

Project No.: ZKT-2105171867E Page 1 of 37

R

FCC TEST REPORT FCC ID:2AYD7-ML5

Report Number	: ZKT-2105171867E
Date of Test	May 17, 2021 to May 24, 2021
Date of issue	: May 24, 2021
Total number of pages	. 37
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial [•] Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	: igloocompany Pte. Ltd.
Address	: 67 Ayer Rajah Crescent #06-14/21 Singapore, 139950
Manufacturer's name	: SOLITY CO., LTD
Address	. #103 Yangcheon Venture town 267, Sinjeong-ro, Yangcheon-gu, Seoul, Korea 08079
Test specification:	
	: FCC CFR Title 47 Part 15 Subpart C Section 15.247
Test procedure	KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013
Non-standard test method	: N/A
Test Report Form No	: TRF-EL-111_V0
Test Report Form(s) Originator	: ZKT Testing
Master TRF	: Dated: 2020-01-06
test (EUT) is in compliance with the identified in the report. This report shall not be reproduced of	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may hal only, and shall be noted in the revision of the document.
Product name	: Smart Lever Mortise
Trademark	: Igloohome
Model/Type reference	: ML5
Ratings	: DC 6V(1.5V*4PCS)

Shenzhen ZKT Technolgy Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-2105171867E Page 2 of 37

Testing procedure and testing location:	
Testing Laboratory:	Shenzhen ZKT Technology Co., Ltd.
Address:	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature)	Alen He
Reviewer (name + signature):	Joe. Lin
Approved (name + signature)	Lake Xie

Table of Contents	Page
1.VERSION	5
	-
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	12 13
4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDITIONS	13
4.1.6 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	14
4.2.1 RADIATED EMISSION LIMITS	14
4.2.2 TEST PROCEDURE	15
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	15 15
4.2.5 EUT OPERATING CONDITIONS	15
5.RADIATED BAND EMISSION MEASUREMENT	-
5.1 TEST REQUIREMENT:	21 21
5.2 TEST PROCEDURE	21
5.3 DEVIATION FROM TEST STANDARD	21
5.4 TEST SETUP	22
5.5 EUT OPERATING CONDITIONS	22
5.6 TEST RESULT	23
6.POWER SPECTRAL DENSITY TEST	24
6.1 APPLIED PROCEDURES / LIMIT 6.2 TEST PROCEDURE	24 24
6.3 DEVIATION FROM STANDARD	24 24
6.4 TEST SETUP	24

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔇 www.zkt-lab.com

Table of Contents	Page
6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	24 25
7. CHANNEL BANDWIDTH 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP	27 27 27 27 27 27
7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS	27 28
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	30 30 30 30 30 30 31
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS	32 32 32 32 32 32 32
10.ANTENNA REQUIREMENT	36
11. TEST SETUP PHOTO	37
12. EUT CONSTRUCTIONAL DETAILS	37

1.VERSION

Report No.	Version	Description	Approved
ZKT-2105171867E	Rev.01	Initial issue of report	May 24, 2021

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C				
Standard Section	Test Item	Judgment	Remark	
FCC part 15.203/15.247 (c)	Antenna requirement	PASS		
FCC part 15.207	AC Power Line Conducted Emission	N/A		
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS		
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS		
FCC part 15.247 (e)	Power Spectral Density	PASS		
FCC part 15.247(d)	Band Edge	PASS		
FCC part 15.205/15.209	Spurious Emission	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\,$ k=2 , providing a level of confidence of approximately 95 $\%_{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(<1G)	±4.68dB
5	All emissions radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Smart Lever Mortise
Model No.:	ML5
Model Different.:	N/A
Serial No.:	N/A
Hardware Version:	H1.0
Software Version:	S1.0
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
Power supply:	DC 6V(1.5V*4PCS)
SWITCHING POWER	N/A
ADAPTER:	

Project No.: ZKT-2105171867E Page 9 of 37

Operation Frequency each of channel

operation requeries caon of onalities							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
•	the test voltage was tuned from 85% to 115% of the nominal rated supply ne worst case was under the nominal rated supply condition. So the report just ata.

