

RF TEST REPORT

Product Name: Smart LTE Terminal

Model Name: BN500, TELOX-BN500, BN500L, BN500M, BN500K, BN500P

FCC ID: 2AYEZ-BN500

Issued For	:	Telo Communication (Shenzhen) Co., Ltd
		6/F, No. 42 Liuxian 1st Road, Bao'an District, Shenzhen, China
Issued By	:	Shenzhen LGT Test Service Co., Ltd.
Room 205, Buil No.177, Renmi District, Shenzh		Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China
Report Num	ber	: LGT24D184RF09
Sample Received Date:		ed Date: Apr. 30, 2024

 Date of Test:
 Apr. 30, 2024 – Jun. 20, 2024

 Date of Issue:
 Jun. 20, 2024

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant:	Telo Communication (Shenzhen) Co., Ltd
Address:	6/F, No. 42 Liuxian 1st Road, Bao'an District, Shenzhen, China
Manufacturer:	Telo Communication (Shenzhen) Co., Ltd
Address:	6/F, No. 42 Liuxian 1st Road, Bao'an District, Shenzhen, China
Product Name:	Smart LTE Terminal
Trademark:	TELOX
Model Name:	BN500, TELOX-BN500, BN500L, BN500M, BN500K, BN500P
Sample Status:	Normal

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
FCC Part 90 ANSI C63.26-2015	PASS	

Prepared by:

Zane Shan

Zane Shan Engineer

TESTSE Approved by: reali ENZHE Vita Li

冠检

Technical Director

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.4 EQUIPMENTS LIST	11
3. MAXIMUM TRANSMITTER POWER	12
3.1 LIMITS	12
3.2 TEST PROCEDURE	12
3.3 DEVIATION FROM TEST STANDARD	12
3.4 TEST SETUP BLOCK DIAGRAM	12
3.5 TEST RESULT	12
4. OCCUPIED BANDWIDTH	13
4.1 LIMIT	13
4.2 TEST PROCEDURE	13
4.3 TEST SETUP	13
4.4 TEST RESULT	13
5. EMISSION MASK	17
5.1 PROVISIONS APPLICABLE	17
5.2 TEST PROCEDURE	17
5.3 TEST SETUP	17
5.5 TEST RESULTS	18
6. TRANSMITTER RADIATED SPURIOUS EMSSION	21
6.1 PROVISIONS APPLICABLE	21
6.2 TEST PROCEDURE	21
6.3 TEST SETUP	22
6.4 TEST RESULTS	23
7. SPURIOUS EMSSION ON ANTENNA PORT	25
7.1 LIMIT	25
7.2 TEST PROCEDURE	25
7.3 TEST SETUP	25

Table of Contents

Page

7.4 TEST RESULT	26
8. FREQUENCY STABILITY	32
8.1 LIMIT	32
8.2 TEST PROCEDURE	32
8.3 TEST SETUP	32
8.4 EUT OPERATION CONDITIONS	32
8.5 TEST RESULT	33
9. MODULATION CHARACTERISTIC	36
9.1 LIMIT	36
9.2 TEST PROCEDURE	36
9.3 TEST SETUP	36
9.4 TEST RESULT	37
10. TRANSMITTER FREQUENCY BEHAVIOR	40
10.1 LIMIT	40
10.2 TEST PROCEDURE	40
10.3 TEST SETUP	41
10.4 TEST RESULT	42
APPENDIX I - PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	43

Revision History

Rev.	Issue Date	Contents
00	Jun. 20, 2024	Initial Issue

1. SUMMARY OF TEST RESULTS

FCC Part 90			
Standard Section	Test Item	Judgment	Remark
Part 2.1046, Part 90.205	Maximum Transmitter Power	PASS	
Part 2.1049, Part 90.209	Occupied Bandwidth	PASS	
Part 90.210	Emission Mask	PASS	
Part 2.1051, Part 90.210	Transmitter Radiated Spurious Emssion	PASS	
Part 2.1053, Part 90.210	Spurious Emssion on Antenna Port	PASS	
Part 2.1055, Part 90.213	Frequency Stability Test	PASS	
Part 90.214	Transisent Frequency Behavior	PASS	
Part 2.1047, Part 90.214	Modulation Characteristic	PASS	

Test procedures according to the technical standards:

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.	
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China	
	A2LA Certificate No.: 6727.01	
Accreditation Certificate	FCC Registration No.: 746540	
	CAB ID: CN0136	

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	Smart LTE Terminal	
Trademark:	TELOX	
Model Name:	BN500	
Series Model:	TELOX-BN500, BN500L, BN500M, BN500K, BN500P	
Model Difference:	The only differences are the model name for commercial purpose.	
Operation Frequency:	400-470MHz	
Modulation Type:	FM, 4FSK	
Channel Separation:	12.5KHz	
Antenna Type:	External Antenna	
Antenna Gain (dBi):	2.15	
Channel List:	Please refer to the Note 3.	
Adapter:	Input: 100-240V, 50/60Hz, 0.3A Output: 5V, 2.0A	
Battery:	Capacity: 4000 mAh Rated Voltage: 3.8V	
Hardware Version:	RH03_V1.0	
Software Version:	BN500_DEU_V1_20240123	
Connecting I/O Port(s):	Please refer to the Note 1.	

