FCC Part 15, Subpart B, Class B

ARTIKA FOR LIVING INC

Sparkle Ball 1L pendant

Test Model: PDT1-SB

Additional Model No.: PDT1-SB-XXXXXX

("XXXXXX" can be A to Z and/or 0 to 9 and/or blank (commercial code))

Prepared for : ARTIKA FOR LIVING INC

Address : 1756 50th avenue, Lachine, Québec, Canada H8T 2V5

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : Room 101, 201, Building A and Room 301, Building C,

Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : November 16, 2020

Number of tested samples : 1

Sample No. : 201102349A-1 Serial number : Prototype

Date of Test : November 16, 2020 ~ November 20, 2020

Date of Report : November 25, 2020

FCC Part 15, Subpart B, Class B FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014

Report Reference No.: LCS201102349AE

Date Of Issue November 25, 2020

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

District, Shenzhen, Guangdong, China

Testing Location/ Procedure...: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

: ARTIKA FOR LIVING INC Applicant's Name.....

Address: 1756 50th avenue, Lachine, Québec, Canada H8T 2V5

Test Specification

Standard.....: FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4

Test Report Form No...... LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description......: : Sparkle Ball 1L pendant

Test Model : PDT1-SB

Trade Mark : Artika

Result: : Positive

Compiled by: Supervised by: Approved by:

Nova Dang

Jains Piang

FCC -- TEST REPORT

Test Report No.: LCS201102349AE

November 25, 2020

Date of issue

Test Model	: PDT1-SB
EUT	: Sparkle Ball 1L pendant
Applicant	: ARTIKA FOR LIVING INC
Address	: 1756 50th avenue, Lachine, Québec, Canada H8T 2V5
Telephone	
Fax	:/
Manufacturer	: ZHONGSHAN C5 LIGHTING CO. LTD
Address	: 1# Henglong Road, Tongyi Industrial Area, Cao San, Guzhen, Zhongshan, Guangdong, China.
Telephone	:/
Fax	: /
	: ZHONGSHAN C5 LIGHTING CO. LTD
Address	9 9 , 9 7 , , , ,
	Guzhen, Zhongshan, Guangdong, China.
Telephone	
Fax	: /

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCCID: 2AYFP-PDT1-SB	Report No.: LCS201102349AE
---	----------------------	----------------------------

Revision History

Revision	Issue Date	Revisions	Revised By
000	November 25, 2020	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	
2. GENERAL INFORMATION	7
2.1. Description of Device (EUT)	7
2.2. Support Equipment List	7
2.3. Description of Test Facility	7
2.4. Statement of the Measurement Uncertainty	8
2.5. Measurement Uncertainty	8
3. TEST RESULTS	9
3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
3.2. Radiated emission Measurement	13
4. PHOTOGRAPH	17
5 EXTERNAL AND INTERNAL PHOTOS OF THE FUT	18

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION				
Description of Test Item	Standard	Limits	Results	
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014	Class B	PASS	
Radiated disturbance	FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014	Class B	PASS	

N/A is an abbreviation for Not Applicable.

Test mode:				
Mode	Working	Record		
***Note: All test modes were tested, but we only recorded the worst case in this				
report.				

Report No.: LCS201102349AE

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : Sparkle Ball 1L pendant

Trade Mark : Artika

Test Model : PDT1-SB

Additional Model : PDT1-SB-XXXXXX ("XXXXXX" can be A to Z and/or 0 to

9 and/or blank (commercial code))

Model Declaration : PCB board, structure and internal of these model(s) are

the same, So no additional models were tested

Power Supply : Input: AC 100-135V, 50-60Hz, 0.4A Max

Output: DC 30-45V, 24.75W Max

Highest internal frequency (Fx)	Highest measured frequency
Fx ≤ 108 MHz	1 GHz
108 MHz < Fx ≤ 500 MHz	2 GHz
500 MHz < Fx ≤ 1 GHz	5 GHz
Fx > 1 GHz	5 x Fx up to a maximum of 6 GHz

NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz.