Test Software	BLE Test Tool
Power level setup	<0dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Emission

EUT

Conducted Spurious

EUT

+86-400-000-9970 1

Shenzhen ZKT Technolgy Co., Ltd.

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Smart Lever Mortise	N/A	ML5	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[]Length_. column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 22, 2020	Sep. 21, 2021
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 22, 2020	Sep. 21, 2021
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 22, 2020	Sep. 21, 2021
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 22, 2020	Sep. 21, 2021
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 22, 2020	Sep. 21, 2021
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 22, 2020	Sep. 21, 2021
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 22, 2020	Sep. 21, 2021
8	Amplifier (1GHz-40GHz)	QuanJuDa	DLE-161	097	Sep. 22, 2020	Sep. 21, 2021
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 22, 2020	Sep. 21, 2021
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 22, 2020	Sep. 21, 2021
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 22, 2020	Sep. 21, 2021
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 22, 2020	Sep. 21, 2021
13	CMW500 Test	R&S	CMW500	106504	Sep. 22, 2020	Sep. 21, 2021
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 22, 2020	Sep. 21, 2021
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 22, 2020	Sep. 21, 2021
16	D.C. Power Supply	LongWei	TPR-6405D	/	/	٨
17	Software	Frad	EZ-EMC	FA-03A2 RE	\	١

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 22, 2020	Sep. 21, 2021
2	LISN	CYBERTEK	EM5040A	E185040014 9	Sep. 22, 2020	Sep. 21, 2021
3	Test Cable	N/A	C01	N/A	Sep. 22, 2020	Sep. 21, 2021
4	Test Cable	N/A	C02	N/A	Sep. 22, 2020	Sep. 21, 2021
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 22, 2020	Sep. 21, 2021
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 22, 2020	Sep. 21, 2021

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

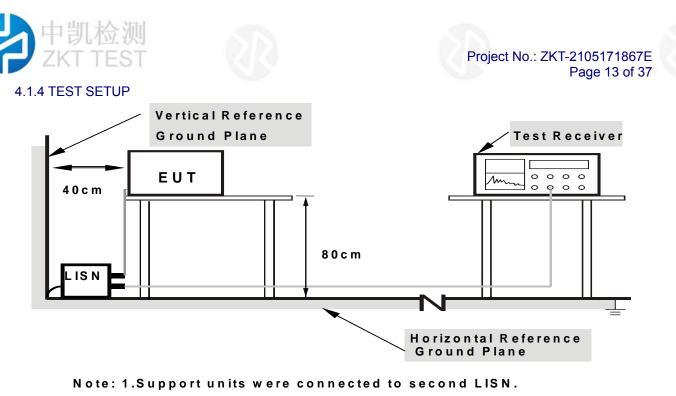
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Standard	
	Quas -peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

The EUT is powered by the DC only, the test item is not applicable.

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Dista	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
		Peak	1MHz	10Hz	Average				

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/	'm) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

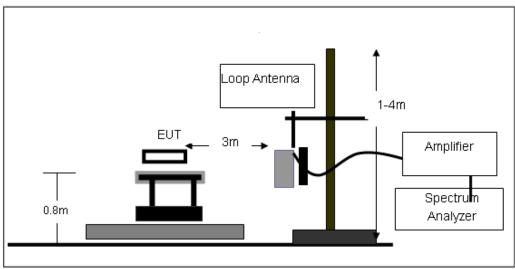
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

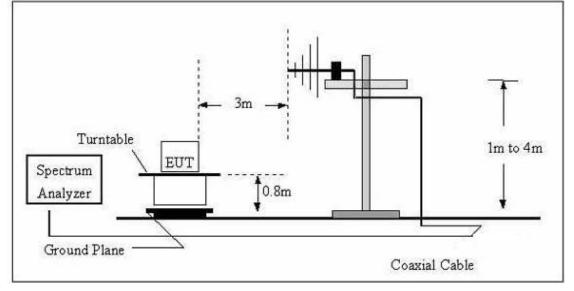
Note:

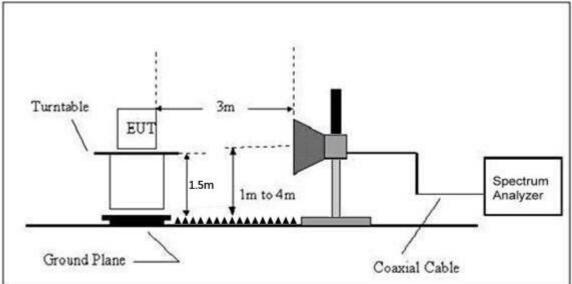

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

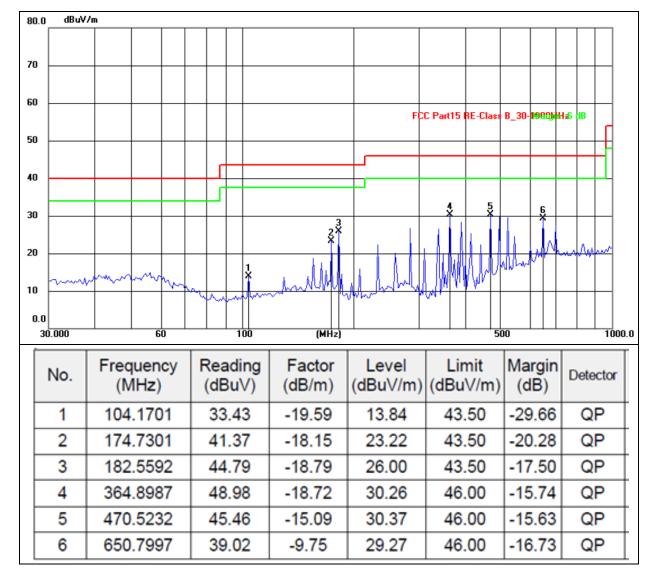
(C) Radiated Emission Test-Up Frequency Above 1GHz

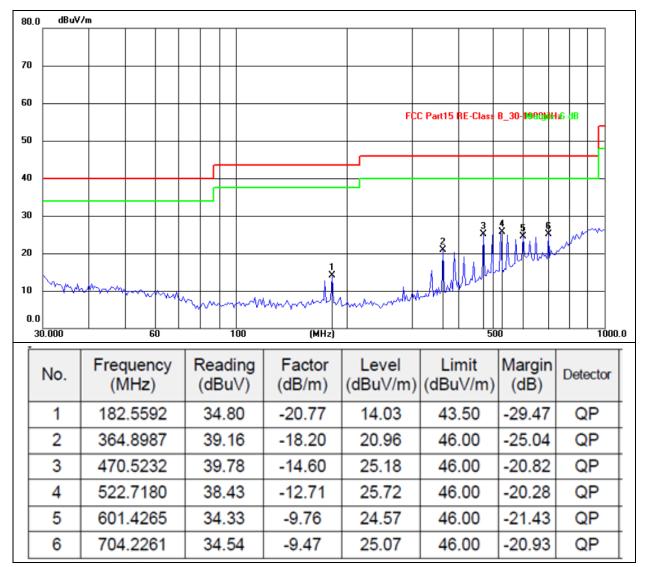
4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.