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

3. Test channel:

Channel	Frequency (MHz)
1	400.0125
2	435.0000
3	469.9875

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Pretest Mode	Description
Mode 1	CH1 TX FM Mode
Mode 2	CH2 TX FM Mode
Mode 3	CH3 TX FM Mode
Mode 4	CH1 TX 4FSK Mode
Mode 5	CH2 TX 4FSK Mode
Mode 6	CH3 TX 4FSK Mode

For Radiated Emission							
Final Test Mode	Description						
Mode 1	CH1 TX FM Mode						
Mode 2	CH2 TX FM Mode						
Mode 3	CH3 TX FM Mode						
Mode 4	CH1 TX 4FSK Mode						
Mode 5	CH2 TX 4FSK Mode						
Mode 6	CH3 TX 4FSK Mode						

Note:

(1) All above mode has been measurement, only worst data was reported.

(2) The battery is fully-charged during the radited and RF conducted test.

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
Adapter	Shenzhen Mao Two Power Co., Ltd	MR-0502000US	N/A	Input: 100-240V ~ 50/60Hz 0.3A Output: 5V, 2A
USB-A to USB-C Cable	N/A	N/A	N/A	1m

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating

Note:

- (1) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.4 EQUIPMENTS LIST

Radiated Test equipment	t				-
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2024.03.09	2025.03.08
Active loop Antenna	ETS	6502	00049544	2023.10.13	2025.10.12
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.08.14	2024.08.13
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.12.12	2025.12.11
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2024.03.09	2025.03.08
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2024.03.09	2025.03.08
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2024.03.11	2025.03.10
Testing Software		EMC-I_V	1.4.0.3_SKET		

Conducted Test equipment

			T. Contraction of the second se		
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
Signal Analyzer	Keysight	N9010B	MY60242508	2023.08.14	2024.08.13
Signal Analyzer	Keysight	N9020A	MY50530994	2024.03.09	2025.03.08
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2024.03.09	2025.03.08
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2024.03.09	2025.03.08
Audio Analyzer	R&S	UPL	N/A	2023.10.12	2024.10.11
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2024.03.11	2025.03.10
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2024.03.09	2025.03.08
Attenuator	eastsheep	90db	N.A	2024.03.09	2025.03.08
Testing Software		MTS8200	_V2.0.0.0_MW		

3. MAXIMUM TRANSMITTER POWER

3.1 LIMITS

Per FCC Part 2.1046 and Part 90.205: The output power shall not exceed by more than 20 percent either the output power shown in the Radio Equipment List [available in accordance with § 90.203(a)(1)] for transmitters included in this list or when not so listed, the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

3.2 TEST PROCEDURE

Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow: If the power output is adjustable, measurements shall be made for the highest and lowest power levels. The EUT connect to the Spectrum Analyzer through 30 dB attenuator.

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP BLOCK DIAGRAM

3.5 TEST RESULT

Modulation	Channel	Tost	Test	Test	Antenna	EDD	Test	Limit
Type	Sporation	Channel	Frequency	Results	Gain		Results	
туре	Sparation	Channel	(MHz)	(dBm)	(dBi)	(ubiii)	(W)	(VV)
		CH1	400.0125	31.492	2.150	31.492	1.41	
FM	12.5KHz	CH2	435.0000	31.556	2.150	31.556	1.43	1.04-1.56
		CH3	469.9875	31.184	2.150	31.184	1.31	
		CH1	400.0125	31.692	2.150	31.692	1.48	
4FSK	12.5KHz	CH2	435.0000	31.633	2.150	31.633	1.46	1.04-1.56
		CH3	469.9875	31.293	2.150	31.293	1.35	

Note: The rate power is 1.3W. The limit of the high output power is 1.04~1.56W.

4. OCCUPIED BANDWIDTH

4.1 LIMIT

Occupied Bandwidth: The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.

The maximum authorized bandwidth shall not be more than that normally authorized for voice operations.

