



FCC ID: 2AYFPGB390L Report No.: LCSA070422161E

# FCC Part 15, Subpart B, Class B

ARTIKA FOR LIVING INC.

**Essence Glow Box** 

Test Model: GB390L-HDBL

Additional Model No.: GB390L-XXXXXX

("XXXXXX" can be A to Z and/or 0 to 9 and/or blank (commercial code))

Prepared for : ARTIKA FOR LIVING INC.

Address : 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park

Yabianxueziwei, Shajing Street, Baoan District,

Shenzhen, 518000, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : July 13, 2022

Number of tested samples : 2

Sample No. : A052022077 Serial number : Prototype

Date of Test : July 13, 2022 ~ July 18, 2022

Date of Report : July 18, 2022





2 of 17 FCC ID: 2AYFPGB390L

# FCC Part 15, Subpart B, Class B FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014

Report Reference No. ......: LCSA070422161E

Date Of Issue ...... July 18, 2022

Testing Laboratory Name ....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address .....:: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park

Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

Report No.: LCSA070422161E

518000, China

Testing Location/ Procedure...: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: : ARTIKA FOR LIVING INC.

Address ......: 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5

**Test Specification** 

Standard..... FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4

-2014

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description......: : Essence Glow Box

Test Model .....: GB390L-HDBL

Trade Mark .....: : ARTIKA

Ratings ...... : Input: AC 120V, 60Hz

Result .....: Positive

Vera Deng/ Administrator

Compiled by: Supervised by:

eva peng (any )u

Cary Luo/ Technique principal

Gavin Liang/ Manager

Approved by:





#### **FCC -- TEST REPORT**

Report No.: LCSA070422161E

Test Report No.: LCSA070422161E

July 18, 2022

Date of issue

Test Model .....: : GB390L-HDBL EUT.....: : Essence Glow Box Applicant.....: : ARTIKA FOR LIVING INC. Address......: 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5 Telephone.....:: : / Fax.....: : / Manufacturer.....: Ningbo Shenghe Lighting Co.,LTD. Address.....: No.311 Penglai Road, Xiangshan Economic development Zone, Ningbo, Zhejiang, 315700 Telephone.....:: : / Fax.....: : / Factory.....: Ningbo Shenghe Lighting Co.,LTD. : No.311 Penglai Road, Xiangshan Economic Address..... development Zone, Ningbo, Zhejiang, 315700 Telephone..... Fax.....:: : /

#### Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China





# Revision History

FCC ID: 2AYFPGB390L

| Report Version | Issue Date    | <b>Revision Content</b> | Revised By |
|----------------|---------------|-------------------------|------------|
| 000            | July 18, 2022 | Initial Issue           | 1          |
|                |               |                         |            |
|                |               |                         |            |

Report No.: LCSA070422161E







# **TABLE OF CONTENTS**

| Test Report Description                        | Page |
|------------------------------------------------|------|
| 1. SUMMARY OF STANDARDS AND RESULTS            | 6    |
| 1.1. Description of Standards and Results      | 6    |
| 2. GENERAL INFORMATION                         | 7    |
| 2.1. Description of Device (EUT)               | 7    |
| 2.2. Support Equipment List                    | 7    |
| 2.3. Description of Test Facility              | 8    |
| 2.4. Statement of the Measurement Uncertainty  | 8    |
| 2.5. Measurement Uncertainty                   | 8    |
| 3. TEST RESULTS                                | 9    |
| 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT |      |
| 3.2. Radiated emission Measurement             | 13   |
| 4. TEST SETUP PHOTOGRAPHS OF EUT               | 17   |
| 5. EXTERIOR PHOTOGRAPHS OF THE EUT             | 17   |
| 6. INTERIOR PHOTOGRAPHS OF THE EUT             | 17   |