Horizontal

Vertical

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector			
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре			
	Low Channel:2402MHz											
V	4804.00	51.02	30.55	5.77	24.66	50.90	74.00	-23.10	Pk			
V	4804.00	42.33	30.55	5.77	24.66	42.21	54.00	-11.79	AV			
V	7206.00	49.63	30.33	6.32	24.55	50.17	74.00	-23.83	Pk			
V	7206.00	41.08	30.33	6.32	24.55	41.62	54.00	-12.38	AV			
V	9608.00	49.89	30.85	7.45	24.69	51.18	74.00	-22.82	Pk			
V	9608.00	41.18	30.85	7.45	24.69	42.47	54.00	-11.53	AV			
V	12010.00	48.63	31.02	8.99	25.57	52.17	74.00	-21.83	Pk			
V	12010.00	41.18	31.02	8.99	25.57	44.72	54.00	-9.28	AV			
Н	4804.00	52.14	30.55	5.77	24.66	52.02	74.00	-21.98	Pk			
Н	4804.00	42.13	30.55	5.77	24.66	42.01	54.00	-11.99	AV			
Н	7206.00	50.24	30.33	6.32	24.55	50.78	74.00	-23.22	Pk			
Н	7206.00	42.36	30.33	6.32	24.55	42.90	54.00	-11.10	AV			
Н	9608.00	50.32	30.85	7.45	24.69	51.61	74.00	-22.39	Pk			
Н	9608.00	42.14	30.85	7.45	24.69	43.43	54.00	-10.57	AV			
Н	12010.00	51.03	31.02	8.99	25.57	54.57	74.00	-19.43	Pk			
Н	12010.00	41.22	31.02	8.99	25.57	44.76	54.00	-9.24	AV			

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector				
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре				
	Middle Channel:2440MHz												
V	4880.00	51.32	30.55	5.77	24.66	51.20	74.00	-22.80	Pk				
V	4880.00	42.12	30.55	5.77	24.66	42.00	54.00	-12.00	AV				
V	7320.00	49.22	30.33	6.32	24.55	49.76	74.00	-24.24	Pk				
V	7320.00	41.06	30.33	6.32	24.55	41.60	54.00	-12.40	AV				
V	9760.00	49.32	30.85	7.45	24.69	50.61	74.00	-23.39	Pk				
V	9760.00	41.01	30.85	7.45	24.69	42.30	54.00	-11.70	AV				
V	12200.00	49.67	31.02	8.99	25.57	53.21	74.00	-20.79	Pk				
V	12200.00	40.08	31.02	8.99	25.57	43.62	54.00	-10.38	AV				
Н	4880.00	51.36	30.55	5.77	24.66	51.24	74.00	-22.76	Pk				
Н	4880.00	41.25	30.55	5.77	24.66	41.13	54.00	-12.87	AV				
Н	7320.00	52.01	30.33	6.32	24.55	52.55	74.00	-21.45	Pk				
Н	7320.00	43.21	30.33	6.32	24.55	43.75	54.00	-10.25	AV				
Н	9760.00	51.24	30.85	7.45	24.69	52.53	74.00	-21.47	Pk				
Н	9760.00	40.21	30.85	7.45	24.69	41.50	54.00	-12.50	AV				
Н	12200.00	51.33	31.02	8.99	25.57	54.87	74.00	-19.13	Pk				
Н	12200.00	42.16	31.02	8.99	25.57	45.70	54.00	-8.30	AV				

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			ŀ	-ligh Cha	nnel:2480M	1Hz			
V	4960.00	50.13	30.55	5.77	24.66	50.01	74.00	-23.99	Pk
V	4960.00	42.13	30.55	5.77	24.66	42.01	54.00	-11.99	AV
V	7440.00	51.33	30.33	6.32	24.55	51.87	74.00	-22.13	Pk
V	7440.00	41.25	30.33	6.32	24.55	41.79	54.00	-12.21	AV
V	9920.00	52.04	30.85	7.45	24.69	53.33	74.00	-20.67	Pk