4.2 TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer through sufficent attenuation.
- The EUT was modulated by 2.5KHz Sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5kHz (12.5kHz channel spacing) and 5kHz(25kHz channel spacing)
- 3. Set EUT as normal operation.
- 4. Set SPA Center Frequency=fundamental frequency, RBW=100Hz, VBW=1KHz, span =50KHz.
- 5. Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 4.3 TEST SETUP

4.4 TEST RESULT

Modulation	Modulation Channel		Test Frequency	Occupied (K	Limits				
Туре	Bandwidth	Bandwidth Ch	Channel	Channel	Channel	Channel (MHz)	99%	26dB	(KHz)
		CH1	400.0125	5.230	8.026				
FM	12.5KHz	CH2	435.0000	5.876	10.070	11.25			
		СНЗ	469.9875	6.906	10.060				
		CH1	400.0125	7.507	9.449				
4FSK	12.5KHz	CH2	435.0000	7.425	9.707	11.25			
		CH3	469.9875	7.572	9.608				

FM Modulation

CH1

CH3

4FSK Modulation

CH2

5. EMISSION MASK

5.1 PROVISIONS APPLICABLE

Emission Mask D, 12.5 kHz channel bandwidth equipment: For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f_0 : Zero dB.

(2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd -2.88 kHz) dB.

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuationorized bandwidth: At least $43 + 10 \log (P) dB$.

5.2 TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer through sufficent attenuation.
- The EUT was modulated by 2.5KHz Sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5kHz (12.5kHz channel spacing) and 5kHz(25kHz channel spacing)
- 3. Set EUT as normal operation.
- 4. Set SPA Center Frequency=fundamental frequency, RBW=100Hz, VBW=1KHz, span =100KHz.
- 5.3 TEST SETUP

5.5 TEST RESULTS

FM Modulation

CH1

CH3

4FSK Modulation

CH2

6. TRANSMITTER RADIATED SPURIOUS EMSSION

6.1 PROVISIONS APPLICABLE

According to the TIA/EIA 603 test method, and according to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 KHz channel bandwidth:

1. On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB

2. On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27dB 3. On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 12.5 KHz: At least 50+10 log (P) dB or 70 dB, which ever is lesser attenuation.

6.2 TEST PROCEDURE

The procedure of effective radiated power is as follows:

- a. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- b. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- c. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100KHz,VBW=300KHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (P_r).
- d. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- e. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below:

Amplifier for substituation test; The measurement results are amend as described below: Corrected Amplitude =Mea(dBm)-CF(dB)

6.3 TEST SETUP

6.4 TEST RESULTS

Channel 1(400.0125MHz)											
Frequency	uency Measured Cable A	Antenna	Intenna Corrected		Limit	Margin	RX Antenna				
	Amplitude	Loss	yain	Factor	Amplitude			Polar			
(MHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(H/V)			
801.419	-39.00	4.12	6.2	2.08	-36.92	-20	-16.92	Н			
801.051	-34.15	4.12	6.2	2.08	-32.07	-20	-12.07	V			
1199.684	-44.72	5.81	6.7	0.89	-43.83	-20	-23.83	Н			
1200.240	-41.07	5.81	6.7	0.89	-40.18	-20	-20.18	V			
2001.444	-46.25	7.95	8.3	0.35	-45.90	-20	-25.90	Н			
2001.397	-44.26	7.95	8.3	0.35	-43.91	-20	-23.91	V			

	Channel 2(435MHz)										
Frequency Measured	Cable	Antenna	Corrected	Corrected	Limit	Margin	RX Antenna				
	Amplitude	Loss	gain	Factor	Amplitude		· ·	Polar			
(MHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(H/V)			
870.074	-41.07	4.12	6.2	2.08	-38.99	-20	-18.99	Н			
870.050	-43.31	4.12	6.2	2.08	-41.23	-20	-21.23	V			
1305.998	-48.28	5.81	6.7	0.89	-47.39	-20	-27.39	Н			
1305.864	-48.05	5.81	6.7	0.89	-47.16	-20	-27.16	V			
2175.904	-46.43	7.95	8.3	0.35	-46.08	-20	-26.08	Н			
2176.839	-45.98	7.95	8.3	0.35	-45.63	-20	-25.63	V			

	Channel 3(469.9875MHz)										
Frequency Amplitude	Measured	Cable	Antenna	Corrected		Limit	Margin	RX Antenna			
	7	Loss	gan	1 40101	7			Polar			
(MHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(H/V)			
939.991	-43.50	4.12	6.2	2.08	-41.42	-20	-21.42	Н			
939.347	-42.28	4.12	6.2	2.08	-40.20	-20	-20.20	V			
1410.108	-43.84	5.81	6.7	0.89	-42.95	-20	-22.95	Н			
1411.081	-43.64	5.81	6.7	0.89	-42.75	-20	-22.75	V			
2350.463	-49.92	7.95	8.3	0.35	-49.57	-20	-29.57	Н			
2349.621	-49.12	7.95	8.3	0.35	-48.77	-20	-28.77	V			