Report No.: LCSA070422161E













# 1. SUMMARY OF STANDARDS AND RESULTS

# 1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

| EMISSION                                 |                                                            |         |         |  |  |  |  |
|------------------------------------------|------------------------------------------------------------|---------|---------|--|--|--|--|
| Description of Test Item                 | Standard                                                   | Limits  | Results |  |  |  |  |
| Conducted disturbance at mains terminals | FCC 47 CFR Part 15 Subpart B, Class<br>B, ANSI C63.4 -2014 | Class B | PASS    |  |  |  |  |
| Radiated disturbance                     | FCC 47 CFR Part 15 Subpart B, Class<br>B, ANSI C63.4 -2014 | Class B | PASS    |  |  |  |  |

| Test mode:                 |                                           |              |
|----------------------------|-------------------------------------------|--------------|
| Mode                       | Lighting                                  | Record       |
| ***Note: All test modes we | re tested, but we only recorded the worst | case in this |
| report.                    |                                           |              |



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity



### 2. GENERAL INFORMATION

### 2.1. Description of Device (EUT)

EUT : Essence Glow Box

Trade Mark : ARTIKA

Test Model : GB390L-HDBL

Additional Model : GB390L-XXXXXX ("XXXXXX" can be A to Z and/or 0 to

9 and/or blank (commercial code))

Model Declaration : PCB board, structure and internal of these model(s) are

the same, So no additional models were tested

Report No.: LCSA070422161E

Power Supply : Input: AC 120V, 60Hz

Highest internal

frequency (Fx)

: Fx ≤ 108 MHz

| Highest internal frequency (Fx) | Highest measured frequency      |
|---------------------------------|---------------------------------|
| Fx ≤ 108 MHz                    | 1 GHz                           |
| 108 MHz < Fx ≤ 500 MHz          | 2 GHz                           |
| 500 MHz < Fx ≤ 1 GHz            | 5 GHz                           |
| Fx > 1 GHz                      | 5 x Fx up to a maximum of 6 GHz |

NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz.

# 2.2. Support Equipment List

| Name | Manufacturers | M/N | S/N |  |
|------|---------------|-----|-----|--|
|      |               | 1   | I   |  |



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China





FCC ID: 2AYFPGB390L Report No.: LCSA070422161E

# 2.3. Description of Test Facility

Site Description

EMC Lab. : NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

FCC Test Firm Registration Number: 254912

# 2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

# 2.5. Measurement Uncertainty

| Test                  | Parameters                                              | Expanded<br>Uncertainty<br>(Ulab) | Expanded<br>Uncertainty<br>(Ucispr) |  |
|-----------------------|---------------------------------------------------------|-----------------------------------|-------------------------------------|--|
| Conducted<br>Emission | Level accuracy<br>(9kHz to 150kHz)<br>(150kHz to 30MHz) | ± 2.63 dB<br>± 2.35 dB            | ± 3.8 dB<br>± 3.4 dB                |  |
| Radiated Emission     | Level accuracy<br>(30MHz to 1000MHz)                    | ± 3.48 dB                         | ± 5.3 dB                            |  |
| Radiated Emission     | Level accuracy<br>(above 1000MHz)                       | ± 3.90 dB                         | ± 5.2 dB                            |  |

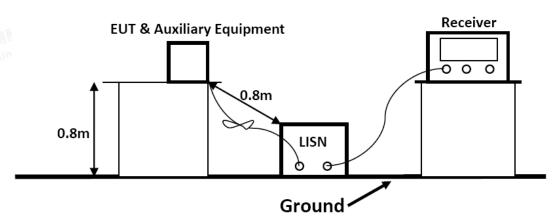
- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