2.2. Support Equipment List

Name	Manufacturers	M/N	S/N

2.3. Description of Test Facility

Site Description

EMC Lab. : NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.5. Measurement Uncertainty

Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	\pm 3.8 dB \pm 3.4 dB
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB

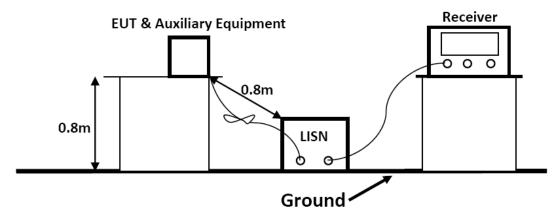
- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

2.6. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 2(201102349A-1)	Normal sample – Intermittent transmit

3. TEST RESULTS


3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2020-06-2	2021-06-21
3	Artificial Mains	R&S	ENV216	101288	2020-06-2	2021-06-21
4	10dB Attenuator	SCHWARZB ECK	MTS-IMP-136	261115-001-0 032	2020-06-2	2021-06-21
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2020-10-2	2021-10-19

3.1.2.Block Diagram of Test Setup

3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

l l	Frequenc	у	Limit (dBμV)	
	(MHz)		Quasi-peak Level	Average Level
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *
0.50	~	5.00	56.0	46.0
5.00	~	30.00	60.0	50.0

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

3.1.5. Operating Condition of EUT

- 3.1.5.1. Setup the EUT as shown on Section 3.1.2
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring Working and measure it.

3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

3.1.7.Test Results

PASS.

The test result please refer to the next page.

T	Test Model						PDT1-SB				Те	st I	Иc	d	9			Working	<u> </u>							
Ε	nv	ironm	ent	al	C	ond	litic	ons	S	23.3℃, 53.7% RH				Те	st I	Ξn	gi	ne	er	,	Ben Jin	Ben Jin				
P	Pol						Line				Test Voltage						AC 120	AC 120V/60Hz								
90.	D	BuV									_								_	_	_	_		$\overline{}$		_
80																										
70 60		<u> </u>																					FCC Class B Condu	ction(Q	P)	
ъо 50			~~	~_4	-	my	1040					-											FCC Class B Condu	ction(4	(vj^~\ <mark>\$</mark> \	<u>~</u>
40								Merry	· App	a way	أدر		Δ	^^ <i>\</i> ^\	VA.	MA.		, 8 4	<u>.</u>				AND	m)	12	peak
30		2	\triangle_{γ}	Дз	. A (V)		A, A	Ww	Δ,		V	L. M. M. M.	N II	Markatan	S. C.	· TO	MMM,	10	, M	\	A. W.	M	V '	-m/		AVG
20					VŲ	,	W	× *\/	•	W		AC administration			7000			V . W	W.	W	١	New York				
10																	₩.		Y	MM	<i>^</i> ^					
0										1	1				T			$^{+}$	+	\dagger	\top	T				\dashv
-10 (0.150												(h	4Hz)										\perp		30.000
No. Frequency Reading							Correct		Result]	Limi	t		I	Mai	gin	n R	Remark							

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1725	40.89	19.16	60.05	64.84	-4.79	QP
2	0.1758	12.11	19.17	31.28	54.68	-23.40	AVG
3	0.3435	11.16	19.31	30.47	49.12	-18.65	AVG
4	0.3480	35.40	19.31	54.71	59.01	-4.30	QP
5	1.0274	27.73	19.25	46.98	56.00	-9.02	QP
6	1.0274	13.90	19.25	33.15	46.00	-12.85	AVG
7	2.7600	22.28	19.44	41.72	56.00	-14.28	QP
8	2.7600	13.00	19.44	32.44	46.00	-13.56	AVG
9	5.3520	23.25	19.51	42.76	60.00	-17.24	QP
10	5.3700	12.74	19.51	32.25	50.00	-17.75	AVG
11	25.6605	33.92	20.10	54.02	60.00	-5.98	QP
12	26.1825	22.29	20.08	42.37	50.00	-7.63	AVG

