FCC Part 15, Subpart B, Class B TEST REPORT ARTIKA FOR LIVING INC. LED floor lamp Test Model: ML9951A-2-3CT/FLR-SW-CCR Additional Models No.: Please Refer to Page 7

Prepared for Address	ARTIKA FOR LIVING INC.1756 50th avenue, Lachine, Qc, CanadaH8T 2V5
Prepared by Address	 Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street, Baoan District, Shenzhen, China
Tel	: (+86)755-82591330
Fax	: (+86)755-82591332
Web	: www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
Date of receipt of test sample	: December 01, 2020 : 1
Number of tested samples Sample No.	• • • • • • • • • • • • • • • • • • • •
Serial number	
Date of Test	: Prototype
	: December 01, 2020 ~ December 02, 2020
Date of Report	: December 03, 2020

FCC TEST REPORT FCC Part 15, Subpart B, Class B

	, ,		
Report Reference No	: LCS201102252AE		
Date Of Issue	[:] December 03, 2020		
Testing Laboratory Name	. : Shenzhen LCS Compliance Test	ing Laboratory Ltd.	
	 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street, Baoan District, Shenzhen, China Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □ 		
Applicant's Name	. : ARTIKA FOR LIVING INC.		
Address	. : 1756 50th avenue, Lachine, Qc, C	anadaH8T 2V5	
Test Specification			
Standard	[÷] FCC 47 CFR Part 15 Subpart B, C ANSI C63.4 -2014	lass B,	
Test Report Form No	[:] LCSEMC-1.0		
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF	: Dated 2011-03		
This publication may be repro- as the SHENZHEN LCS COM copyright owner and source of LABORATORY LTD. takes no	CE TESTING LABORATORY LTD. A duced in whole or in part for non-com PLIANCE TESTING LABORATORY f the material. SHENZHEN LCS COM presponsibility for and will not assume erpretation of the reproduced material	mercial purposes as long LTD. is acknowledged as IPLIANCE TESTING e liability for damages	
Test Item Description	: LED floor lamp		
Test Model	. : ML9951A-2-3CT/FLR-SW-CCR		
Trade Mark	. :HIFLY, ARTIKA		
Ratings	. : Input: AC 120V, 50/60Hz, 25W		
Result	. : Positive		
Compiled by:	Supervised by:	Approved by:	
Jin Wang	Conder He	Fains Frang	

Jin Wang/ File administrator

Linda He/ Technique principal Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 23

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AYFPFLR-SW-WA	
--	---	------------------------	--

Report No.: LCS201102252AE

FCC -- TEST REPORT

Test Report No. :	LCS201102252AE
-------------------	----------------

December 03, 2020

Date of issue

Test Model	: ML9951A-2-3CT/FLR-SW-CCR
EUT	: LED floor lamp
Applicant	: ARTIKA FOR LIVING INC.
Address	: 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5
Telephone	:/
Fax	
Manufacturer	: HIFLY ILLUMINATION CO., LIMITED
Address	: BLOCK 1, 1/F, BUILDING 2, 2 YIHUI 3RD ROAD, MAOHUI INDUSTRIAL ZONE, HENGLAN TOWN, ZHONGSHAN CITY, GUANGDONG PROVINCE, CHINA
Telephone	:/
Fax	:/
	: HIFLY ILLUMINATION CO., LIMITED
Address	: BLOCK 1, 1/F, BUILDING 2, 2 YIHUI 3RD ROAD, MAOHUI INDUSTRIAL ZONE, HENGLAN TOWN, ZHONGSHAN CITY, GUANGDONG PROVINCE, CHINA
Telephone	
Fax	:/

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	December 03, 2020	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 23

Report No.: LCS201102252AE

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	6
2. GENERAL INFORMATION	
2.1. Description of Device (EUT) 2.2. Support Equipment List	7
2.2. Support Equipment List	
2.3. Description of Test Facility	
2.4. Statement of the Measurement Uncertainty	
2.5. Measurement Uncertainty	
2.6. Test Sample	9
3. TEST RESULTS	
3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT	
3.2. Radiated emission Measurement	
4. PHOTOGRAPH	
5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

Conducted disturbance at mains terminals FCC Part 15, Subpart B, Class B, ANSI C63.4 -2014 Class B, Class B	EMISSION			
at mains terminals ANSI C63.4 -2014 Class ECC Part 15 Subpart B Class B	Limits Results	Standard	Description of Test Item	
ECC Part 15 Subpart B Class B				
Radiated disturbance ANSI C63.4 -2014 Class	Class B, Class B PASS	FCC Part 15, Subpart B, ANSI C63.4 -201	Radiated disturbance	

N/A is an abbreviation for Not Applicable.

