

MPE TEST REPORT

Applicant Pylon Technologies Co., Ltd

FCC ID 2AYEF-RT2450

Product Rechargeable Lithium-ion Battery

Brand Pylontech

Model RT2450-G31

Report No. R2307A0781-M1V3

Issue Date April 23, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC 47 CFR Part 1 1.1310. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Fangying

Approved by: Fan Guangchang

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	st Laboratory	4
		Notes of the Test Report	
		Test Facility	
		Testing Location	
		Laboratory Environment	
		scription of Equipment Under Test	
3	Max	ximum Output Power (Measured) and Antenna Gain	6
		E Limit	
		Exposure Evaluation Result	
ΑN	INEX	A: The EUT Appearance	10

Report No.: R2307A0781-M1V3

Version	Revision Description	Issue Date		
Rev.0	Initial issue of report.	November 6, 2023		
Rev.1	Update description.	December 29, 2023		
Rev.2	Update data.	April 10, 2024		
Rev.3	Update information.	April 23, 2024		

Note: This revised report (Report No.: R2307A0781-M1V3) supersedes and replaces the previously issued report (Report No.: R2307A0781-M1V2). Please discard or destroy the previously issued report and dispose of it accordingly.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA technology (shanghai) co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement

Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA technology (shanghai) co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

1.3 Testing Location

Company: Eurofins TA technology (shanghai) co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: https://www.eurofins.com/electrical-and-electronics

E-mail: Jack.Fan@cpt.eurofinscn.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
A 12 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment Under Test

Client Information

Applicant	Pylon Technologies Co.,Ltd		
Applicant address	5F, No. 71-72, Lane 887, Zu Chongzhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China		
Manufacturer 1	Pylon Technologies Co.,Ltd		
Manufacturer address 1	Plant 8, No.505 Kunkai Road, JinXi Town, Kunshan City, Jiangsu Province, PEOPLE'S REPUBLIC OF CHINA		
Manufacturer 2	Pylon Technologies Co.,Ltd		
Manufacturer address 2	No.637 East Jinxi Road, JinXi Town, Kunshan City, Jiangsu Province, PEOPLE'S REPUBLIC OF CHINA		

General Technologies

EUT Description						
Model RT2450-G31						
Lab internal SN	R2307A0781/S01					
Hardware Version	1					
Software Version	1					
	Band	TX (MHz)	RX (MHz)			
Frequency	Bluetooth LE	2400 ~ 2483.5	2400 ~ 2483.5			
Date of Testing	July 31, 2023 ~ August 22, 2023					
Date of Sample Received	July 6, 2023					

Note:

- 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.
- 2. All indications of Pass/Fail in this report are opinions expressed by Eurofins TA technology (shanghai) co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

3 Maximum Output Power (Measured) and Antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band	Maximum Ou (Meası	•	Antenna Gain	Numeric Gain	
	(dBm)	(mW)	(dBi)		
Bluetooth (Low Energy)	0.71	1.178	0.99	1.256	

4 MPE Limit

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following.

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength	Magnetic Field Strength	Power Density	Averaging Time	
	(V/m)	(A/m)	(mVV/cm2)	(minutes)	
	(A) Limits for Occu	pational/Controlle	d Exposures		
0.3-3.0	614	1.63	*(100)	6	
3-30	1842/f	4.89/f	*(900/f2)	6	
30-300	61.4	0.163	1.0	6	
300-1500			f/300	6	
1500-100,000		naaaaaaaaaa	5	6	
(B)	Limits for General	Population/Uncont	trolled Exposure	,	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f2)	30	
30-300	27,5	0.073	0.2	30	
300-1500			f/1500	30	
1500-100,000			1.0	30	

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

The maximum permissible exposure for 1500~100,000MHz is 1.0. So

Band	The Maximum Permissible Exposure (mW/cm²)				
Bluetooth LE	1.000				

5 RF Exposure Evaluation Result

RF exposure evaluation method is based on KDB 447498 D01, this calculation is based on the conducted power, maximum power and antenna gain with provides the minimum separation distance. The formula shown below is from OET Bulletin 65 Edition 97-01 Per KDB 447498 D01:

$$S = PG / 4\pi R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm used compute for MPE limit)

Band	Maximum Output Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (dBm)	PG (mW)	Result (mW/cm²)	Limit Value (mW/cm²)
Bluetooth LE	0.71	0.99	1.700	1.479	0.0003	1.000

Note: **R** = 20cm π = 3.1416

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

******END OF REPORT ******