Channel 1(400.0125MHz)											
Frequency	Measured Amplitude	Cable	Antenna gain	Corrected Factor	Corrected Amplitude	Limit	Margin	RX Antenna			
		Loss	90					Polar			
(MHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(H/V)			
799.732	-37.85	4.12	6.2	2.08	-35.77	-20	-15.77	H			
800.368	-33.28	4.12	6.2	2.08	-31.20	-20	-11.20	V			
1199.386	-46.17	5.81	6.7	0.89	-45.28	-20	-25.28	H			
1200.559	-40.01	5.81	6.7	0.89	-39.12	-20	-19.12	V			
1999.453	-43.86	7.95	8.3	0.35	-43.51	-20	-23.51	Н			
2000.546	-42.95	7.95	8.3	0.35	-42.60	-20	-22.60	V			

	Channel 2(435MHz)											
Frequency	Measured Amplitude	Cable	Antenna gain	Corrected Factor	Corrected Amplitude	Limit	Margin	RX Antenna Polar				
(MHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(H/V)				
870.135	-40.66	4.12	6.2	2.08	-38.58	-20	-18.58	Н				
869.210	-40.19	4.12	6.2	2.08	-38.11	-20	-18.11	V				
1304.864	-45.28	5.81	6.7	0.89	-44.39	-20	-24.39	Н				
1304.441	-45.27	5.81	6.7	0.89	-44.38	-20	-24.38	V				
2175.497	-44.68	7.95	8.3	0.35	-44.33	-20	-24.33	Н				
2176.872	-45.95	7.95	8.3	0.35	-45.60	-20	-25.60	V				

	Channel 3(469.9875MHz)											
Frequency	Measured Amplitude	Cable Loss	Antenna gain	Corrected Factor	Corrected Amplitude	Limit	Margin	RX Antenna Polar				
(MHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(H/V)				
941.713	-41.04	4.12	6.2	2.08	-38.96	-20	-18.96	Н				
942.936	-38.82	4.12	6.2	2.08	-36.74	-20	-16.74	V				
1410.890	-41.65	5.81	6.7	0.89	-40.76	-20	-20.76	Н				
1412.011	-43.36	5.81	6.7	0.89	-42.47	-20	-22.47	V				
2349.455	-48.25	7.95	8.3	0.35	-47.90	-20	-27.90	Н				
2348.667	-46.51	7.95	8.3	0.35	-46.16	-20	-26.16	V				

Note: Corrected Amplitude =Mea(dBm)-CF(dB) Corrected Factor= CL(dB)- AG(dBi) We were not recorded other points as values lower than limits

7. SPURIOUS EMSSION ON ANTENNA PORT

7.1 LIMIT

According to the TIA/EIA 603 test method, and according to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 KHz channel bandwidth:

1. On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB

2. On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27dB 3. On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 12.5 KHz: At least 50+10 log (P) dB or 70 dB, which ever is lesser attenuation.

7.2 TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer through sufficent attenuation.
- 2. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range.
- 3. Set EUT as normal operation.
- 4. Set RBW 100kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz. VBW=3MHz from the 1GHz to 10th Harmonic.
- 5. The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

7.3 TEST SETUP

7.4 TEST RESULT

FM Modulation CH1 30MHz-1GHz

CH1 1GHz-5GHz

CH2 30MHz-1GHz

Keysight spectrum Analyzer - Swept SA			
LXI T RF 50 Ω AC	SENSE:INT	ALIGN AUTO	02:10:38 AM May 23, 2024
Start Freq 30.000000 MHz PASS PNO: Fast IFGain:Low	Trig: Free Run #Atten: 16 dB	Avg Type: Log-Pwr Avg Hold:>10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
Ref Offset 31 dB			Mkr1 435.46 MHz 31.453 dBm
25.0 Trace 1 Pass			
15.0			
-5.00			
-15.0			
-25.0 -35.0			
-45.0			
-55.0	ويروقهن والمحمدين والمحملة المحاصل معاليه ورو	han an a	hang ang pangang sa pang pang pang pang pang pang pang pan
Start 0.0300 GHz #Res BW 10 kHz	#VBW 30 kHz	S	Stop 1.0000 GHz veep 9.270 s (1001 pts)
MKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
2 N 1 f 435.46 MHz 3	0.184 dBm		
4			E
8 9 9			
			-
MSG			