#### 3. TEST RESULTS


## 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

#### 3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

| Item | Equipment                        | Manufacturer | Model No.       | Serial No.       | Cal Date   | Due Date   |
|------|----------------------------------|--------------|-----------------|------------------|------------|------------|
| 1    | EMI Test Receiver                | R&S          | R&S ESCI 101142 |                  | 2022-05-05 | 2023-05-04 |
| 2    | 10dB Attenuator                  | SCHWARZBECK  | VTSD9561-F      | 9561-F159        | 2022-05-05 | 2023-05-04 |
| 3    | Artificial Mains<br>Network      | SCHWARZBECK  | NSLK8127        | 8127716          | 2022-05-05 | 2023-05-04 |
| 4    | EMI Test Software                | EZ 🛝         | EZ_EMC          | N/A              | TEL res    | /          |
| 5    | Asymmetric<br>Artificial Network | SCHWARZBECK  | NTFM 8158       | NTFM8158<br>#120 | 2022-05-05 | 2023-05-04 |
| 6    | Voltage Probe                    | SCHWARZBECK  | KT 9420         | 9420401          | 2022-05-05 | 2023-05-04 |
| 7    | No. 2 shielded<br>Room           | CHENGYU      | 843             | /                | 2020-06-16 | 2023-06-16 |

#### 3.1.2.Block Diagram of Test Setup



#### 3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

| Frequency |   |       | Limit (dBμV)                   |               |  |
|-----------|---|-------|--------------------------------|---------------|--|
| (MHz)     |   |       | Quasi-peak Level Average Level |               |  |
| 0.15      | ~ | 0.50  | 66.0 ~ 56.0 *                  | 56.0 ~ 46.0 * |  |
| 0.50      | ~ | 5.00  | 56.0                           | 46.0          |  |
| 5.00      | ~ | 30.00 | 60.0                           | 50.0          |  |

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the

frequency in the range 0.15MHz to 0.50MHz.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity





FCC ID: 2AYFPGB390L Report No.: LCSA070422161E

#### 3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

#### 3.1.5. Operating Condition of EUT

- 3.1.5.1. Setup the EUT as shown on Section 3.1.2
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring Lighting and measure it.

#### 3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

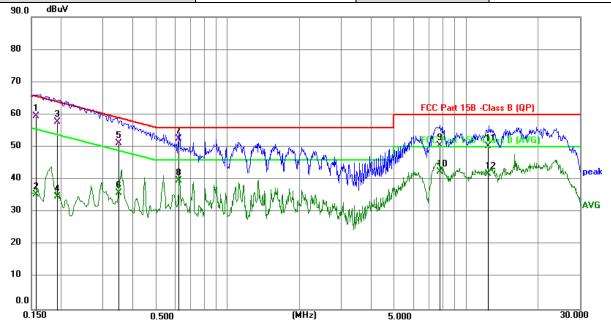
The frequency range from 150kHz to 30MHz is investigated

#### 3.1.7.Test Results

PASS.

The test result please refer to the next page.




Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China



Report No.: LCSA070422161E

| - 112                           | 112           | 112           |              |
|---------------------------------|---------------|---------------|--------------|
| Test Model                      | GB390L-HDBL   | Test Mode     | Lighting     |
| <b>Environmental Conditions</b> | 24.5℃, 52% RH | Test Engineer | Monkey Li    |
| Pol                             | Line          | Test Voltage  | AC 120V/60Hz |



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     |                  | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.1573  | 49.28            | 10.24             | 59.52            | 65.61 | -6.09  | QP       |
| 2   |     | 0.1573  | 25.10            | 10.24             | 35.34            | 55.61 | -20.27 | AVG      |
| 3   |     | 0.1924  | 47.48            | 10.23             | 57.71            | 63.93 | -6.22  | QP       |
| 4   |     | 0.1924  | 24.60            | 10.23             | 34.83            | 53.93 | -19.10 | AVG      |
| 5   |     | 0.3488  | 41.04            | 10.20             | 51.24            | 58.99 | -7.75  | QP       |
| 6   |     | 0.3488  | 25.64            | 10.20             | 35.84            | 48.99 | -13.15 | AVG      |
| 7   | *   | 0.6268  | 42.42            | 10.20             | 52.62            | 56.00 | -3.38  | QP       |
| 8   |     | 0.6268  | 29.42            | 10.20             | 39.62            | 46.00 | -6.38  | AVG      |
| 9   |     | 7.8129  | 40.36            | 10.20             | 50.56            | 60.00 | -9.44  | QP       |
| 10  |     | 7.8129  | 32.31            | 10.20             | 42.51            | 50.00 | -7.49  | AVG      |
| 11  |     | 12.4482 | 40.05            | 10.20             | 50.25            | 60.00 | -9.75  | QP       |
| 12  |     | 12.4482 | 31.64            | 10.20             | 41.84            | 50.00 | -8.16  | AVG      |
|     |     |         |                  |                   |                  |       |        |          |



