

FCC Test Report

Application No.: DNT24	10953R1581-5266
------------------------	-----------------

Applicant: Merlyn Mind Inc.

Address of Applicant: 8 West 40th Street, Floor 20, New York, United States

EUT Description: Merlyn USB Dongle

Model No.: MUDG3

FCC ID: 2AYDX-MUDG3

Power Supply DC 5V

Trade Mark: Merlyn

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/6/1

Date of Test: 2024/6/2 to 2024/9/23

Date of Issue: 2024/9/24

Test Result: PASS

Prepared By: (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: Messe (Manager)

(i)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

N COLUMN

Report No.: DNT240953R1581-5266

Date:September 24, 2024

Page: 2/55

Report	Revise	Record
--------	--------	--------

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Sep.24, 2024	Valid	Original Report

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 3 / 55

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	0'-0'	Clause 3.1	PASS
Duty Cycle	O O .	O O	Clause 3.2	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10: 2020	Clause 3.3	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10: 2020	Clause 3.4	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10: 2020	Clause 3.5	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.6	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10: 2020	Clause 3.8	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10: 2020	Clause 3.9	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.10	PASS

Note:

^{1. &}quot;N/A" denotes test is not applicable in this test report.

Date:September 24, 2024

Page: 4/55

Contents

1 Test Summary	 	 3
2 General Information	 	 5
2.1 Test Location	 	 5
2.2 General Description of EUT		5
2.3 Channel List	 	 6
2.4 Test Environment and Mode	 	 6
2.5 Power Setting of Test Software		6
2.6 Description of Support Units	 	 6
2.7 Test Facility	 	 7
2.8 Measurement Uncertainty (95% confidence levels, k=2)	 	 7
2.9 Equipment List	 	 8
2.10 Assistant equipment used for test	 	 9
3 Test results and Measurement Data	 	 10
3.1 Antenna Requirement	 	 10
3.2 Duty Cycle	 	 11
3.3 DTS (6 dB) Bandwidth	 	 12
3.4 Conducted Output Power	 	 13
3.5 Power Spectral Density	 	 14
3.6 Band-edge for RF Conducted Emissions	 	 15
3.7 RF Conducted Spurious Emissions	 	 16
3.8 Radiated Spurious Emissions	 	 17
3.9 Restricted bands around fundamental frequency	 	 25
3.10 AC Power Line Conducted Emissions	 	 30
4 Appendix	 	 34
Appendix A: Duty Cycle	 	 34
Appendix B: DTS Bandwidth	 	 37
Appendix C: Maximum conducted output power	 	 40
Appendix D: Maximum power spectral density	 	 42
Appendix E: Band edge measurements	 	 46
Appendix F: Conducted Spurious Emission	 	 49

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 5 / 55

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd		
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China		
Test engineer:	Wayne Lin		

2.2 General Description of EUT

Manufacturer:	Shenzhen C&D Electronics Co.,Ltd
Address of Manufacturer:	10/F, Unit 1, Block A Building 1, Baoneng S&T Park, Qing Xiang Rd., Longhua, Shenzhen 518110,China
EUT Description:	Merlyn USB Dongle
Test Model No.:	MUDG3
Additional Model(s):	
Chip Type:	TLSR8272F512ET24
Serial Number	PR240953R1581
Power Supply	DC 5V
Trade Mark:	Merlyn
Hardware Version:	V1.2
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Type of Modulation:	GFSK
Sample Type:	☐ Portable Device, ☐ Module, ☒ Mobile Device
Antenna Type:	☐ External, ⊠ Integrated
Antenna Ports	
Antonna Cain*	⊠ Provided by applicant
Antenna Gain*:	4.55dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 6 / 55

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Power Setting of Test Software

Software Name	Non_Signaling_Test_Tool		
Frequency(MHz)	2402	2440	2480
BLE 1M Setting	8.9	8.9	8.9
BLE 2M Setting	8.9	8.9	8.9

2.6 Description of Support Units

The EUT has been tested independent unit.

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 7 / 55

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	DTS Bandwidth	±0.0196%
2	Maximum Conducted Output Power	±0.686 dB
3	Maximum Power Spectral Density Level	±0.743 dB
4	Band-edge Compliance	±1.328 dB
5	Unwanted Emissions In Non-restricted Freq Bands	9KHz-1GHz:±0.746dB 1GHz-26GHz: ±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
	2 Radiated Emission	± 4.8dB (Below 1GHz)
		± 4.8dB (1GHz to 6GHz)
2		± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

Date:September 24, 2024

Page: 8/55

2.9 Equipment List

For Connect EUT Antenna Terminal Test										
Description	Manufacturer	Model	Serial Number	Cal date	Due date					
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24					
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24					
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24					
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24					
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24					
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA					
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA					
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24					
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24					
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24					

	Test Equipment for Conducted Emission										
Description	Description Manufacturer Model Serial Number Cal Date Due Dat										
Receiver	A R&S	ESCI3	101152	2023-10-24	2024-10-23						
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23						
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23						

Test Ed	quipment for F	Radiated Emis	sion(30MHz-	-1000MHz	<u>z</u>)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23	
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23	

Date:September 24, 2024

Page: 9/55

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23	
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA	
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23	
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23	

