Radio Test Report

Report No.:CTA231115001W01

Issued for

igloocompany Pte. Ltd.

71 Ayer Rajah Crescent #01-25 Singapore 139951

Product Name: Smart Keybox 3

Brand Name: Igloohome

Model Name: IGK3

Series Model(s): IGK3-05

FCC ID: 2AYD7-IGK305

Test Standards: FCC Par

FCC Part15.247

CTA TESTING

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from CTA, all test data presented in this report is only applicable to presented test sample.

Shenzhen CTA Testing Technology Co., Ltd.

TEST REPORT

Page 2 of 71

A CANADA	
Applicant's Name:	igloocompany Pte. Ltd.
Address:	71 Ayer Rajah Crescent #01-25 Singapore 139951
Manufacturer's Name:	Solity Vina Co. Ltd.
Address:	Lot K2, KCN Dai Dong- Hoan Son IP, Hoan Son, Tien Du, Bac Ninh,
Product Description	
Product Name	
Brand Name:	Igloohome IGK3 IGK3-05
Model Name	IGK3
Series Model(s):	IGK3 IGK3-05 FCC Part15.247
Test Standards	FCC Part15.247
Test Procedure:	
test (EUT) is in compliance with tidentified in the report. This report shall not be reproduct	a been tested by CTA, the test results show that the equipment under the FCC requirements. And it is applicable only to the tested sample ed except in full, without the written approval of CTA, this document A, personal only, and shall be noted in the revision of the document.
Date of receipt of test item	
Date (s) of performance of tests	
Date of Issue	12 Oct. 2023
Test Result	
Testing Engin	eer : Zoey Cow (Zoey Cao)
	(Zoey Cao)
Technical Ma	0 107
Authorized Si	G (Amy Wen)
Authorized Si	gnatory: Evic Wang
	(Eric Wang)

Table of Contents 1. SUMMARY OF TEST RESULTS 6 **1.1 TEST FACTORY** 7 **1.2 MEASUREMENT UNCERTAINTY** 7 2. GENERAL INFORMATION 8 2.1 GENERAL DESCRIPTION OF THE EUT 8 9 2.2 DESCRIPTION OF THE TEST MODES 2.3 TEST SOFTWARE AND POWER LEVEL 9 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 10 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 11 2.6 EQUIPMENTS LIST 12 **3. EMC EMISSION TEST** 14 3.1 CONDUCTED EMISSION MEASUREMENT 14 **3.2 TEST PROCEDURE** 15 3.3 TEST SETUP 15 3.4 EUT OPERATING CONDITIONS 15 3.5 TEST RESULTS 16 4. RADIATED EMISSION MEASUREMENT 18 **4.1 RADIATED EMISSION LIMITS** 18 **4.2 TEST PROCEDURE** 20 4.3 TEST SETUP 21 **4.4 EUT OPERATING CONDITIONS** 21 **4.5 FIELD STRENGTH CALCULATION** 22 23 **4.6 TEST RESULTS** 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION 33 33 **5.1 LIMIT 5.2 TEST PROCEDURE** 33 33 5.3 TEST SETUP 5.4 EUT OPERATION CONDITIONS 33 5.5 TEST RESULTS 33 TATESTING 6. POWER SPECTRAL DENSITY TEST 34 **6.1 LIMIT** 34 6.2 TEST PROCEDURE 34 6.3 TEST SETUP 34

Page 3 of 71

Table of Contents 6.4 EUT OPERATION CONDITIONS 34 6.5 TEST RESULTS 34 7. BANDWIDTH TEST 35 7.1 LIMIT 35 7.2 TEST PROCEDURE 35 7.3 TEST SETUP 35 7.4 EUT OPERATION CONDITIONS 35 7.5 TEST RESULTS 35 36 8. PEAK OUTPUT POWER TEST **8.1 LIMIT** 36 **8.2 TEST PROCEDURE** 36 8.3 TEST SETUP 37 **8.4 EUT OPERATION CONDITIONS** 37 8.5 TEST RESULTS 37 9. ANTENNA REQUIREMENT 38 9.1 STANDARD REQUIREMENT 38 9.2 EUT ANTENNA 38 **APPENDIX 1-TEST DATA** 39 **1. DUTY CYCLE** 39 2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER 43 3. MAXIMUM PEAK CONDUCTED OUTPUT POWER 47 5. MAXIMUM POWER SPECTRAL DENSITY LEVEL 51 59 CTA 59 6. BAND EDGE 7. CONDUCTED RF SPURIOUS EMISSION **APPENDIX 2- EUT TEST PHOTO** 71 _J]

