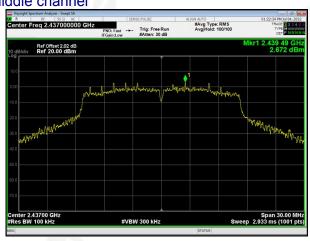

Lowest channel

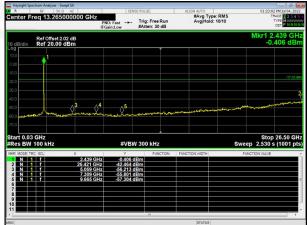

Middle channel

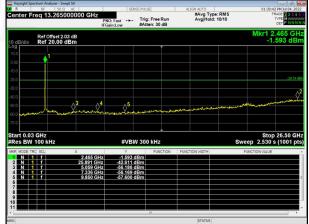
Highest channel

Shenzhen ZKT Technology Co., Ltd.




802.11g


Lowest channel


Middle channel

Highest channel

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Page 42 of 43

10. ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is FPCB Antenna, the best case gain of the antenna is 3dBi, reference to the appendix II for details

Shenzhen ZKT Technology Co., Ltd.

Page 43 of 43

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******* END OF REPORT ******

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