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.	
1	Adapter	GaoFanDe	GFDQ3- 0502000U	NA	
2	Computer	acer	N22C8	EMC notebook01	
3	LED TV	ChangJia	LD19A21GC512	NA	

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 10 / 55

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

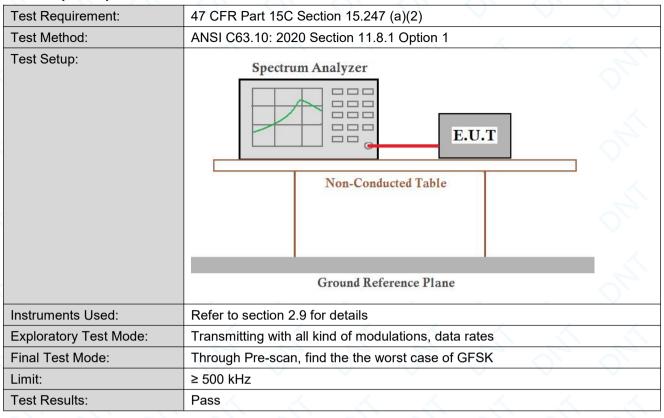
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is rod Antenna. The best case gain of the antenna is 4.55dBi.

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 11 / 55

3.2 Duty Cycle

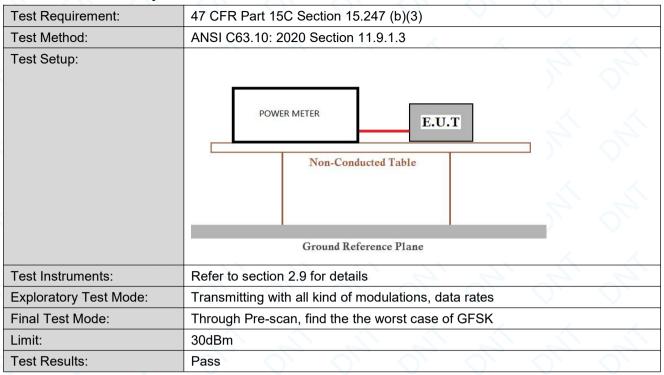
Refer to section : Appendix A


Note:

- 1.lf duty cycle <98 %, the conducted average output power and average power spectral density should be add duty factor.
- 2.If duty cycle ≥ 98 %,the EUT is consider to be transmitting continuously,the conducted average output power and average power spectral density no need to add duty factor(consider to be zero).
- 3. The conducted peak output power and peak power spectral density no need to consider duty factor.
- 4. The on-time time is transmission duration(T).

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 12 / 55

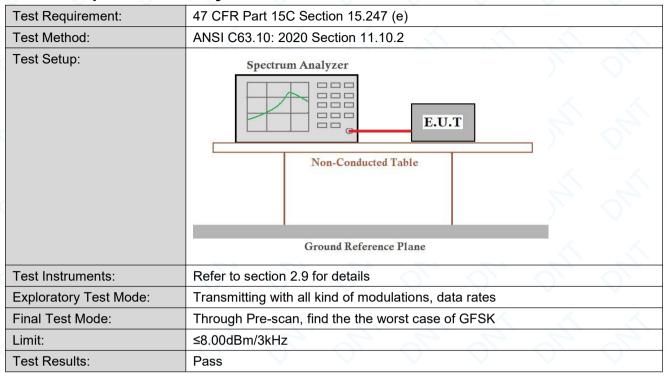
3.3 DTS (6 dB) Bandwidth


The detailed test data see: Appendix B

Date:September 24, 2024

Page: 13 / 55

3.4 Conducted Output Power



The detailed test data see: Appendix C

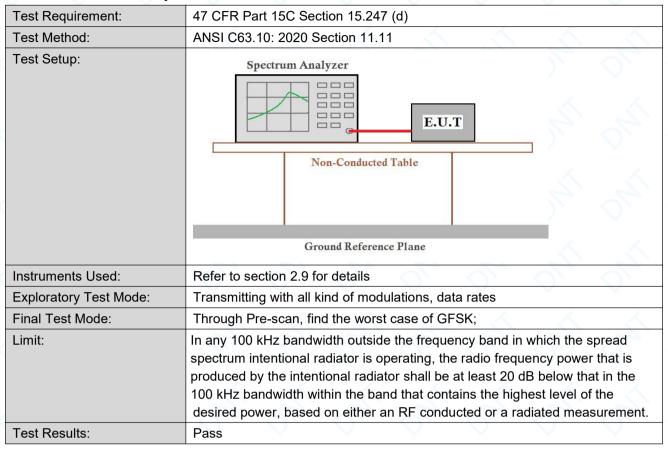
Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 14 / 55

3.5 Power Spectral Density

The detailed test data see: Appendix D

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 15 / 55

3.6 Band-edge for RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2020 Section 11.13
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