Project No.: ZKT-2105171867E Page 20 of 37

								· · · · ·	
V	9920.00	42.14	30.85	7.45	24.69	43.43	74.00	-10.57	AV
V	12400.00	51.32	31.02	8.99	25.57	54.86	54.00	-19.14	Pk
V	12400.00	41.66	31.02	8.99	25.57	45.20	74.00	-8.80	AV
Н	4960.00	49.32	30.55	5.77	24.66	49.20	54.00	-24.80	Pk
Н	4960.00	41.63	30.55	5.77	24.66	41.51	74.00	-12.49	AV
Н	7440.00	51.01	30.33	6.32	24.55	51.55	54.00	-22.45	Pk
Н	7440.00	42.14	30.33	6.32	24.55	42.68	74.00	-11.32	AV
Н	9920.00	51.36	30.85	7.45	24.69	52.65	54.00	-21.35	Pk
Н	9920.00	41.65	30.85	7.45	24.69	42.94	74.00	-11.06	AV
Н	12400.00	51.36	31.02	8.99	25.57	54.90	54.00	-19.10	Pk
Н	12400.00	42.17	31.02	8.99	25.57	45.71	74.00	-8.29	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:	2013			
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above	Peak	1MHz	3MHz	Peak
	1GHz	Average	1MHz	3MHz	Average

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

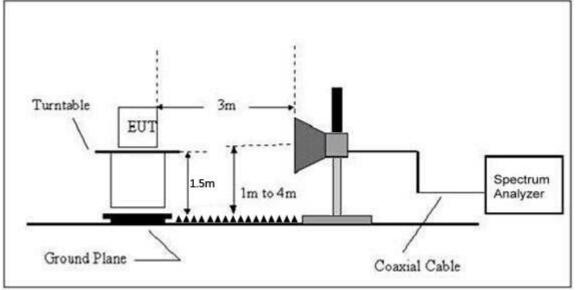
- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

Shenzhen ZKT Technolgy Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result
						el: 2402MHz	2			
	Н	2390.00	59.33	30.22	4.85	23.98	57.94	74.00	PK	PASS
	Н	2390.00	50.21	30.22	4.85	23.98	48.82	54.00	AV	PASS
	Н	2400.00	59.63	30.22	4.85	23.98	58.24	74.00	PK	PASS
	Н	2400.00	51.02	30.22	4.85	23.98	49.63	54.00	AV	PASS
	V	2390.00	58.38	30.22	4.85	23.98	56.99	74.00	PK	PASS
	V	2390.00	50.32	30.22	4.85	23.98	48.93	54.00	AV	PASS
	V	2400.00	59.34	30.22	4.85	23.98	57.95	74.00	PK	PASS
OFOK	V	2400.00	51.21	30.22	4.85	23.98	49.82	54.00	AV	PASS
GFSK	High Channel: 2480MHz									
	Н	2483.50	58.36	30.22	4.85	23.98	56.97	74.00	PK	PASS
	Н	2485.50	49.65	30.22	4.85	23.98	48.26	54.00	AV	PASS
	Н	2483.50	59.47	30.22	4.85	23.98	58.08	74.00	PK	PASS
	Н	2485.50	50.12	30.22	4.85	23.98	48.73	54.00	AV	PASS
	V	2483.50	59.03	30.22	4.85	23.98	57.64	74.00	PK	PASS
	V	2485.50	51.22	30.22	4.85	23.98	49.83	54.00	AV	PASS
	V	2483.50	59.64	30.22	4.85	23.98	58.25	74.00	PK	PASS
	V	2485.50	50.24	30.22	4.85	23.98	48.85	54.00	AV	PASS

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

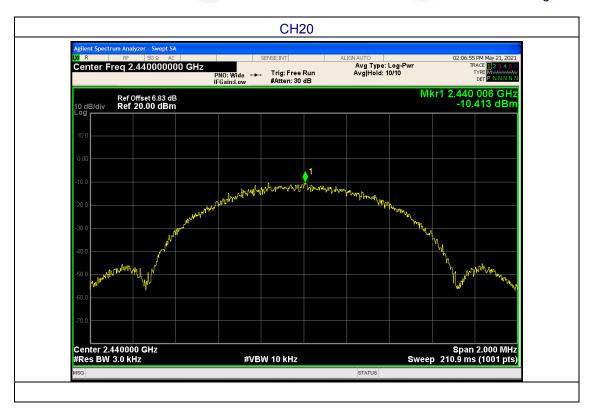
6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS


Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 6V

Frequency	Power Spectral Density (dBm/3kHz)	Limit (8dBm/3kHz)	Result
2402 MHz	-12.227	8	PASS
2440 MHz	-10.413	8	PASS
2480 MHz	-12.072	8	PASS

CT40

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

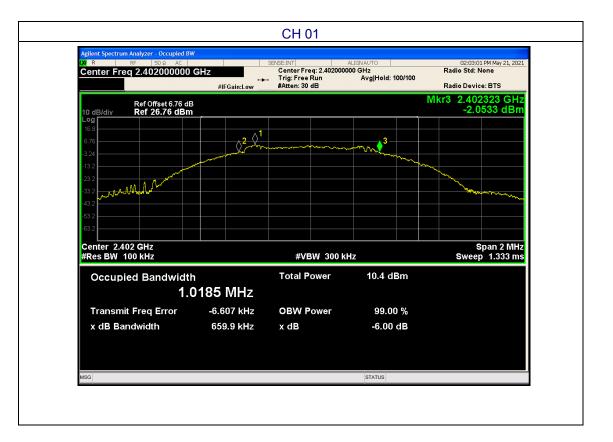
No deviation.

7.4 TEST SETUP

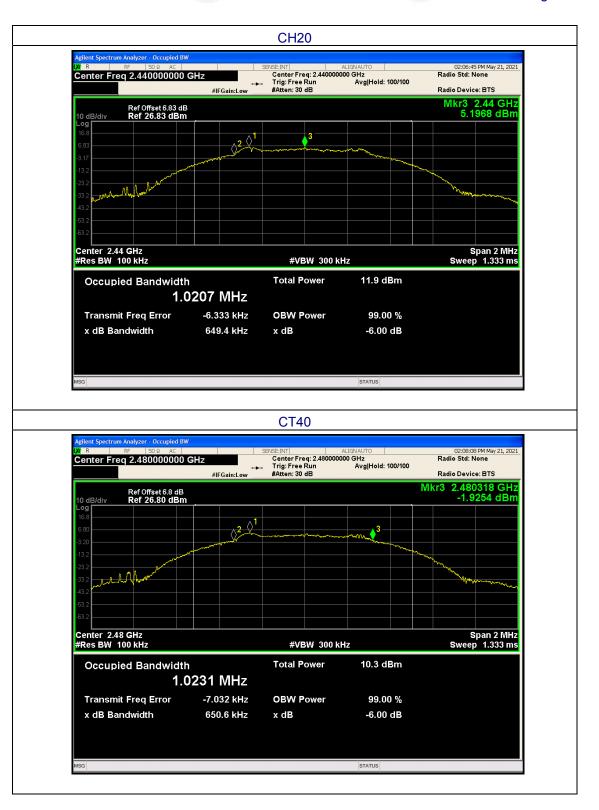
EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



7.6 TEST RESULTS


Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 6V

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.660		
Middle	0.649	>500	Pass
Highest	0.651		

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

	FC	C Part15 (15.247) , Subp	oart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 6V

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.012		
Middle	-0.852	30.00	Pass
Highest	-0.863		

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

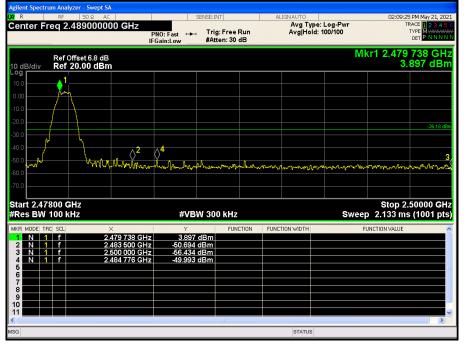
No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS



GFSK: Band Edge, Left Side

ilent Spectr																	
R enter Fr	^{RF} req 2	50 Ω .370000		P	PNO: Fas Gain:Lo	st 🛶		g: Free ten: 30		Al		g Type:	Log-Pwi 100/100	•		TI	TYPE
dB/div		Offset 6.76 20.00 dE												N	1kr1	2.40 4.	1 80 C 418 d
														♦ ¹ -			
.0														A			
.0																	-26
.0																	
· ·											4	× 3		2			
		A 4.9		alaanaa	L.L.A. JAMAN	م المربعات	mund	محام محرموا	matrix and	un Y			walks W	-¥L,	Mulu	willow	an ma
.0	-40°34.97%by4	uhywnanhyw	water	يهم معروقهن	the for the second s	ylanga ang ang ang ang ang ang ang ang ang	komen vied	byradyra	rutura	when	l,,Jhjk∧ _e	, n , 2,,	walter	ų,	Muhn	holly og he	huran
I.0	4774ymby4	u/ _/ wa _a -aj _{iye}	when	يەرمەرمىيە مەرمەرمەرمەر	the Anna an	ولىرىرىر. م	kmuardid	haradera	~**~*	ur nav h	երեր		nor ton 199	¥Ļ,			
			wrthapul-a	يەر «مېرواندر	k di (hann			hand die 0 kHz	~**~~*	ur hand	4Þrj.k.A ₀	No. Contraction			S	top 2.	43000 · • (1001
art 2.31 Res BW	100 k RC SCL		×			#VBI	W 301	0 kHz	CHIN		tion Wi			wee	S	top 2. 53 ms	43000
art 2.31 Res BW	100 k		× 2.401 80 2.400 00 2.390 00	0 GHz 0 GHz 0 GHz		#VBV	W 301 dBm dBm dBm	0 kHz						wee	S 5 11.	top 2. 53 ms	43000
art 2.31 R MODE TE N 1 N 1 N 1 N 1 N 1	100 k RC SCL f		× 2.401 80 2.400 00	0 GHz 0 GHz 0 GHz		#VB Y <u>4.418</u> 53.101	W 301 dBm dBm dBm	0 kHz						wee	S 5 11.	top 2. 53 ms	43000
Art 2.31 art 2.31 ces BW R MODE TF N 1 2 N 1 3 N 1 5 N 1	100 k RC SCL f		× 2.401 80 2.400 00 2.390 00	0 GHz 0 GHz 0 GHz		#VBV	W 301 dBm dBm dBm	0 kHz						wee	S 5 11.	top 2. 53 ms	43000
Image: Apple of the second s	100 k RC SCL f		× 2.401 80 2.400 00 2.390 00	0 GHz 0 GHz 0 GHz		#VBV	W 301 dBm dBm dBm	0 kHz						wee	S 5 11.	top 2. 53 ms	43000
2 N 1 B N 1	100 k RC SCL f		× 2.401 80 2.400 00 2.390 00	0 GHz 0 GHz 0 GHz		#VBV	W 301 dBm dBm dBm	0 kHz			TION WI			wee	S 5 11.	top 2. 53 ms	43000

GFSK: Band Edge, Right Side

Lowest channel

R		RF	lyzer - Swept SA 50 Ω AC .39000000		PNO: Fast	SENSE:	INT	Run		pe: Log-Pwr Id: 10/10	02:0	06:25 PM May 21, 20 TRACE 1 2 3 4 9 TYPE MWWW
) dB/div			Offset 6.76 dE 20.00 dBm		IFGain:Low		tten: 30 d					2.396 GH 3.111 dBr
0.0 0.0 0.0												-25.92 d
i0.0	مرارب	-lynne	Here a grant and a grant of the	Martin Contraction	My toly the	2 ³	and a state of the second state of the	A A	2 homenu	mendersendarise	مىوەل مەربومولىي	Phylon and the share and the share
tart 30						#VBW 30					Sto	p 12.750 GF 6 s (1001 pt
Kes di Kri modei				<		¥ΛΡΜ ΟΓ Α			NCTION WIDTH	51	FUNCTION VALU	
1 N 2 N 3 N	1	f f f	,	2.396 GH 7.420 GH 4.787 GH	1z -48 1z -50	8.111 dBm 8.855 dBm 9.668 dBm					Tonenon visu	
4 N 5 N 6 7	1	f		7.153 GH 9.481 GH	HZ -50 HZ -51	.478 dBm .715 dBm						
8 9 0												
1												>