CH2 1GHz-5GHz

🊺 Ke	ysight Spec	trum A	nalyzer - Swept SA										
L <mark>XI</mark>	Т	RF	50 Ω AC			SENSE:	INT		AL	IGN AUTO		02:22:3	6 AM May 23, 2024
Star	t Frec	1.0	000000000	GHz		_	_	_		Avg Type	: Log-Pwr	TI	RACE 1 2 3 4 5 6
DAG				F	NO: Fast	Ģ <u>∏</u>	ig: Free	Run		Avg Hold	:>10/10		
	·•			IF	Gain:Low	#A	tten: 16	aв					001
		-										Mkr1 3	.296 GHz
		Ref	Offset 31 dB									-30	552 dBm
10 d	B/div	Rei	35.00 dBm									-00.	
	Trace	1 P	ass										
25.0													
15.0													
Z 00													
5.00													
-5.00													
15.0													
-10.0													
-25.0									 +				
-35.0				and the second sec	dry where	www.www.www.	سيستدامهم	Ala and the second	karbahagya			underson	and marine
-33.0	And a local designed												
-45.0	<u> </u>												
-65.0													
-33.0													
Stor	+ 1 000											Ston	5 000 CH-
Sta	- 5.000	G	Z				o					aluµ	5.000 GHZ
#Re	SBW	1.U I\	/IHZ		#	VBW 3.	U IVIHZ				Swee	p 6.667 ms	s (1001 pts)
MKR		SCL	Х			Y	FUN	CTION	FUNCT	TION WIDTH	F	UNCTION VALUE	
1	N 1	f		3 296 GHz	-30	552 dBm							
2													
3													
4													
5													E
2													
8													
9													
10													
11													
•								_					•
MSG										STATUS			
_		_						_	_	<u> </u>			

CH3 30MHz-1GHz

CH3 1GHz-5GHz

🊺 Ke	ysight S	Spectr	um A	nalyzer - Swept SA										
LXI	Т		RF	50 Ω AC			SE	ENSE:INT		AL	IGN AUTO		02:23:4	5 AM May 23, 2024
Mar	ker	13	.58	000000000	00 GHz			Tain Free	D		Avg Typ	e: Log-Pwr	т	RACE 1 2 3 4 5 6
PAS	s					PNO: Fast	\mathbf{r}	#Atten: 16	dB		AvgiHoid	:>10/10		DET P NNNN
	<u> </u>					FGain:Low		#Atten. 10	ub					
			Pof	Offeet 31 dB									Mkr1 3	.580 GHz
10 di	B/div		Ref	35.00 dBm	1								-30.	402 dBm
Log	-		4 D.											
25.0	116	ice	1 178	155										
15.0														
15.0														
5.00														
-5.00														
15.0														
-15.0											1 -			
-25.0	\vdash										<u> </u>			
-35.0			والمطلب	والموراد ومحادوا وسا	Long and an an all and the	and the second	Marry Mall	and a property of the second second	mouther	ليهر ومحمد الوي	mulut	وروالو هاشين ومواد وواد	and the second second	mounder
45.0														
-45.0														
-55.0	├──													
Star	t 1.(000	GH	z									Stop	5.000 GHz
#Re	s BV	N 1.	0 N	1Hz		#	¢VΒΝ	/ 3.0 MHz				Swee	p 6.667 m	s (1001 pts) <mark></mark>
MKD	MODE	TPC	SCI	\ \	/	1	~	ELIM	CTION	EUNC				
1	N	4	f	,	3 580 GH	-30	402 d	Bm	CHON	TONC	HON WIDTH	1	ONCTION VALUE	- i
2					0.000 011									
3														
4														
6						<u> </u>								=
7														
8						L								
10														
11														-
< □			_					m						•
MSG			-								STATUS			
	_						_		_	_	V			

4FSK Modulation CH1 30MHz-1GHz

🎉 Keysight Spe	ctrum Analyzer - Swept SA						
IXI T	RF 50 Ω AC		SENSE:	INT	ALIGN AUTO		01:56:07 AM May 23, 2024
Start Free PASS	ן 30.000000 M	Hz PN IFC	NO: Fast 😱 Tri Gain:Low #A	g: Free Run tten: 16 dB	Avg Type: Avg Hold::	: Log-Pwr >10/10	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNN
10 dB/div	Ref Offset 31 dB Ref 35.00 dBn	n				М	kr1 399.57 MHz 31.467 dBm
25.0 Trace	e 1 Pass						
15.0							
5.00							
-5.00							
-25.0						<mark>2</mark>	
-35.0							
-45.0	meter and the mark		un and a survey	موراجهم الدرجي والمراجع		مهر مرور و الم	12,00,000,000,000,000,000,000,000,000,00
Start 0.03 #Res BW	00 GHz 10 kHz		#VBW 30	kHz		Sweep	Stop 1.0000 GHz 9.270 s (1001 pts)
MKR MODE TR	c scl	× 399.57 MHz	۲ 31.467 dBm	FUNCTION	FUNCTION WIDTH	FUNC	ION VALUE
2 N 1 3	f	800.18 MHz	-28.818 dBm				
5							E
7 8							
9							
<pre></pre>				m			
MSG					I o status		