Test mode:		
Mode	Lighting	Record

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

: LE	D floor lamp
	: LEI

Trade Mark : HIFLY, ARTIKA

Test Model : ML9951A-2-3CT/FLR-SW-CCR

- Additional Models : ML9951A-2-XYYT/FLR-SW-XXXXXX, ML9968-2-XYYT/FLR-WA-XXXXXX ("XXXXXX" can be A to Z and/or 0 to 9 and/or blank (commercial code))
- Models Declaration : PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
- Power Supply : Input: AC 120V, 50/60Hz, 25W
- Highest internal : $Fx \le 108$ MHz frequency

Highest internal frequency (Fx) Highest measured frequency			
Fx ≤ 108 MHz 1 GHz			
108 MHz < Fx ≤ 500 MHz 2 GHz			
500 MHz < Fx ≤ 1 GHz	5 GHz		
Fx > 1 GHz 5 × Fx up to a maximum of 6 GHz			
NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest			

frequency generated or used excluding the local oscillator and tuned frequencies. Where Ex is unknown, the radiated emission measurements shall be performed.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz.

2.2. Support Equipment List

Name	Manufacturers	M/N	S/N

2.3. Description of Test Facility

Site Description		
EMC Lab.	:	NVLAP Accreditation Code is 600167-0.
		FCC Designation Number is CN5024.
		CAB identifier is CN0071.
		CNAS Registration Number is L4595.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.5. Measurement Uncertainty

Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Radiated Emission	Level accuracy (30MHz to 1000MHz)	\pm 3.48 dB	\pm 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	\pm 3.90 dB	\pm 5.2 dB

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 23

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

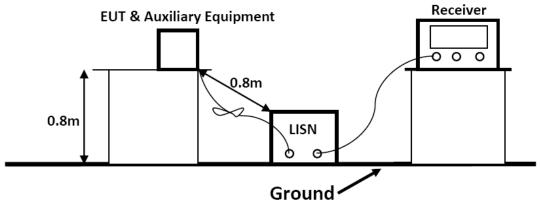
2.6. Test Sample

The application provides 1 sample to meet requirement;

Sample Number	Description
Sample (201102252A)	Normal sample – Intermittent transmit

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 9 of 23

3. TEST RESULTS


3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
3	Artificial Mains	R&S	ENV216	101288	2020-06-22	2021-06-21
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2020-06-22	2021-06-21
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2020-10-20	2021-10-19

3.1.2.Block Diagram of Test Setup

3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)
--

Frequency Limit (dBµV)							
(MHz) Quasi-peak Level Average Level							
0.15 ~ 0.50 66.0 ~ 56.0 * 56.0 ~ 46.0 *							
0.50 ~ 5.00 56.0 46.0							
5.00 ~ 30.00 60.0 50.0							
NOTE1-The lower limit shall apply at the transition frequencies.							
NOTE2-The limit decreases linearly with the logarithm of the							
frequency	in the ra	ange 0.15MHz	z to 0.50MHz.				

3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 23

3.1.5. Operating Condition of EUT

- 3.1.5.1.Setup the EUT as shown on Section 3.1.2
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring Lighting and measure it.

3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

3.1.7.Test Results

PASS.

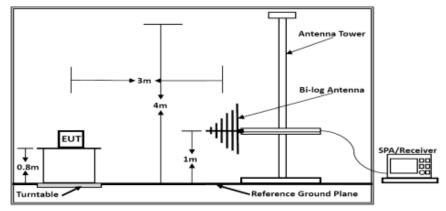
The test result please refer to the next page.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AYFPFLR-SW-WA