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



| Test I    | Model            |            | GB390            | L-HDBL                                  | Tes                           | t Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lighting                |  |
|-----------|------------------|------------|------------------|-----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Envir     | onmental         | Conditions | <b>24.5℃</b> ,   | 24.5℃, 52% RH                           |                               | t Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monkey Li               |  |
| Pol       |                  |            | Neutral          |                                         | Tes                           | t Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC 120V/60Hz            |  |
| 90.0      | dBuV             |            |                  |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |
| 80        |                  |            |                  |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |
| 70        |                  |            |                  |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |
| 60        | 1 3<br>2 2 3     | 5          |                  | 4. N.                                   | A <b>7</b> 6. s.              | FCC Part 15B -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Class B (QP)            |  |
| 50        | *                | 5          |                  | HAM HERT WANT WATER AND                 | S WAY                         | 10 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clad's B (AVG) WAY peak |  |
| 40        |                  |            | I MAN MAN        | 1/1/4/1/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4 | and the state of the state of | The state of the s | AVG                     |  |
| 30        | 11 10 1          |            | Manal A          | r                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |
| 20        |                  |            |                  |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |
| 10        |                  |            |                  |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |
| 0.0<br>0. | .150             | 0.500      |                  | (MHz)                                   | 5                             | j. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.000                  |  |
|           | No. Mk.          |            | Reading<br>Level | Correct<br>Factor                       | Measure<br>ment               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ver                     |  |
|           |                  | MHz        |                  | dB                                      | dBuV                          | dBuV d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B Detector              |  |
|           | 1                | 0.1601     | 49.35            | 10.23                                   | 59.58                         | 65.46 -5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88 QP                   |  |
|           | 2                |            | 24.91            | 10.23                                   | 35.14                         | 55.46 -20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|           | 3                |            | 48.31            | 10.23                                   | 58.54                         | 64.53 -5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|           | 4                |            | 35.37            | 10.23                                   | 45.60                         | 54.53 -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|           | - <del>5</del> 6 |            | 41.18<br>21.56   | 10.20                                   | 51.38<br>31.76                | 59.06 -7.0<br>49.06 -17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |  |
|           | 7                |            | 41.72            | 10.20                                   | 51.92                         | 56.00 -4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73                      |  |
|           | 8                |            | 32.45            | 10.20                                   | 42.65                         | 46.00 -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|           | 9                | 6.2350     | 42.54            | 10.20                                   | 52.74                         | 60.00 -7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26 QP                   |  |
|           | 10               | 6.2350     | 34.37            | 10.20                                   | 44.57                         | 50.00 -5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43 AVG                  |  |
|           | 11               | 7.5016     | 45.07            | 10.20                                   | 55.27                         | 60.00 -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |  |
|           | 12 *             | 7.5016     | 37.01            | 10.20                                   | 47.21                         | 50.00 -2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79 AVG                  |  |
|           |                  |            |                  |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |

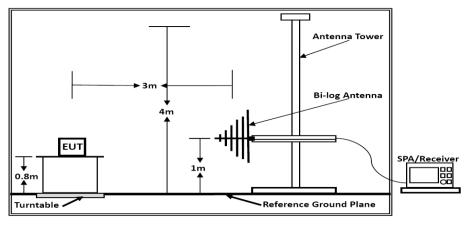
<sup>\*\*\*</sup>Note: 1) Pre-scan all modes and recorded the worst case results in this report.