Page 4 of 71

Revision History

ev. Issue Date Report No. Effect Page Contents
0 12 Oct. 2023 CTA231115001W01 ALL Initial Issue

GA CTA	TESTING CTA	

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

	Standard Section	Test Item	Judgment	Remark	
	15.207	Conducted Emission	PASS	- @	
TATEST	15.247 (a)(2)	6dB Bandwidth	PASS		
207	15.247 (b)(3)	Output Power	PASS		
	15.209	Radiated Spurious Emission	PASS		
	15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	TATEST	
	15.247 (e)	Power Spectral Density	PASS		
	15.205	Restricted bands of operation	PASS		
	Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS		
C	15.203	Antenna Requirement	PASS		
	OTE:	- C1P	Ser II	102	

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Page 7 of 71

1.1 TEST FACTORY

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an CTA TEST District, Shenzhen, China

FCC test Firm Registration Number: 517856

IC test Firm Registration Number: 27890

A2LA Certificate No.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

 (C			
Test	Range	Measurement Uncertainty	
Radiated Emission	30~1000MHz	4.06 dB	
Radiated Emission	1~18GHz	5.14 dB	
Radiated Emission	18-40GHz	5.38 dB	
Conducted Disturbance	0.15~30MHz	2.14 dB	
Output Peak power	30MHz~18GHz	0.55 dB	
Power spectral density	/	0.57 dB	
Spectrum bandwidth	JNG /	1.1%	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

AL I	Sector	_
Smart Keybox 3	TESTING	
Igloohome	Georgen	18
IGK3	G	CTAT
IGK3-05	U	1
Only the model is di	ifferent	
The EUT is a Smart	t Keybox 3	1
Operation Frequency:	2402~2480 MHz	
Modulation Type:	GFSK	1G
Radio Technology:	BLE	
Bluetooth Configuration:	LE(Support 1M PHY, 2M PHY)	
Number Of Channel:	40	
Antenna Type:	PCB	
Antenna Gain (dBi)	0 dBi	
Please refer to the N	Note 3.	
Input: Only the mod	el is different	
V5	Geon	
10.01.01.02	G	CTA "
Please refer to the N	Note 1.	1
-	Igloohome IGK3 IGK3-05 Only the model is di The EUT is a Smart Operation Frequency: Modulation Type: Radio Technology: Bluetooth Configuration: Number Of Channel: Antenna Type: Antenna Gain (dBi) Please refer to the N Input: Only the mod V5 10.01.01.02	Igloohome IGK3 IGK3-05 Only the model is different The EUT is a Smart Keybox 3 Operation Frequency: 2402~2480 MHz Modulation Type: GFSK Radio Technology: BLE Bluetooth Configuration: Number Of Channel: Antenna Type: PCB Antenna Gain (dBi) 0 dBi Please refer to the Note 3. Input: Only the model is different V5

Note:

- CTATESTING 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
 - 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

Page 9 of 71

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1 MHz/GFSK
Mode 2	TX CH19(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK
	1 Mei	

Worst Mode	Description	Data/Modulation
Mode 4	TX CH00(2402MHz)	2M PHY /GFSK
Mode 5	TX CH19(2440MHz)	2M PHY /GFSK
Mode 6	TX CH39(2480MHz)	2M PHY /GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