CH1 1GHz-5GHz

🊺 Keys	ight Spec	trum A	nalyzer - Swept SA										
L <mark>XI</mark>	Т	RF	50 Ω AC			SENSE:	INT		AL	IGN AUTO		02:2	5:10 AM May 23, 2024
Start PAS	Freq S	1.0	00000000	GHz	PNO: Fast G Gain:Low	⊃ Tri #A	g: Free tten: 16	Run dB		Avg Typ Avg Hold	e: Log-Pwr i:>10/10		TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN
10 dB	/div	Ref Ref	Offset 31 dB 35.00 dBm									Mkr1 -3	3.244 GHz 0.685 dBm
25.0	Trace	1 Pa	ass										
15.0													
5.00													
-15.0													
-25.0									● ¹				
-35.0	(VP 4/10 /100 A)	tan daga sa	have the second of the second of the second s	and and the second s	الىرىمىيەت يەتول اورمۇن	ملديمصلير	ميرامرامومه وا ^{لع}	e-ynorde	alt-sus	- norman sher	and the second	the way and such as	and the second second second
-45.0													
-55.0													
Start #Res	1.000 BW 1	.0 N	z 1Hz		#V	BW 3.0	0 MHz				Swe	Ste ep 6.667 i	op 5.000 GHz ns (1001 pts)
MKR M		SCL	×	(Y		FUN	CTION	FUNCT	FION WIDTH		FUNCTION VALU	E ^
1	N 1	f		3.244 GHz	-30.68	5 dBm							
2													
4													
5													=
07													
8													
9													
10													
•							111						Þ
MSG										STATUS			

CH2 30MHz-1GHz

CH2 1GHz-5GHz

🎉 Keysight	t Spectrum	Analyzer - Swept SA										
LXI T	RI	50 Ω AC			SENSE:	INT		ALIG	SN AUTO		02:25:3	2 AM May 23, 2024
Start F	req 1.	000000000	GHz		T		D		Avg Type	: Log-Pwr	TF	RACE 1 2 3 4 5 6
PASS			F	NO: Fast	$\mathbf{F}_{\#}$	tten: 16	dB		Avg Hold:	>10/10		DET P NNNN
			11	-Gain:Low	#/	tten. io	ub					
	Re	f Offeet 31 dB									Mkr1 2	.756 GHz
10 dB/di	v Re	f 35.00 dBm									-30.	546 dBm
		2										
25.0	aceir	ass										
15.0												
10.0												
5.00												
-5.00												
15.0												
-15.0					_	1						
-25.0					\rightarrow)'—						
-35.0		A Day Bally and the second	and the second states and the second	Mar Harrison	Manana	لجملهمم	بالإمريه ومعا	gillen ye	- rate August	March Marthand	and a state of the	and when when your
15.0												
-45.U												
-55.0												
Start 1.	.000 GI	Hz									Stop	5.000 GHz
#Res B	W 1.0	MHz		#	/BW 3.	0 MHz				Sweep) 6.667 ms	s (1001 pts)
		×			/	CUN	CTION	LEUNCTI		51		
			2 756 CHz	-30 /	46 dBm	FUN	CHON	FUNCTION		FC.	INCTION VALUE	^î
2	+ + •		2.100 0112	-00.	40 ubm							
3												
4	+											
6	+											
7												
8												
9												
11								 				
•						111						Þ
MSG									STATUS			
				_			_		V			

CH3 30MHz-1GHz

CH3 1GHz-5GHz

🇾 Key	sight Spec	trum A	nalyzer - Swept SA										
L <mark>XI</mark>	Т	RF	50 Ω AC			SENSE	:INT		ALIGN	AUTO		02:24:5	8 AM May 23, 2024
Star	t Frec	1.0	00000000	GHz		_		_		Avg Type:	Log-Pwr	TF	RACE 1 2 3 4 5 6
DAG	0			F	NO: Fast	Ģ	ig: Free	Run		Avg Hold:>	10/10		
	<u> </u>			IF	Gain:Low	#/	Atten: 16	aв					DET
												Mkr1 2	.680 GHz
		Ref	Offset 31 dB									-30	436 dBm
	3/div	Rei	39.00 aBM									-00.	400 0.011
	Trace	1 P	ass										
25.0													
15.0													
5 00													
5.00													
-5.00													
15.0													
-13.0													
-25.0						— — •'							
-35 D			a state of the second state		mound	way when	and particular	annow	handenstation	mohustowne	In other states of		Jugar margar
00.0													
-45.0													
-55.0													
Stor	+ 1 001		7									Ston	5 000 CHz
Stal	BW()		12 111-			NBM 2	0.0414-				Curson	6 667 mg	J.000 GHZ
#Rea		1.U N	/inz		#	VDW J.					Sweep	0.007 IIIs	s (1001 pts)
MKR N		SCL	×			Y	FUN	CTION	FUNCTION	WIDTH	FU	INCTION VALUE	~
1	N 1	f		2.680 GHz	-30.	436 dBm							
2													
3													
4													
6													
Ž													
8													
9													
10													
	_	_						_					
MSG									L <mark>0</mark>	STATUS			

8. FREQUENCY STABILITY

8.1 LIMIT

The carrier frequency stability shall not exceed ±2.5 ppm.