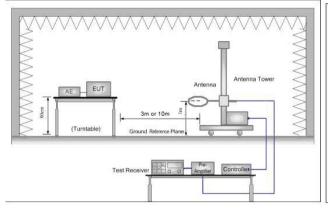
The detailed test data see: Appendix E

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 16 / 55

3.7 RF Conducted Spurious Emissions

The detailed test data see: Appendix F

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 17 / 55


3.8 Radiated Spurious Emissions

	Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20	05		
	Test Method:	ANSI C63.10: 2020 Sect	tion 11.12			
	Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
		0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
		0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
١		0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
		0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
			Peak	1MHz	3MHz	Peak
		Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T (DC<0.98)	Average
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	<u> </u>	300
		0.490MHz-1.705MHz	24000/F(kHz)	<u>-</u>	- 6	30
		1.705MHz-30MHz	30	V -	✓ <u>-</u> ✓	30
		30MHz-88MHz	100	40.0	Quasi-peak	3
		88MHz-216MHz	150	43.5	Quasi-peak	3
		216MHz-960MHz	200	46.0	Quasi-peak	3
		960MHz-1GHz	500	54.0	Quasi-peak	3
		Above 1GHz	500	54.0	Average	3
		Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. Thi	mitted avera	ige emission lin	nit

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 18 / 55

Test Setup:

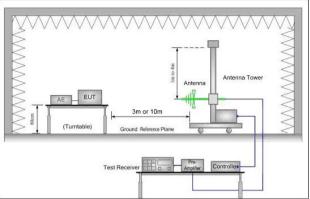


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

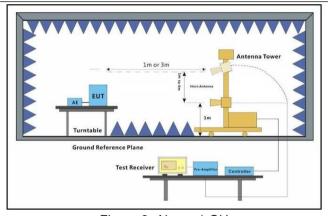
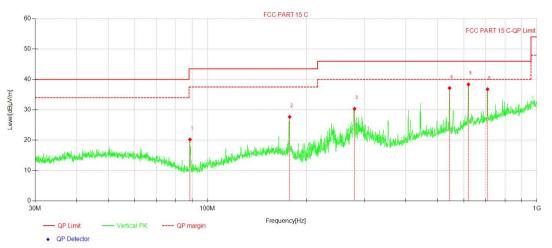


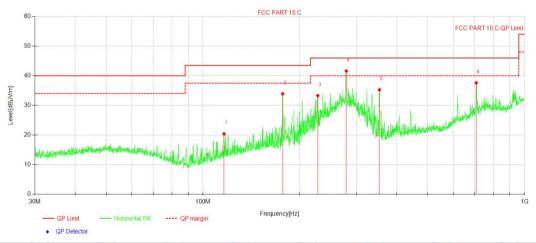
Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

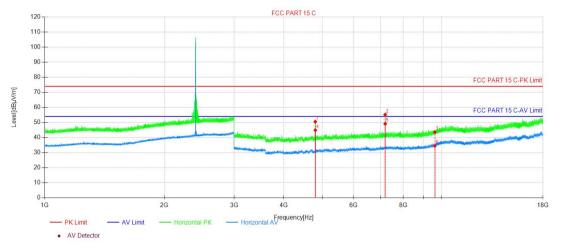

Report No.:	DNT240953R1581-5266	Date:September 24, 2024	Page: 19 / 55
Test Configuration:	Measurements Below 100 • RBW = 120 kHz	0MHz	
	VBW = 300 kHz Detector = Peak		A A
	Trace mode = max hold		
	Peak Measurements Abov	e 1000 MHz	\bigcirc . \bigcirc .
	• RBW = 1 MHz		
	• VBW ≥ 3 MHz		
	Detector = Peak		W. C.
	Sweep time = auto		
	Trace mode = max hold		
	Average Measurements Al	pove 1000MHz	
	• RBW = 1 MHz		
	VBW = 10 Hz, when duty	cycle is no less than 98 percent.	
	• VBW ≥ 1/T, when duty of	cycle is less than 98 percent where	T is the minimum
		which the transmitter is on and is to vel for the tested mode of operation	
Exploratory Test Mode:	Transmitting with all kind of Charge + Transmitting mod		
Final Test Mode:	Pretest the EUT at Chargin	g+Transmitting mode.	
	Through Pre-scan, find the the report.	worst case of GFSK,Only the worst	st case is recorded in
Instruments Used:	Refer to section 2.9 for det	ails	7
Test Results:	Pass	9, 9, 9,	9, 9,

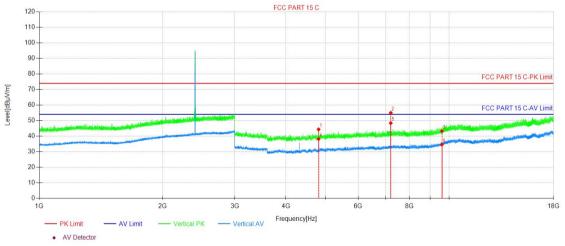

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 20 / 55

Test data

For 30-1000MHz

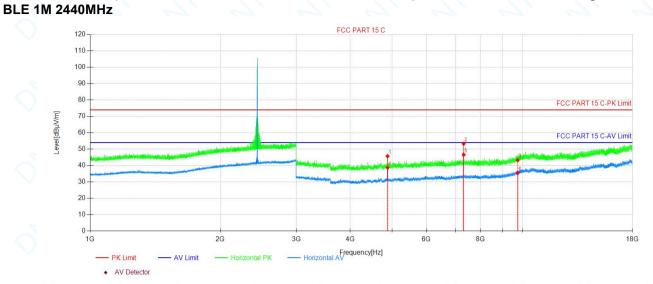
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	88.54	34.07	-13.86	20.21	43.50	23.29	100	298	QP	Vertical
2	177.71	36.71	-9.05	27.66	43.50	15.84	100	115	QP	Vertical
3	279.69	37.86	-7.54	30.32	46.00	15.68	100	154	QP	Vertical
4	543.27	39.14	-1.99	37.15	46.00	8.85	100	171	QP	Vertical
5	619.98	37.35	1.01	38.36	46.00	7.64	100	308	QP	Vertical
6	708.35	34.32	2.45	36.77	46.00	9.23	100	108	QP	Vertical