2) Margin=Reading level + Correct - Limit

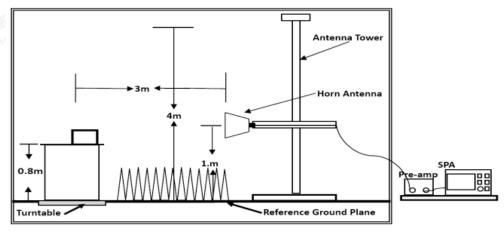




## 3.2. Radiated emission Measurement


#### 3.2.1. Test Equipment

The following test equipments are used during the radiated emission


Report No.: LCSA070422161E

| Item | Test equipment Manufacturer |                | Model No.    | Serial No.    | Cal Date   | Due Date   |
|------|-----------------------------|----------------|--------------|---------------|------------|------------|
| 1    | 3m Semi Anechoic Chamber    | SIDT FRANKONIA | SAC-3M       | 03CH03-HY     | 2021-06-15 | 2024-06-15 |
| 2    | EMI Test Receiver           | R&S            | ESCI3        | 101010        | 2022-05-05 | 2023-05-04 |
| 3    | Spectrum Analyzer           | Agilent        | N9020A       | MY49100699    | 2022-05-05 | 2023-05-04 |
| 4    | Log-periodic Antenna        | SCHWARZBECK    | VULB9163     | 5094          | 2022-05-20 | 2025-05-19 |
| 5    | Horn Antenna                | ETS-LINDGREN   | 3115         | 00034771      | 2022-05-20 | 2025-05-19 |
| 6    | EMI Test Software           | EZ             | EZ_EMC       | N/A           | 1          | /          |
| 7    | Positioning Controller MF   |                | BK8807-4A-2T | 2016-0808-008 | /          | /          |
| 8    | Broadband Preamplifier      | /              | BP-01M18G    | P190501       | 2022-06-16 | 2023-06-15 |

#### 3.2.2. Block Diagram of Test Setup



**Below 1GHz** 



Above 1GHz



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



#### 3.2.3. Radiated Emission Limit (Class B)

#### Limits for Radiated Disturbance Below 1GHz

| FREQ      | UENCY | DISTANCE | FIELD STRENGTHS LIMIT |          |  |
|-----------|-------|----------|-----------------------|----------|--|
| N         | lHz   | Meters   | μV/m                  | dB(μV)/m |  |
| 30 ~ 88   |       | 3        | 100                   | 40       |  |
| 88 ~      | 216   | 3        | 150                   | 43.5     |  |
| 216 ~ 960 |       | 3        | 200                   | 46       |  |
| 960 ~     | 1000  | 3        | 500                   | 54       |  |

Remark: (1) Emission level (dB) $\mu$ V = 20 log Emission level  $\mu$ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

|                                          | Limits for Radiated Emission Above 1GHz |          |          |          |  |  |  |  |
|------------------------------------------|-----------------------------------------|----------|----------|----------|--|--|--|--|
| Frequency Distance Peak Limit Average Li |                                         |          |          |          |  |  |  |  |
|                                          | (MHz)                                   | (Meters) | (dBµV/m) | (dBµV/m) |  |  |  |  |
|                                          | Above 1000                              | 74       | 54       |          |  |  |  |  |
|                                          | ***Note: The lower limi                 |          |          |          |  |  |  |  |

#### 3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 3.2.5. Operating Condition of EUT

- 3.2.5.1. Setup the EUT as shown in Section 3.2.2.
- 3.2.5.2.Let the EUT work in test Lighting and measure it.

#### 3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

The bandwidth of the EMI test receiver is set at 120kHz, 300kHz. The frequency range from 30MHz to 1000MHz is checked.