Middle channel

lent Spectrum Analyzer - Swept SA R RF SO Q AC enter Freq 6.390000000 GHz				IAUTO) PM May 21, 20
enter Freq 6.390000000 GHz	PNO: Fast 🛶 T						
		des Frank Brown					
	IFGam:LOW #7	rig: Free Run Atten: 30 dB		Avg Type: Avg Hold: 1			RACE 12345 TYPE MWWWW DET PNNN
Ref Offset 6.83 dB dB/div Ref 20.00 dBm							.434 GH 735 dBi
pg							
0.0							
00							
).0							
							-24.57 (
1.0							
I.O	A 3		4		5		
	$\langle \rangle^3$		Y I		()"		L Y
. O horan alministration of the Mintel and the Mintel and the second	Profestar war better Warder a Magar a	and the state of the		manunthall	and the second	and the state of t	- Providence of
).0							
art 30 MHz Res BW 100 kHz	#VBW 3	00 kHz			Swe	stop 1 ep 1.216 s	2.750 GI (1001 pi
R MODE TRC SCL X	Y	FUNCTION	FUNCTION	WIDTH	FU	JNCTION VALUE	
N 1 f 2.434 G							
2 N 1 f 12.407 Gł 3 N 1 f 4.800 Gł	Hz -48.760 dBm Hz -51.109 dBm						
N 1 f 7.344 G	Hz -48.981 dBm	1					
5 N 1 f 9.608 G	Hz -52.049 dBm	1					
							>

Highest channel

R	RF	yzer - Swept SA 50 ຊ AC .390000000 GHz		SENSE:INT		ALI	GNAUTO Avg Type:	Log-Pwr		0 PM May 21, 20 RACE 1 2 3 4
	eqo	.39000000 GHZ	PNO: Fast ++	. Trig: Fre #Atten: 3			Avg Hold:			
0 dB/div		Dffset 6.8 dB 20.00 dBm							Mkr1 2 3.	.485 GH .040 dB
. og 10.0		1								
0.0										
.0.0										-25.95
0.0										
0.0				> ³		\diamond				
0.0	the same	en martine and the stranger and the	Magon and Marken		Me and the	waster	- freshing for some	here and the state of the second	and the second	
'0.0										
tart 30 N									Stop	12.750 GI
Res BW		Hz	#VB	W 300 kH	Z				ep 1.216	s (1001 p
KR MODE TP	C SCL	× 2.485 Gł	۲ z 3.040		INCTION	FUNCTI	ON WIDTH	FL	JNCTION VALUE	
2 N 1 3 N 1	f	12.432 GH 5.093 GH	lz -48.793	dBm						
4 N 1 5 N 1	f	7.433 GI 9.850 GI	lz -50.287	dBm						
6		3.000 01								
8										
0										
										>
G							STATUS			

10.ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
be used with the device. The use of a intentional radiator, the manufacturer r use of a standard antenna jack or election	ed to ensure that no antenna other than that furnished by the responsible party shall a permanently attached antenna or of an antenna that uses a unique coupling to the may design the unit so that a broken antenna can be replaced by the user, but the trical connector is prohibited.
employ transmitting antennas with dire	3.5 MHz band that is used exclusively for fixed. Point-to-point operations may actional gain greater than 6dBi provided the maximum conducted output power of dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.
EUT Antenna:	
The antenna is PCB permanent anten details	na, the best case gain of the antennas is 0dBi, reference to the appendix II for

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT *****