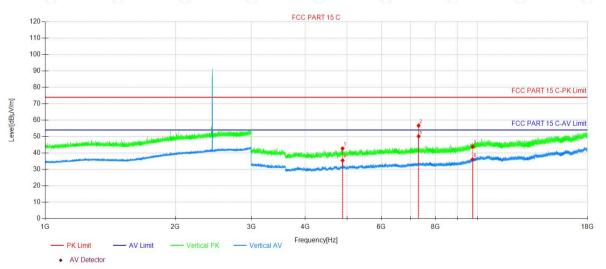

1	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	116.26	30.97	-10.59	20.38	43.50	23.12	100	360	QP	Horizontal
	2	176.88	42.86	-8.96	33.90	43.50	9.60	100	100	QP	Horizontal
	3	227.42	44.02	-10.73	33.29	46.00	12.71	100	360	QP	Horizontal
	4	279.04	49.17	-7.57	41.60	46.00	4.40	100	231	QP	Horizontal
	5	353.76	41.00	-5.73	35.27	46.00	10.73	100	182	QP	Horizontal
	6	707.52	35.14	2.45	37.59	46.00	8.41	100	264	QP	Horizontal


Date:September 24, 2024

Page: 21 / 55

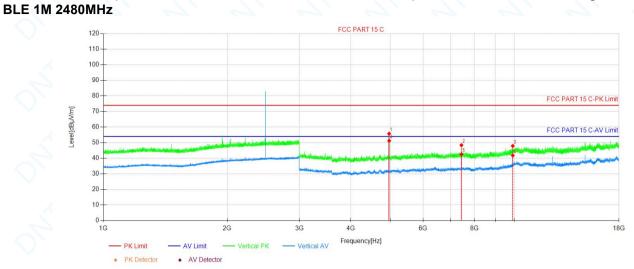
BLE 1M 2402MHz

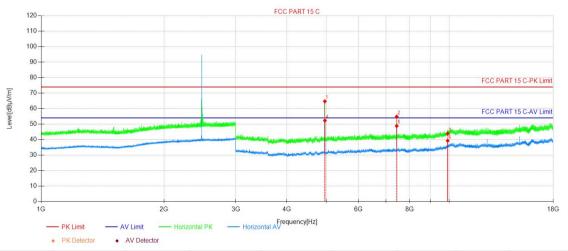

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	4803.09	55.15	-4.61	50.54	74.00	23.46	150	96	Peak	Н
	2	7204.71	56.98	-1.77	55.21	74.00	18.79	150	26	Peak	Н
	3	9608.58	42.70	0.88	43.58	74.00	30.42	150	54	Peak	Н
	4	4804.59	49.48	-4.61	44.87	54.00	9.13	150	96	AV	Н
ſ	5	7206.21	50.90	-1.76	49.14	54.00	4.86	150	41	AV	Н
	6	9608.58	33.58	0.88	34.46	54.00	19.54	150	150	AV	Н


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4803.84	48.98	-4.61	44.37	74.00	29.63	150	38	Peak	V
2	7206.96	56.75	-1.76	54.99	74.00	19.01	150	165	Peak	V
3	9608.58	42.37	0.88	43.25	74.00	30.75	150	66	Peak	V
4	4804.59	42.82	-4.61	38.21	54.00	15.79	150	136	AV	V
5	7206.96	50.16	-1.76	48.40	54.00	5.60	150	38	AV	V
6	9608.58	33.76	0.88	34.64	54.00	19.36	150	95	AV	V

Date:September 24, 2024

Page: 22 / 55


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4879.59	50.41	-4.70	45.71	74.00	28.29	150	1	Peak	Н
2	7320.96	54.79	-1.49	53.30	74.00	20.70	150	22	Peak	Н
3	9760.08	41.61	1.62	43.23	74.00	30.77	150	139	Peak	Н
4	4881.09	43.39	-4.71	38.68	54.00	15.32	150	7	AV	Н
5	7320.21	48.08	-1.49	46.59	54.00	7.41	150	34	AV	Н
6	9760.08	33.72	1.62	35.34	54.00	18.66	150	94	AV	Н


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4880.34	47.49	-4.71	42.78	74.00	31.22	150	134	Peak	V
2	7319.46	58.24	-1.50	56.74	74.00	17.26	150	177	Peak	V
3	9760.08	42.22	1.62	43.84	74.00	30.16	150	18	Peak	V
4	4881.09	40.19	-4.71	35.48	54.00	18.52	150	134	AV	V
5	7320.21	51.68	-1.49	50.19	54.00	3.81	150	164	AV	V
6	9760.08	34.44	1.62	36.06	54.00	17.94	150	18	AV	V