8.2 TEST PROCEDURE

1. The frequency stability shall be measured with variation of ambient temperature from -30 $^\circ\!{\rm C}$ to +50 $^\circ\!{\rm C}$

For battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
 Vary primary supply voltage from 3.15V to 4.26V.

4. The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

TX mode.

8.5 TEST RESULT

		FM	Modulation			
		C	Channel 1			
Tomporatura	Voltago	Nominal	Measured	Frequency		
		Frequency	Frequency	Deviation	Limits	Result
(C)	(v)	(MHz)	(MHz)	(ppm)		
30		400.0125	400.01268	0.450		
-20		400.0125	400.01190	-1.500		
-10		400.0125	400.01209	-1.025		
0	N 1 1	400.0125	400.01201	-1.225		
10	Normai	400.0125	400.01276	0.650		
20	vollage	400.0125	400.01166	-2.100	2 5000	DASS
30		400.0125	400.01231	-0.475	z.sppm	FA33
40		400.0125	400.01259	0.225		
50		400.0125	400.01248	-0.050		
20	Maximum	400.0125	400 01207	1 175		
20	Voltage	400.0125	400.01297	1.175		
20	BEP	400.0125	400.01251	0.025		

		C	Channel 2			
Tomporatura	Voltago	Nominal	Measured	Frequency		
	vollage	Frequency	Frequency	Deviation	Limits	Result
(0)	(v)	(MHz)	(MHz)	(ppm)		
30		435.0000	435.00003	0.069		
-20		435.0000	435.00041	0.943		
-10		435.0000	435.00030	0.690		
0	Normal	435.0000	434.99968	-0.736		
10	Normal	435.0000	435.00016	0.368		
20	vollage	435.0000	435.00020	0.460	2 Ennm	
30		435.0000	435.00028	0.644	z.sppm	PASS
40		435.0000	434.99991	-0.207		
50		435.0000	434.99993	-0.161		
20	Maximum	425 0000	424 00076	0.552		
20	Voltage	435.0000	434.99970	-0.552		
20	BEP	435.0000	435.00034	0.782		

		C	Channel 3			
Tomporatura	Voltago	Nominal	Measured	Frequency		
		Frequency	Frequency	Deviation	Limits	Result
(0)	(v)	(MHz)	(MHz)	(ppm)		
30		469.9875	469.98685	-1.383		
-20		469.9875	469.98762	0.255		
-10		469.9875	469.98692	-1.234		
0	Normal	469.9875	469.98755	0.106		
10	Normai	469.9875	469.98801	1.085		
20	vollage	469.9875	469.98685	-1.383	2 5000	DASS
30		469.9875	469.98757	0.149	z.sppm	FA33
40		469.9875	469.98751	0.021		
50		469.9875	469.98824	1.575		
20	Maximum	460 0975	460.09724	0.552		
20	Voltage	409.9070	409.90724	-0.553		
20	BEP	469.9875	469.98828	1.660		

4FSK Modulation

Channel 1						
Tomporatura	Voltogo	Nominal	Measured	Frequency		
		Frequency	Frequency	Deviation	Limits	Result
(0)	(V)	(MHz)	(MHz)	(ppm)		
30		400.0125	400.01245	-0.125		
-20		400.0125	400.01232	-0.450		
-10		400.0125	400.01236	-0.350		
0	Normal	400.0125	400.01223	-0.675		
10		400.0125	400.01195	-1.375		
20	vollage	400.0125	400.01286	0.900	0.5000	
30		400.0125	400.01277	0.675	z.sppm	PASS
40	-	400.0125	400.01223	-0.675		
50		400.0125	400.01179	-1.775		
20	Maximum	100.0105	400.01276	0.650		
	Voltage	400.0125				
20	BEP	400.0125	400.01249	-0.025		

Channel 2						
Temperature	Voltage (V)	Nominal	Measured	Frequency		
		Frequency	Frequency	Deviation	Limits Re	Result
(C)		(MHz)	(MHz)	(ppm)		
30		435.0000	434.99982	-0.414		
-20		435.0000	434.99960	-0.920		
-10		435.0000	435.00058	1.333		
0	Normal	435.0000	435.00074	1.701		
10		435.0000	435.00042	0.966		
20	vollage	435.0000	434.99940	-1.379	2 5000	DASS
30		435.0000	435.00030	0.690	z.sppm	FA33
40	-	435.0000	435.00052	1.195		
50		435.0000	435.00031	0.713		
20	Maximum	425 0000	434.99998	-0.046		
	Voltage	433.0000				
20	BEP	435.0000	434.99963	-0.851		