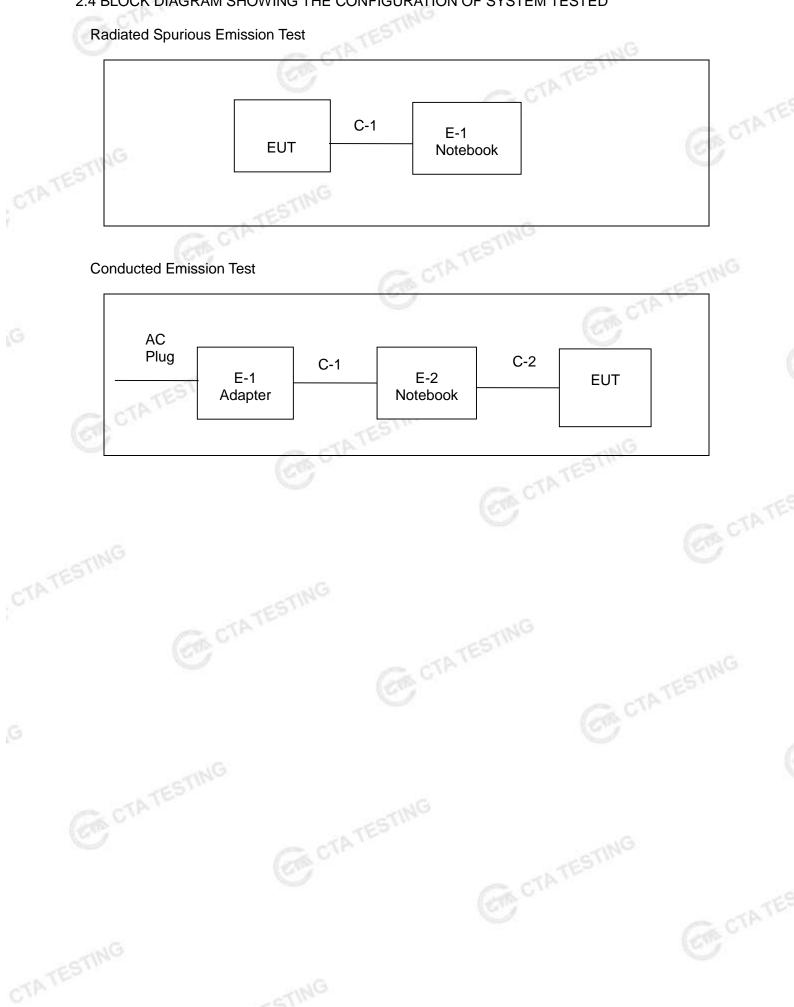
(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

(3) The battery is fully-charged during the radited and RF conducted test.


For AC Conducted Emission

	Test Case	Go
AC Conducted Emission	Mode 7 : Keeping BT TX	0


2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

	RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
	BLE(With 2M	BLE_1M PHY	GFSK	0	0	nRF_DTM
	PHY)	BLE_2M PHY	GFSK	0	0	
(1G					

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Page 11 of 71

Report No.: CTA231115001W01

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. -----

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note	TAT				
N/A	N/A	N/A	N/A	N/A	N/A	CV				
(100					0					
		STING								
	C CTA	1 mar		TING						
<u> </u>	(57)		TR.	5	1	100				

			Support units		TIM
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	Notebook Adapter	LENOVO	ADLX45DLC3A	N/A	N/A
	Notebook	LENOVO	ThinkPad E470	N/A	N/A
	USB Cable	N/A	N/A	150cm	NO
No.C	210-		TESTING		
		Gas	(P (STING
Note	e:				
	(1) For data abable t	when I/O apply		the length in an	o in ∏longetho oolumon

CTATESTING

CTATES (1) For detachable type I/O cable should be specified the length in cm in ^CLength₂ column.

(2) "YES" is means "with core"; "NO" is means "without core".

Page 12 of 71

Report No.: CTA231115001W01

TING 2.6 EQUIPMENTS LIST

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	G R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	G XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/07
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

Report No.: CTA231115001W01

			Page 13 of 71	Report	No.: CTA23111	5001W01
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
CTATE	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	G	CTATES	Co CTP	TESTING		-cSTING

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

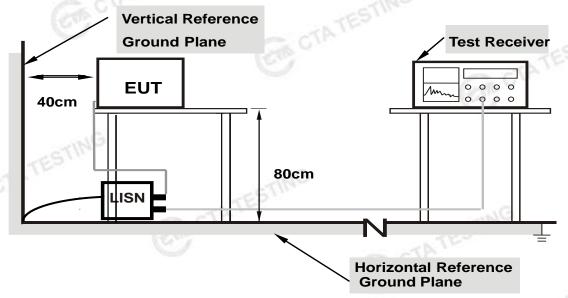
	Conducted Emiss	ion limit (dBuV)	1
FREQUENCY (MHz)	Quasi-peak	Average	2
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz
~	G


Page 15 of 71

3.2 TEST PROCEDURE

a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

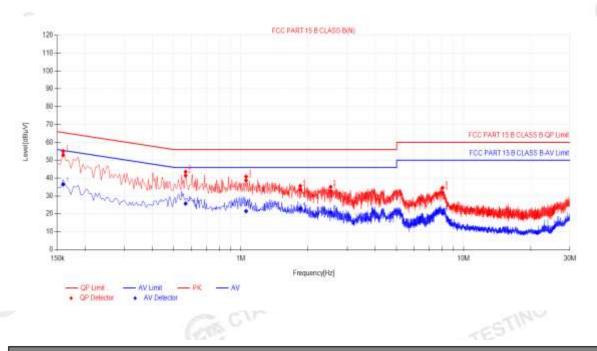
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Page 16 of 71