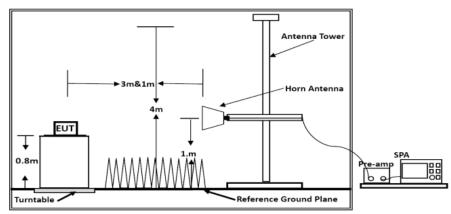
Report No.: LCS201102252AE

				9951A-2 R-SW-C		Test I	Mode	Lighting
D . !	nmental	Conditior	is 21.	5℃, 51.6	6% RH	Test E	Enginee	Carl Fu
Pol			Line	Э		Test \	/oltage	AC 120V/60Hz
	80.0 dBuV 70 60 50 40 20 10 -10 -20							T 158 Conduction(DP) T 158 Conduction(AVIS)
	0.150 No.	Frequency	Reading	Correct	(MHz) Result	Limit	Margin	30.000 Remark
	140.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Kemark
	1	0.6988	20.52	19.28	39.80	56.00	-16.20	QP
	2	0.7168	11.45	19.29	30.74	46.00	-15.26	AVG
	3	1.2794	17.92	19.30	37.22	56.00	-18.78	QP
	4	1.4908	7.87	19.34 19.40	27.21 36.90	46.00 56.00	-18.79	AVG
	6	2.0668	5.34	19.40	24.75	46.00	-19.10	QP AVG
	7	3.1425	18.71	19.47	38.18	56.00	-17.82	QP
	8	3.2100	4.85	19.47	24.32	46.00	-21.68	AVG
	9	7.4894	14.18	19.61	33.79	60.00	-26.21	QP
	10	7.8900	1.06	19.64 20.23	20.70 37.10	50.00	-29.30	AVG
	11	19.5450	4.36	20.23	24.66	50.00	-22.90	QP AVG
Test Mo		Conditior	/FL	9951A-2 R-SW-C 5℃, 51.6	CR	Test I	Mode Enginee	Lighting Carl Fu
		Condition	10 21.		70 111			
			Mor	itrol			/altaga	
	80.0 dBuV		Neu	utral		Test \	/oltage	AC 120V/60Hz
Pol			Neu k		(MHz)		FCC PART	AC 120V/60Hz
	100.0 dBuV 70 60 50 40 20 10 0 -10 -20	Frequency	Reading	Correct	(MHz) Result	Limit	Margin	158 Conduction (QP) 158 Conduction (AVG) 158 Conduction (AVG) 10 10 10 10 10 10 10 10 10 10
	00.0 dBuV 70 60 50 40 30 20 10 -20 0.150 No.	(MHz)	Reading (dBuV)	Correct (dB)	(HHr) Result (dBuV)	Limit	Margin (dB)	158 Conduction (AVG) 158 Conduction (AVG) 158 Conduction (AVG) 159 Conduction (AVG) 150 Conduction (AVG)
	10.0 dBuv 20 60 50 40 30 20 10 -20 0.150 No.	(MHz) 0.5233	Reading (dBuV) 20.10	Correct (dB) 19.32	(HHr) Result (dBuV) 39.42	Limit (dBuV) 56.00	Margin (dB) -16.58	158 Conduction (4/VG) 158 Conduction (4/VG) 158 Conduction (4/VG) 159 Conduction (4/VG) 150 Conduction (4/VG)
	00.0 dBuV 70 60 50 40 30 20 10 -20 0.150 No.	(MHz)	Reading (dBuV)	Correct (dB)	(HHr) Result (dBuV)	Limit	Margin (dB)	158 Conduction (AVG) 158 Conduction (AVG) 158 Conduction (AVG) 159 Conduction (AVG) 150 Conduction (AVG)
	00.0 dBvV 70 60 50 40 20 10 0 -10 -20 0.150 No. 1 2	(MHz) 0.5233 0.5684	Reading (dBuV) 20.10 9.51	Correct (dB) 19.32 19.30	(HR) Result (dBuV) 39.42 28.81	Limit (dBuV) 56.00 46.00	Margin (dB) -16.58 -17.19	158 Conduction (4/VG) 158 Conduction (4/VG) 159 Conduction (4/VG) 159 Conduction (4/VG) 150 Conduction (4/VG)