Test Mode

PDT1-SB

Test Model

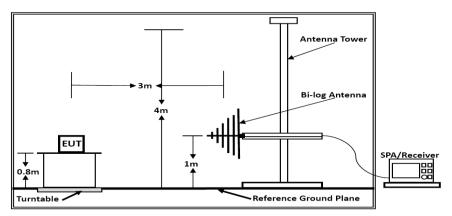
Working

Er	١v	ironm	ent	al	C	ond	litic	on	S	2	3	. 3 ℃, 5 3.	7%	6 RH	Т	est	Eng	gir	ee	r		Ben	Jin		
Po	οl									١	le	utral			Т	est	Vol	ta	ge			AC	120V/	/60Hz	
90.0	(IBu∀																			T				1
80																					+				-
70																				_	-				-
60																				_	-		B Conduction		-
50					***	~~~	MA	Make 4													14	FCC Class	B Conduction	1/2 12 12 12 12 12 12 12 12 12 12 12 12 12	peak
40		Λ	_					111-90	and the	Ways	~	Vandelland of the day of a	_		n a M	WW.	١.,	A Physical Res	avvV	w	7			*	AVG
30		V/_	/_	Λ		(%.	۸					W.	W	$\sim \sim \sim$	W V .		My "		a physiolegical	, m	~~	* ~~	10	/	AVG
20						W W	(\\	ww	W	Λ,,	VΜ	<u></u>	L.M.	Myranghan	w/Mary-A.A	A MANAGANA A		haptar .				**			
10																									
0																									
-10																									
0.	150												(MHz)		-		_						3	30.000
		No.	Fr	equ	ienc	y	R	eadi	ing			Correct		Result		Limi	t		M	argi	in		Rem	ark	

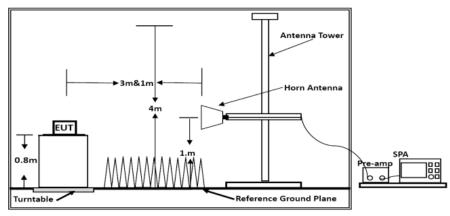
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1685	41.39	19.16	60.55	65.03	-4.48	QP
2	0.1703	14.36	19.16	33.52	54.95	-21.43	AVG
3	0.3428	35.55	19.30	54.85	59.14	-4.29	QP
4	0.3428	12.74	19.30	32.04	49.14	-17.10	AVG
5	3.7994	18.43	19.46	37.89	56.00	-18.11	QP
6	3.8807	7.41	19.46	26.87	46.00	-19.13	AVG
7	10.3422	26.59	19.71	46.30	60.00	-13.70	QP
8	10.6197	14.19	19.75	33.94	50.00	-16.06	AVG
9	13.8411	26.25	20.02	46.27	60.00	-13.73	QP
10	14.2881	14.36	20.07	34.43	50.00	-15.57	AVG
11	23.6361	34.45	20.10	54.55	60.00	-5.45	QP
12	23.6361	24.33	20.10	44.43	50.00	-5.57	AVG

Note: Pre-Scan all mode, Thus record worse case mode result in this report. Result=Reading + Correct Margin=Measured Level- Limit

Report No.: LCS201102349AE


3.2. Radiated emission Measurement

3.2.1. Test Equipment


The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-2 6	2021-07-2 5
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-192 5	2018-07-0	2021-07-0
4	EMI Test Receiver	R&S	ESR 7	101181	2020-06-2	2021-06-2
5	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-2	2021-06-2