Date:September 24, 2024

Page: 23 / 55

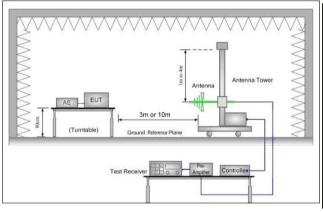
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4959.84	60.65	-4.86	55.79	74.00	18.21	150	260	Peak	V
2	7439.47	49.77	-1.34	48.43	74.00	25.57	150	53	Peak	V
3	9919.09	45.65	2.26	47.91	74.00	26.09	150	272	Peak	V
4	4960.59	56.07	-4.86	51.21	54.00	2.79	150	272	AV	V
5	7440.22	43.92	-1.34	42.58	54.00	11.42	150	53	AV	V
6	9919.84	39.52	2.26	41.78	54.00	12.22	150	282	AV	V

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4960.59	69.62	-4.86	64.76	74.00	9.24	150	241	Peak	Н
2	7440.22	56.19	-1.34	54.85	74.00	19.15	150	232	Peak	Н
3	9920.59	41.58	2.27	43.85	74.00	30.15	150	206	Peak	Н
4	4961.34	57.20	-4.86	52.34	54.00	1.66	150	241	AV	Н
5	7440.97	50.17	-1.34	48.83	54.00	5.17	150	357	AV	Н
6	9919.84	37.02	2.26	39.28	54.00	14.72	150	82	AV	Н

Date:September 24, 2024

Page: 24 / 55

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, only the worst case was reported.

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 25 / 55

3.9 Restricted bands around fundamental frequency

			\longleftrightarrow						
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2020 Section 11.12								
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak						
	88MHz-216MHz	43.5	Quasi-peak						
	216MHz-960MHz	46.0	Quasi-peak						
	960MHz-1GHz	54.0	Quasi-peak						
	Ab 401 l=	54.0	Average Value						
	Above 1GHz	74.0	Peak Value						
Test Setup:	A. A. A.		<i>A. A. A. A. A. A. A. A.</i>						

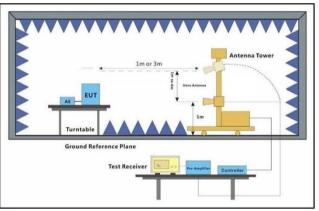


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

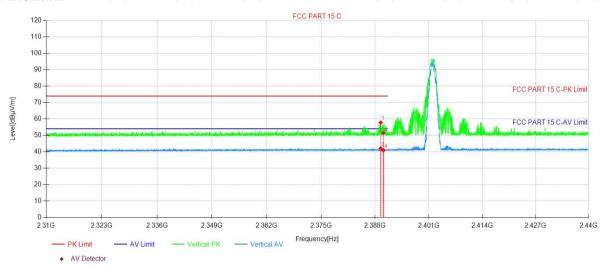
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

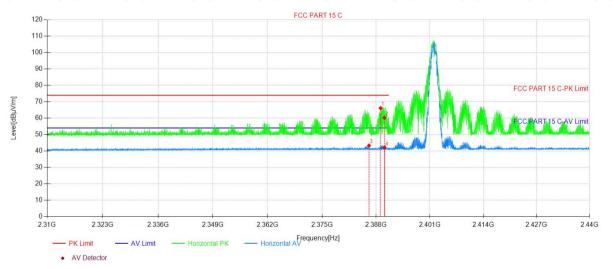
Test Configuration:

Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.



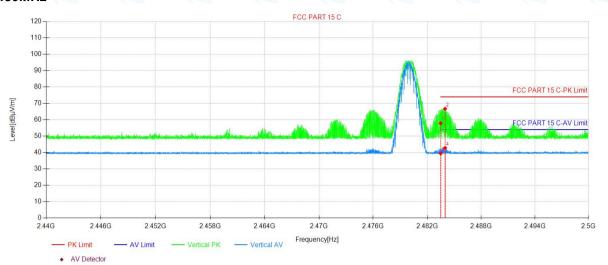
San Market	Report No.: DNT240953R1581-5266	Date:September 24, 2024	Page: 26 / 55
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above RBW = 1 MHz 	1000 MHz	
	 VBW ≥ 3 MHz Detector = Peak Sweep time = auto 		
	Trace mode = max hold Average Measurements Abo RBW = 1 MHz	ove 1000MHz	
	• VBW = 10 Hz, when duty of	cycle is no less than 98 perce cle is less than 98 percent wh	
	transmission duration over which the maximum power control level for the		smitting at its
Exploratory Test	Mode: Transmitting with all kind of modulat Transmitting mode.	tions, data rates.	0, 0,
Final Test Mode:	Pretest the EUT at Charge + Transi Through Pre-scan, find the worst ca Only the worst case is recorded in t	ase of GFSK	ON OR
Instruments Used	d: Refer to section 2.9 for details	1 1 1	, ,
Test Results:	Pass	21 21 21	4



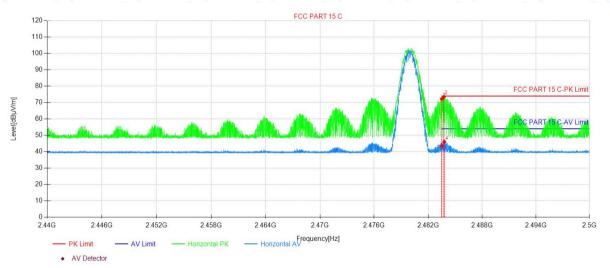
Test Date BLE 1M 2402MHz Date:September 24, 2024