	00.0 d0.0/ 20 60 50 60 50 60 20 70 20 70 10 70 20 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11 70 11	(AHE2) 0.5233 0.5684 1.1084 1.1444 3.1290	Reading (dBuV) 20.10 9.51 19.80 7.12 19.55	Correct (dB) 19.32 19.30 19.28 19.28 19.28 19.47	(инк) Кезиlt (dBuV) 39.42 28.81 39.08 26.40 39.02	Limit (dBuV) 56.00 46.00 56.00 46.00 56.00	Margin (dB) -16.58 -17.19 -16.98 -16.98	158 Conduction(BP) 158 Conduction(BP) 158 Conduction(AVG) 11 158 Conduction(AVG) 11 158 Conduction(AVG) 11 158 Conduction(AVG) 158 Conduction(AVG)
	00.0 d0.0/ 20 60 50 60 50 60 20 10 0 -10 -20 0.150 No. 1 2 3 4 5 6 6	(NHE2) 0.5233 0.5684 1.1084 1.1444 3.1290 3.2053	Reading (dBuV) 20.10 9.51 19.80 7.12 19.55 5.74	Correct (dB) 19.32 19.30 19.28 19.28 19.47 19.47	(ине) Кезиlt (dBuV) 39.42 28.81 39.08 26.40 39.02 25.21	Limit (dBuV) 56.00 46.00 56.00 46.00 56.00	Margin (dB) -16.58 -17.19 -16.92 -19.60 -16.98 -20.79	158 Conduction(BP) 158 Conduction(BP) 158 Conduction(AVG) 158 Conduction(AVG) 158 Conduction(AVG) 158 Conduction(AVG) 158 Conduction(AVG) 158 Conduction(BP) 158 Conduction(BP) 1
	00.0 d0.0/ 20 60 50 60 50 60 20 10 0 0 0 0 10 0 0 10 20 0 0 0 0 10 20 0 12 3 4 5 6 7	(NHL) 0.5233 0.5684 1.1084 1.1444 3.1290 3.2053 5.0010	Reading (dBuV) 20.10 9.51 19.80 7.12 19.55 5.74 14.05	Correct (dB) 19.32 19.30 19.28 19.28 19.47 19.47 19.47	(HHF) Result (dBuV) 39.42 28.81 39.08 26.40 39.02 25.21 33.54	Limit (dBuV) 56.00 46.00 56.00 46.00 56.00	Margin (dB) -16.58 -17.19 -16.92 -19.60 -16.98 -20.79 -26.46 -26.46	158 Conduction(QP) 158 Conduction(QP) 158 Conduction(QP) 158 Conduction(QP) AVG QP AVG QP AVG QP AVG QP
	00.0 d0.0/ 20 60 50 60 50 60 20 10 0 -10 -20 0.150 No. 1 2 3 4 5 6 6	(NHE2) 0.5233 0.5684 1.1084 1.1444 3.1290 3.2053	Reading (dBuV) 20.10 9.51 19.80 7.12 19.55 5.74	Correct (dB) 19.32 19.30 19.28 19.28 19.47 19.47	(ине) Кезиlt (dBuV) 39.42 28.81 39.08 26.40 39.02 25.21	Limit (dBuV) 56.00 46.00 56.00 46.00 56.00	Margin (dB) -16.58 -17.19 -16.92 -19.60 -16.98 -20.79	158 Conduction(BP) 158 Conduction(BP) 158 Conduction(AVG) 158 Conduct
	00.0 d0.0// 20 0 60 50 50 0 20 0 20 0 10 0 -10 0 0 1550 No. 1 2 3 4 5 6 7 8 8	(NHE2) 0.5233 0.5684 1.1084 1.1444 3.1290 3.2053 5.0010 5.0819	Reading (dBuV) 20.10 9.51 19.80 7.12 19.55 5.74 14.05 2.32	Correct (dB) 19.32 19.30 19.28 19.47 19.47 19.49 19.49	(HHF) Result (dBuV) 39.42 28.81 39.08 26.40 39.02 25.21 33.54 21.81	Limit (dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) -16.58 -17.19 -16.92 -19.60 -16.98 -20.79 -26.46 -28.19	158 Conduction(137) 158 Conduction(137) 158 Conduction(137) 158 Conduction(137) 159 Conduction(137) 159 Conduction(137) 150 Condu