3.2.2. Block Diagram of Test Setup

Below 1GHz

Above 1GHz

3.2.3. Radiated Emission Limit (Class B)

Limits for Radiated Disturbance Below 1GHz

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT					
MHz	Meters	μV/m	dB(μV)/m				
30 ~ 88	3	100	40				
88 ~ 216	3	150	43.5				
216 ~ 960	3	200	46				
960 ~ 1000	3	500	54				

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Limits for Radiated Emission Above 1GHz											
Frequency Distance Peak Limit Average Limit											
(MHz) (Meters) (dBµV/m) (dBµV/m)											
Above 1000	Above 1000 3 74 54										
***Note: The lower limit	t applies at the tran	sition frequency									

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.2.5. Operating Condition of EUT

- 3.2.5.1. Setup the EUT as shown in Section 3.2.2.
- 3.2.5.2.Let the EUT work in test Working and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

The bandwidth of the EMI test receiver is set at 120kHz, 300kHz. The frequency range from 30MHz to 1000MHz is checked.

3.2.7. Radiated Emission Noise Measurement Result

PASS.

The scanning waveforms please refer to the next page.

Toet	Model		PDT1-SB	Tos	t Mode	Workin	
	onmental Co		24.6℃, 54.1°		ector Function		
Pol	Offinerital CO		Horizontal		ance	3m	peak
	Engineer		Ben Jin		t Voltage		OV/60Hz
70.0 dBu				1 - 00	- Torresgo	7.0	1,001.
50 40 20 10	and the same of th	Market Lander			The state of the s	FCC Class B_30	argan -6 di
0.0							
30.000 No.	Fueguener		Factor	Level	Limit	Mangin	Det.
NO.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1 *	31.1798	59.60	-30.30	29.30	40.00	-10.70	QP
2	59.8588	55.06	-29.43	25.63	40.00	-14.37	QP
3	147.9214	63.26	-34.07	29.19	43.50	-14.31	QP
4	185.1379	58.21	-31.78	26.43	43.50	-17.07	QP
5	256.5211	53.93	-28.23	25.70	46.00	-20.30	QP
6	351.7079	56.17	-26.10	30.07	46.00	-15.93	QP

Note: Pre-Scan all mode, Thus record worse case mode result in this report. Corrected Reading: Factor + Reading = Level, Level - Limit = Margin.

4. PHOTOGRAPH

Photo of Power Line Conducted Measurement

Photo of Radiated Measurement

5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2

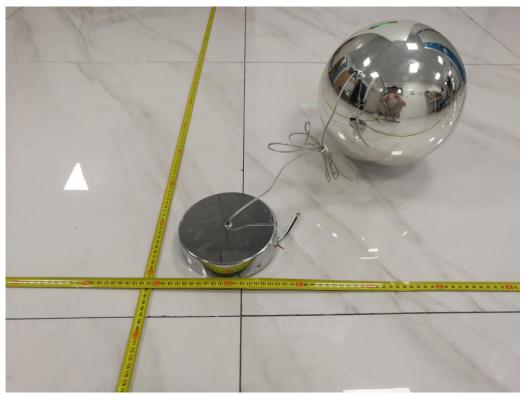


Fig. 3

Fig. 4

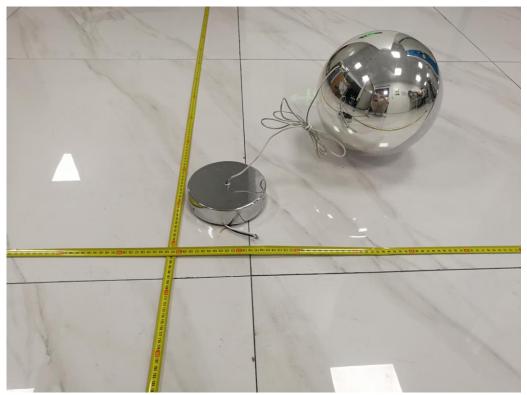


Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

-----THE END OF TEST REPORT-----