Channel 3						
Temperature	Voltage (V)	Nominal	Measured	Frequency		Result
		Frequency	Frequency	Deviation	Limits	
(0)		(MHz)	(MHz)	(ppm)		
30		469.9875	469.98718	-0.681		
-20		469.9875	469.98798	1.021		
-10		469.9875	469.98762	0.255		
0	Normal	469.9875	469.98791	0.872		
10		469.9875	469.98757	0.149		
20	voltage	469.9875	469.98711	-0.830	0 Ennm	
30		469.9875	469.98804	1.149	- Z.Sppm	PASS
40		469.9875	469.98768	0.383		
50		469.9875	469.98759	0.191		
20	Maximum	460.0975	460 09770	0.617		
	Voltage	409.9070	469.98779	0.017		
20	BEP	469.9875	469.98757	0.149		

9. MODULATION CHARACTERISTIC

9.1 LIMIT

FCC Part 2.1047

(a) Equipment which utilizes voice modulated communication show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

9.2 TEST PROCEDURE

The test procedure please reference TIA 603-E 2.2.3.

9.3 TEST SETUP

9.4 TEST RESULT

Note: All mode has been tested, only shown the worst case in this report. MODULATION LIMIT:

4FSK Modulation-Channel 1						
Andia	Instantaneous		Steady-state			
Audio	Deviation	Deviation	Deviation	Deviation	Limit	Deput
Frequency	(@+20dB)	(@-20dB)	(@+20dB)	(@-20dB)	(kHz)	Result
(П2)	(kHz)	(kHz)	(kHz)	(kHz)		
300	0.517	0.149	0.481	0.102		
1000	1.95	0.333	1.84	0.285		
1500	2.242	0.262	2.249	0.295	±2.5	Pass
2500	2.217	0.464	2.164	0.397		
3000	2.218	0.49	2.256	0.534		

AUDIO LOW PASS FILTER RESPONSE:

4FSK Modulation-Channel 1					
Audio Frequency(KHz)	Limit	Response Attenuation(dB)	Result		
3	0	-5.32			
3.5	-6.7	-11.89			
4	-12.5	-17.20			
5	-22.2	-27.12			
7	-36.8	-41.93			
10	-52.3	-57.12	PASS		
15	-69.9	-76.23			
20	-82.5	-86.55			
30	-82.5	-90.00			
50	-82.5	-90.20			
70	-82.5	-90.46			

AUDIO FREQUENCY RESPONSE:

4FSK Modulation-Channel 1					
Audio Frequency(Hz)	Audio Frequency Response(dB)	Result			
300	-12.85				
400	-9.41				
500	-7.50				
600	-5.42				
700	-3.63				
800	-2.94				
900	-1.60				
1000	0.00				
1200	1.05	D A OO			
1400	2.56	PASS			
1600	3.38				
1800	4.75				
2000	5.11				
2200	6.4				
2400	7.05				
2600	7.58				
2800	8.18				
3000	8.39				

10. TRANSMITTER FREQUENCY BEHAVIOR

10.1 LIMIT

Section 90.214

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency	All equipment				
Time intervals	difference ³	150 to 174 MHz	421 to 512MHz			
Transient Frequency Behavior for Equipment Designed to Operate on 25 KHz Channels						
t ₁ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
t ₂	± 12.5 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 KHz Channels						
t ₁ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
t ₂	± 6.25 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 KHz Channels						
t ₁ ⁴	±6.25 KHz	5.0 ms	10.0 ms			
t ₂	±3.125 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	±6.25 KHz	5.0 ms	10.0 ms			

 t_{on} is the instant when a 1 KHz test signal is completely suppressed, including any capture time due to phasing. t₁ is the time period immediately following t_{on}.

- t_2 is the time period immediately following t_1 .
- t_3 is the time period from the instant when the transmitter is turned off until $t_{\text{off.}}$
- t_{off} is the instant when the 1 KHz test signal starts to rise.
- 2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in
- § 90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

10.2 TEST PROCEDURE

- a. Use Digital portable radio which manufactured by VictelGlobal Communications Corporation Limited which uses same protocol as the DUT connect to RX antenna by 20Att in order to avoid damaging DUT;
- b. Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- c. Inut 1KHz signal into digital portable radio;
- d Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- e Keep the digital protable radio in OFF state and Key the PTT of digital portable radio;
- f Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t₁ and t₂,and shall also remain within limits following t₂;
- g Adjust the modulation domain anzlyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- h Keep the digital portable radio in ON state and Unkey the PTT of digital portable radio;
- i Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the period t_3

10.3 TEST SETUP

10.4 TEST RESULT

Note: All mode has been tested, only shown the worst case in this report.

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation-----Off – On

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation-----On - Off

APPENDIX I - PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Note: Please see the attached BN500_External Photos and BN500_Internal Photos.