Page: 27 / 55

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2389.35	58.63	-0.80	57.83	74.00	16.17	150	285	Peak	V
2	2390.01	52.31	-0.80	51.51	74.00	22.49	150	2	Peak	V
3	2389.34	42.88	-0.80	42.08	54.00	11.92	150	34	AV	V
4	2390.01	41.70	-0.80	40.90	54.00	13.10	150	109	AV	V



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2389.09	66.93	-0.80	66.13	74.00	7.87	150	86	Peak	Н
2	2390.01	61.01	-0.80	60.21	74.00	13.79	150	118	Peak	Н
3	2386.29	44.10	-0.81	43.29	54.00	10.71	150	86	AV	Н
4	2390.01	42.78	-0.80	41.98	54.00	12.02	150	44	AV	Н



Date:September 24, 2024

Page: 28 / 55

N	IO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	2483.50	58.15	-0.29	57.86	74.00	16.14	150	271	Peak	V
	2	2483.99	66.97	-0.28	66.69	74.00	7.31	150	316	Peak	V
	3	2483.50	39.73	-0.29	39.44	54.00	14.56	150	282	AV	V
	4	2483.99	43.01	-0.28	42.73	54.00	11.27	150	305	AV	V

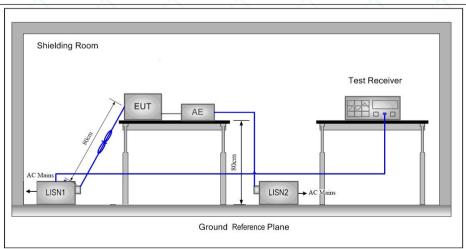
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2483.51	72.51	-0.29	72.22	74.00	1.78	150	292	Peak	Н
2	2483.75	73.75	-0.28	73.47	74.00	0.53	150	282	Peak	Н
3	2483.51	43.90	-0.29	43.61	54.00	10.39	150	105	AV	Н
4	2483.80	46.25	-0.28	45.97	54.00	8.03	150	292	AV	Н

Date:September 24, 2024

Page: 29 / 55

Note:

- 1. The BLE 1M is the worse case.
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.)



Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 30 / 55

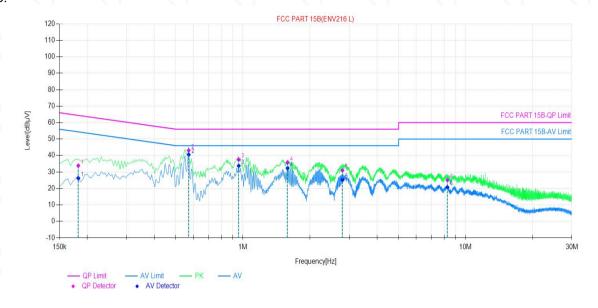
3.10AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207								
Test Method:	ANSI C63.10: 2020								
Test Frequency Range:	150kHz to 30MHz	<u> </u>	02 02						
Limit:	Fraguency range (MUz)	Limit (dBuV)							
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30 60 50								
	* Decreases with the logarity	thm of the frequency.	41 41						
Test Setup:	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization New impedance. The power cabe a second LISN 2, which was plane in the same way as the multiple socket outlet strip wingle LISN provided the rate of the tabletop EUT was performed on the horizontal ground reference plane. An placed on the horizontal ground the EUT shall be 0.4 m from the EUT shall be 0.4 m from the EUT shall be 0.4 m from the EUT and associated equipment and all of the interval and the maximum equipment and all of the interval and control of the interval of the interv	d to AC power source throughtwork) which provides a 50 ples of all other units of the last bonded to the ground reference the LISN 1 for the unit being was used to connect multiple ting of the LISN was not explaced upon a non-metallic find for floor-standing arrange ound reference plane, with a vertical ground reference was bonded to the hor 1 was placed 0.8 m from the to a ground reference plane. This displaced to the LISN 1 and the EUT puipment was at least 0.8 m m emission, the relative posterface cables must be char	gh a LISN 1 (Line Ω/50μH + 5Ω linear EUT were connected to erence measured. A le power cables to a acceded. Itable 0.8m above the ement, the EUT was rence plane. The rear erence plane. The izontal ground the boundary of the e for LISNs stance was a All other units of from the LISN 2. sitions of						

Test Setup:

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 31 / 55

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

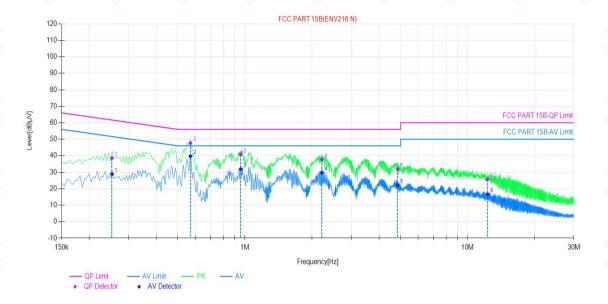

Date:September 24, 2024

Page: 32 / 55

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level	QP Result Level	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level	AV Result Level	AV Limit [dΒμV]	AV Margin [dB]
1	0.18	9.92	23.95	33.87	64.38	30.51	16.29	26.21	54.38	28.17
2	0.57	9.84	33.28	43.12	56.00	12.88	30.69	40.53	46.00	5.47
3	0.95	9.73	27.79	37.52	56.00	18.48	24.03	33.76	46.00	12.24
4	1.58	9.73	26.01	35.74	56.00	20.26	22.62	32.35	46.00	13.65
5	2.79	9.74	21.27	31.01	56.00	24.99	15.58	25.32	46.00	20.68
6	8.28	9.87	15.22	25.09	60.00	34.91	10.89	20.76	50.00	29.24