#### 3.2.7. Radiated Emission Noise Measurement Result

#### PASS.

The scanning waveforms please refer to the next page.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



| n Hà                            | 112           | an Alice                 |            |
|---------------------------------|---------------|--------------------------|------------|
| Test Model                      | GB390L-HDBL   | Test Mode                | Lighting   |
| <b>Environmental Conditions</b> | 22.3℃, 55% RH | <b>Detector Function</b> | Quasi-peak |
| Pol                             | Vertical      | Distance                 | 3m         |

Report No.: LCSA070422161E

**Test Voltage** Monkey Li AC 120V/60Hz **Test Engineer** 80.0 dBuV/m FCC PART 158 40 0.0 30.000 70 80 (MHz) 300 600 700 1000.000

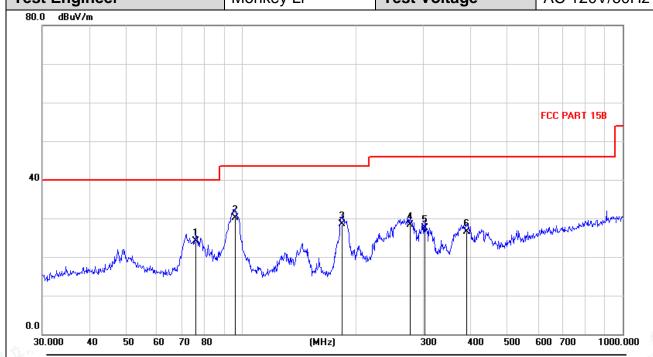
| 6 | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin | Ę        |
|---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
| _ |     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
|   | 1   |     | 47.4709  | 16.64            | 12.37             | 29.01            | 40.00  | -10.99 | QP       |
| _ | 2   | *   | 71.4552  | 23.08            | 10.15             | 33.23            | 40.00  | -6.77  | QP       |
|   | 3   |     | 96.8173  | 24.75            | 11.29             | 36.04            | 43.50  | -7.46  | QP       |
| _ | 4   |     | 188.2474 | 17.18            | 10.15             | 27.33            | 43.50  | -16.17 | QP       |
|   | 5   |     | 226.9931 | 12.05            | 12.11             | 24.16            | 46.00  | -21.84 | QP       |
| / | 6   |     | 400.2564 | 9.36             | 16.67             | 26.03            | 46.00  | -19.97 | QP       |









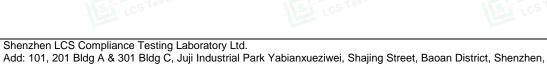



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China



|                                 | -alla         | -a lla        | -21/2                    |               |  |
|---------------------------------|---------------|---------------|--------------------------|---------------|--|
|                                 | Test Model    | GB390L-HDBL   | Test Mode                | Lighting      |  |
| <b>Environmental Conditions</b> |               | 22.3℃, 55% RH | <b>Detector Function</b> | Quasi-peak    |  |
|                                 | Pol           | Horizontal    | Distance                 | 3m            |  |
|                                 | Test Engineer | Monkey Li     | Test Voltage             | AC 120\//60Hz |  |

Report No.: LCSA070422161E




| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 76.1440  | 14.51            | 9.56              | 24.07            | 40.00  | -15.93 | QP       |
| 2   | *   | 96.4362  | 18.96            | 11.06             | 30.02            | 43.50  | -13.48 | QP       |
| 3   |     | 183.2807 | 18.34            | 10.25             | 28.59            | 43.50  | -14.91 | QP       |
| 4   |     | 277.8231 | 14.94            | 13.39             | 28.33            | 46.00  | -17.67 | QP       |
| 5   |     | 302.8792 | 13.40            | 14.16             | 27.56            | 46.00  | -18.44 | QP       |
| 6   |     | 390.3802 | 9.89             | 16.63             | 26.52            | 46.00  | -19.48 | QP       |

Note:1). Pre-Scan all mode, Thus record worse case mode result in this report.

2) Margin=Reading level + Correct - Limit







#### 4. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

#### 5. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

#### 6. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.





Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China