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 23


3.2. Radiated emission Measurement

3.2.1. Test Equipment


The following test equipment are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	N/A	N/A
2	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
4	EMI Test Receiver	R&S	ESR 7	101181	2020-06-22	2021-06-21
5	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-22	2021-06-21

3.2.2. Block Diagram of Test Setup

Above 1GHz

3.2.3. Radiated Emission Limit (Class B)

Limits for Radiated Disturbance Below 1GHz

FREQUENCY	FREQUENCY DISTANCE		NGTHS LIMIT				
MHz	Meters	μV/m	dB(μV)/m				
30 ~ 88	3	100	40				
88 ~ 216	3	150	43.5				
216 ~ 960	3	200	46				
960 ~ 1000	3	500	54				
Remark: (1) Emission I	Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m						
(2) The smaller limit shall apply at the cross point between two							
frequency bands.							
(3) Distance is the distance in meters between the measuring							
instrument, antenna and the closest point of any part of the							
device or system.							
Limits for Radiated Emission Above 1GHz							
Frequency	Distance	Peak Limit	Average Limit				
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)				
Above 1000	3	74	54				
***Note: The lower limit applies at the transition frequency.							

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

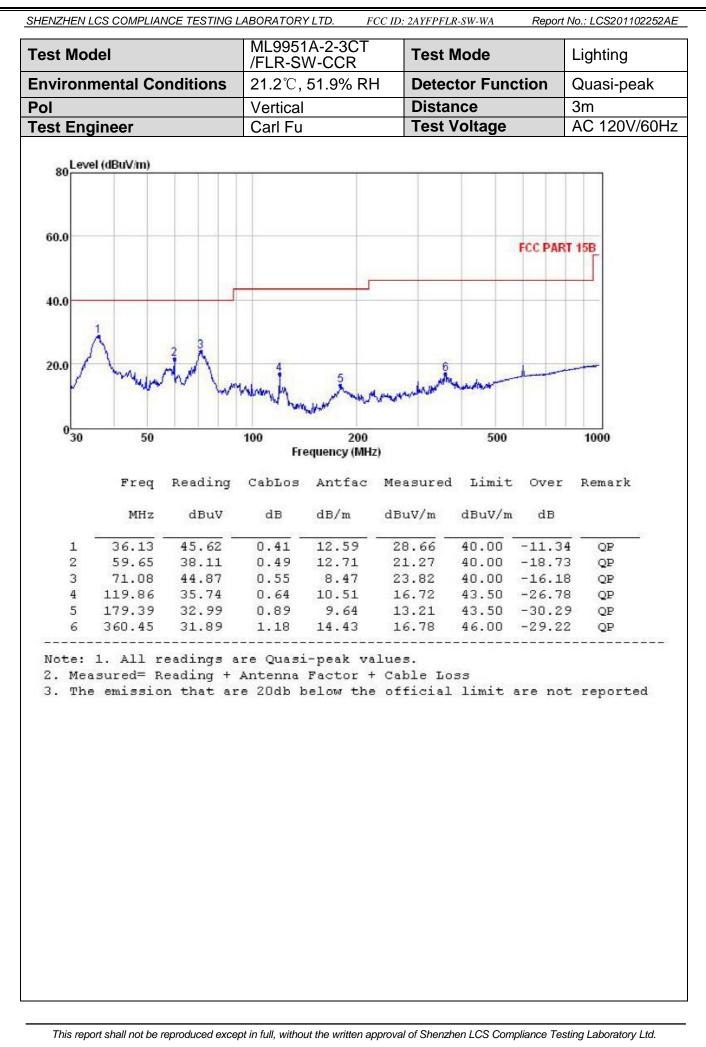
3.2.5. Operating Condition of EUT

3.2.5.1.Setup the EUT as shown in Section 3.2.2.