Date:September 24, 2024

Page: 33 / 55

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level	QP Result Level	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level	AV Result Level	AV Limit [dBµV]	AV Margin [dB]
1	0.2526	9.87	28.67	38.54	61.67	23.13	19.03	28.90	51.67	22.77
2	0.5690	9.76	37.99	47.75	56.00	8.25	3 0	39.76	46.00	6.24
3	0.9566	9.71	31.07	40.78	56.00	15.22	22.11	31.82	46.00	14.18
4	2.2154	9.80	28.01	37.81	56.00	18.19	19.92	29.72	46.00	16.28
5	4.8468	9.97	21.99	31.96	56.00	24.04	12.21	22.18	46.00	23.82
6	12.2794	9.86	15.92	25.78	60.00	34.22	6.73	16.59	50.00	33.41

Remark:

- 1. The BLE 1M is the worse case.
- 2. The following Quasi-Peak and Average measurements were performed on the EUT:
- 3. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 34 / 55

4 Appendix

Appendix A: Duty Cycle

Test Result

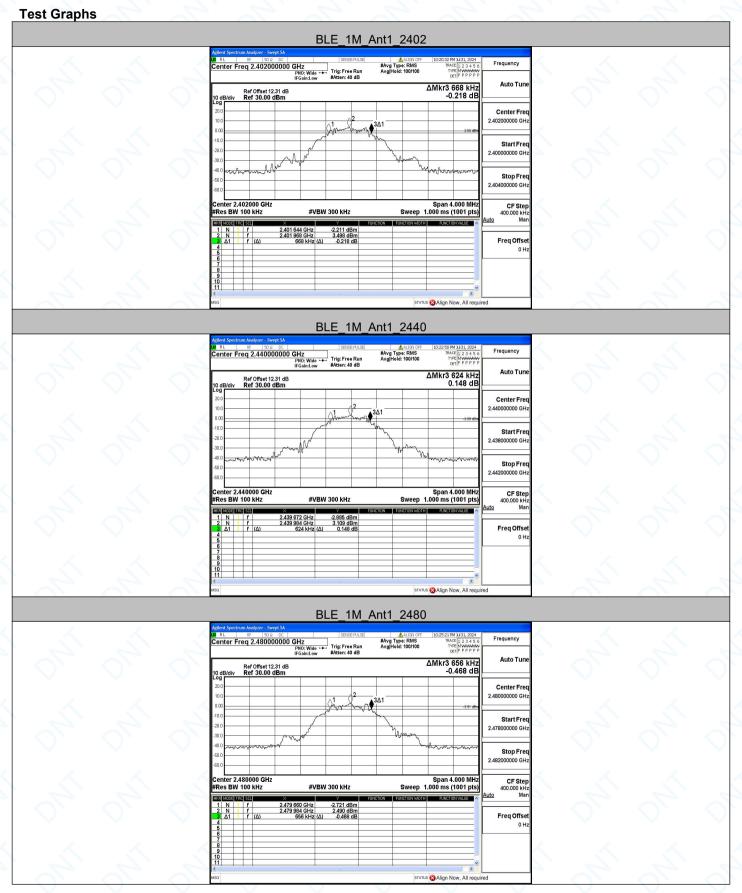
Test Mode	Antenna	Freq(MHz)	ON Time	Period	DC [%]
i est ivioue	Antenna		[ms]	[ms]	
	Ant1	2402	0.42	2.77	15.16
BLE_1M		2440	0.42	2.78	15.11
		2480	0.42	2.78	15.11
		2402	0.21	2.56	8.20
BLE_2M	Ant1	2440	0.21	2.56	8.20
		2480	0.21	2.56	8.20