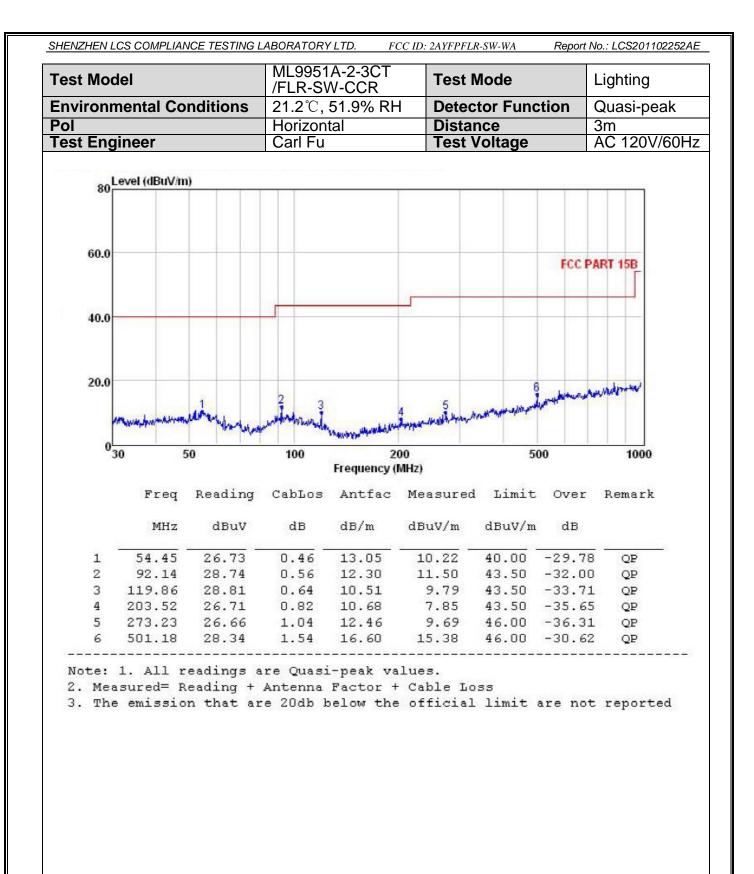
3.2.5.2.Let the EUT work in test Lighting and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.


The bandwidth of the EMI test receiver is set at 120kHz, 300kHz. The frequency range from 30MHz to 1000MHz is checked.

3.2.7. Radiated Emission Noise Measurement Result


PASS.

The scanning waveforms please refer to the next page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 23

Page 15 of 23

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 23

4. PHOTOGRAPH

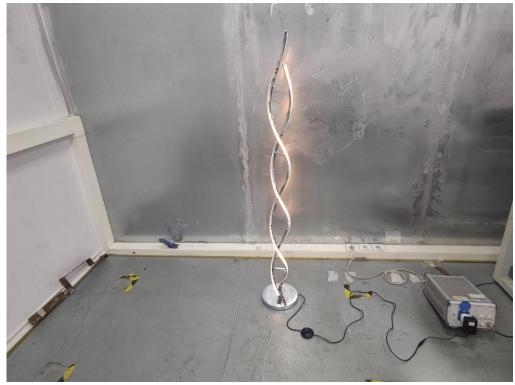


Photo of Power Line Conducted Measurement

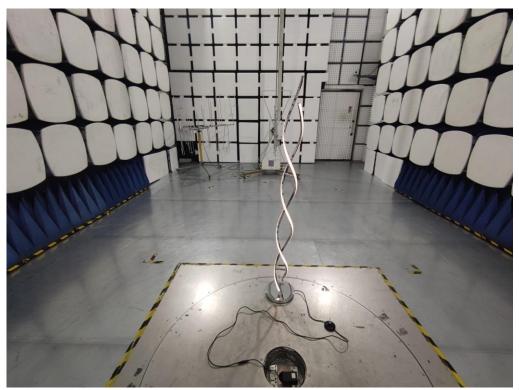


Photo of Radiated Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 23

5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 23

Fig. 3

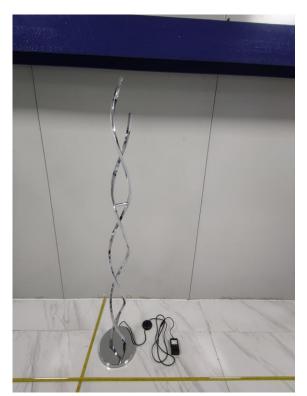


Fig. 4

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 23

Report No.: LCS201102252AE

Fig. 5

Fig. 6

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 23

Fig. 7

Fig. 8

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 23

FCC ID: 2AYFPFLR-SW-WA

Report No.: LCS201102252AE



Fig. 9

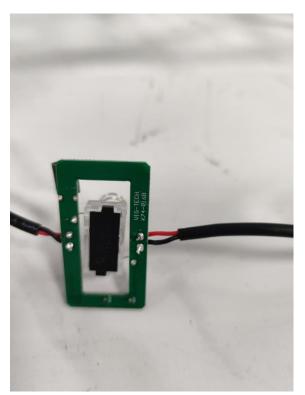


Fig. 10

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 23

Report No.: LCS201102252AE

Fig. 11

-----THE END OF TEST REPORT-----

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 23