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 35 / 55

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 36 / 55

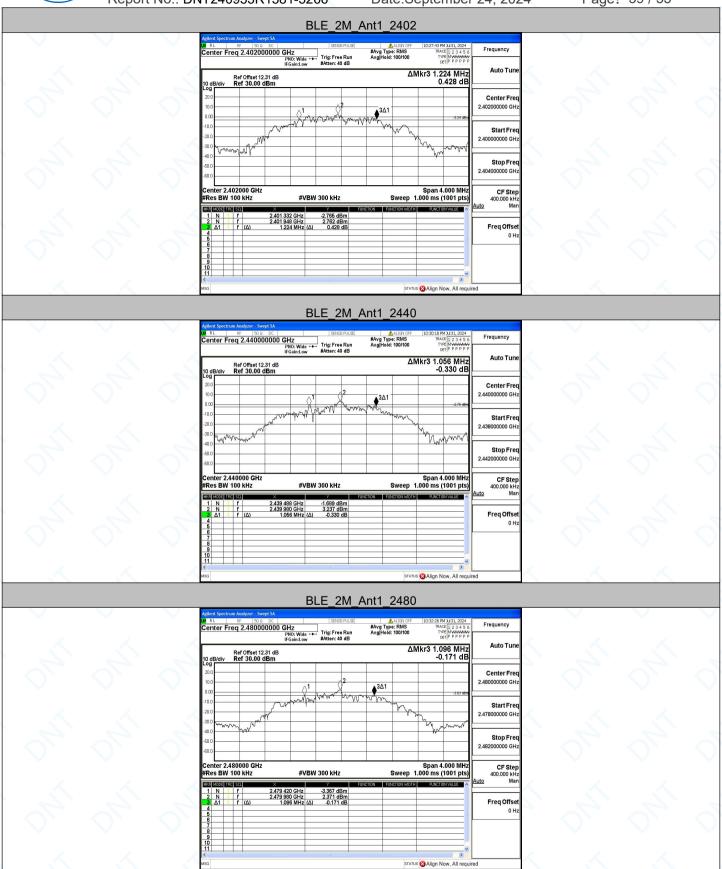
BLE 2M Ant1 2402 Auto Tun Ref Offset 12.31 dB Ref 22.31 dBm Center Fre Start Fre enter 2.402000000 GHz es BW 8 MHz Span 0 Hz Sweep 6.000 ms (1001 pts) #VBW 8.0 MHz 1.990 ms 210.0 μs (Δ) 2.560 ms (Δ) Freq Offse STATUS Align Now, All reg BLE_2M_Ant1_2440 RL RF 50.0 DC SAMEPUSE AND ALGORITHM TO THE PROPERTY OF THE PR Center Fre Span 0 Hz Sweep 6.000 ms (1001 pts) #VBW 8.0 MHz STATUS Align Now, All required BLE_2M_Ant1_2480 Frequency Center Fre Stop Free Span 0 Hz Sweep 6.000 ms (1001 pts) CF Ster 8.000000 MH #VBW 8.0 MHz Freq Offse

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 37 / 55


Appendix B: DTS Bandwidth

Test Result

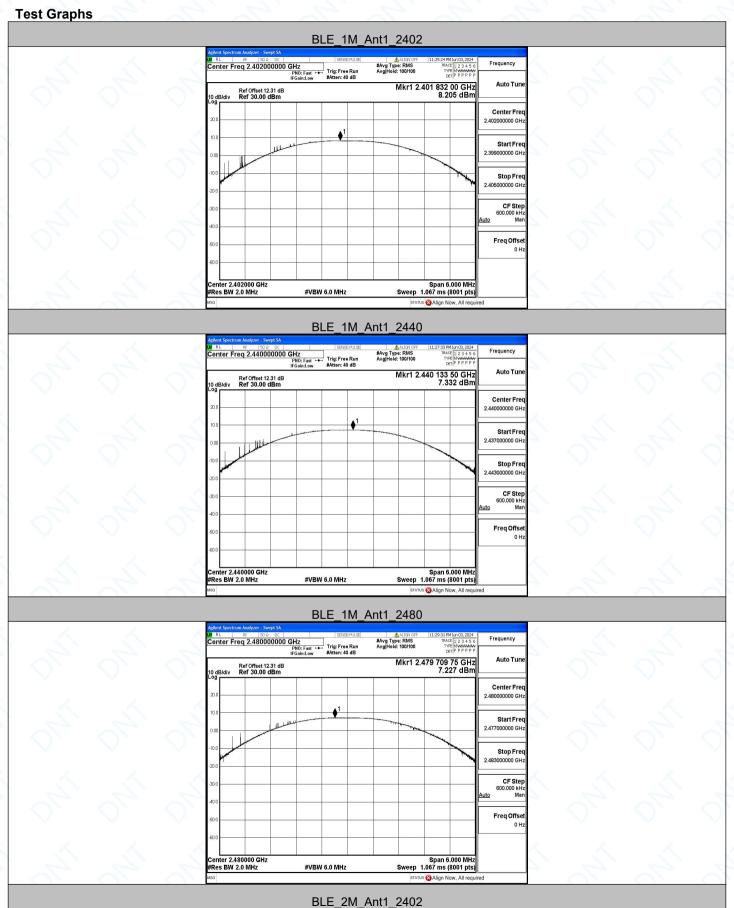
Test Mode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.668	2401.644	2402.312	0.5	PASS
BLE_1M		2440	0.624	2439.672	2440.296	0.5	PASS
		2480	0.656	2479.660	2480.316	0.5	PASS
BLE_2M	Ant1	2402	1.224	2401.332	2402.556	0.5	PASS
		2440	1.056	2439.488	2440.544	0.5	PASS
		2480	1.096	2479.420	2480.516	0.5	PASS



Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 38 / 55

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 39 / 55

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 40 / 55


Appendix C: Maximum conducted output power

Test Result

Test Mode	Antenna	Freq(MHz)	Power [dBm]	Limit [dBm]	Verdict	
		2402	8.21	≤30	PASS	
BLE_1M	Ant1	2440	7.33	≤30	PASS	
_		2480	7.23	≤30	PASS	
1 1		2402	8.32	≤30	PASS	
BLE_2M	Ant1	2440	7.46	≤30	PASS	
		2480	7.37	≤30	PASS	

Report No.: DNT240953R1581-5266 Date:September 24, 2024 Page: 41 / 55