Report No.: CTA231115001W01

3.5 TEST RESULTS

Temperature:	26.2(C)	Relative Humidity:	54%RH	
Test Voltage:	AC 120V/60Hz	Phase:	ESTIN	
Test Mode:	Mode 7	Gen C1	n	
120 1	1	CC PART 15 B CLASS B(L1)		


$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO.	Freq. (MHz)	Factor (dB)	QP ReadingidB UV	QP Value I <u>GBUV</u>	QP Limit VdByVJ	QP Margin (dB)	AV Reading IdENV	AV Value ISBAN	AV Limit ISBUVJ	AV Margin (dB)	Verdict	, CTA
3 1.437 10.50 27.51 38.41 56.00 17.59 12.89 23.39 46.00 22.61 PA88 4 2.5395 10.50 24.31 34.81 56.00 21.19 14.06 24.56 46.00 21.44 PA88 5 5.172 10.50 23.27 33.77 60.00 26.23 13.21 23.71 50.00 26.29 PA88 6 9.006 10.50 19.07 29.57 60.00 30.43 9.72 20.22 50.00 29.78 PA88	1	0.159	10.50	40.47	50.97	65.52	14.55	24.18	34.68	55.52	20.84	PASS	5
4 2.5395 10.50 24.31 34.81 56.00 21.19 14.06 24.56 46.00 21.44 PA88 5 5.172 10.50 23.27 33.77 60.00 26.23 13.21 23.71 50.00 26.29 PA88 6 9.006 10.50 19.07 29.57 60.00 30.43 9.72 20.22 50.00 29.78 PA88	2	0.7305	10.50	31.12	41.62	56.00	14.38	13.95	24.45	46.00	21.55	PASS]
5 5.172 10.50 23.27 33.77 60.00 26.23 13.21 23.71 50.00 26.29 PA88 6 9.006 10.50 19.07 29.57 60.00 30.43 9.72 20.22 50.00 29.78 PA88	3	1.437	10.50	27.91	38.41	56.00	17.59	12.89	23.39	46.00	22.61	PASS	
6 9.006 10.50 19.07 29.57 60.00 30.43 9.72 20.22 50.00 29.78 PA88	4	2.5395	10.50	24.31	34.81	56.00	21.19	14.06	24.55	46.00	21.44	PASS	
	5	5.172	10.50	23.27	33.77	60.00	26.23	13.21	23.71	50.00	26.29	PASS	
:e:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) Factor (dB)-insertion loss of LISN (dB) + Cable loss (dB)	6	9.006	10.50	19.07	29.57	60.00	30.43	9.72	20.22	50.00	29.78	PASS	
	₅ ote:1)	9.006 .QP Value	10.50 (dBµV)	19.07 = QP Re	29.57 ading (c	_{60.00} IBµV)+ F	^{30.43}	9.72 JB)		50.00	29.78	PASS	MG
). QPN	/iargin(dB) = QP L	imit (dBh	IV) - QP	value (αΒμν)						
QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV)	Δ Δ Δ Λ Λ Λ Λ	largin(dB)	$-\Delta V/1$ in	mit (dRu)	/) _ A\/ \	Jb) aule/	3\/)						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Page 17 of 71

Report No.: CTA231115001W01

Test Voltage: AC 120V/60Hz Phase: N
Test Mode: Mode 7

NO.	Freq. [MHz]	Factor (dB)	QP Readingid <u>B</u>	QP Value IdByVI	GP Limit MBU	QP Margin [dB]	AV Reading IdBuW	AV Value IdBuVQ	AV Limit IdBuVJ	AV Margin [dB]	Verdict	CTP
1	0.159	10.50	42.41	52.91	65.52	12.61	25.97	38.47	55.52	19.05	PASS	
2	0.564	10.50	30.96	41.46	56.00	14.54	15.23	25.73	46.00	20.27	PASS	
3	1.0545	10.50	28.26	38.76	56.00	17.24	10.99	21.49	46.00	24.51	PASS	
4	1.8465	10.50	23.02	33.52	56.00	22.48	12.47	22.97	46.00	23.03	PASS	
5	2.5305	10.50	22.20	32.70	56.00	23.30	10.50	21.00	46.00	25.00	PASS	
6	8.0385	10.50	21.47	31.97	60.00	28.03	9.71	20.21	50.00	29.79	PASS	
lote:1).	a.0385 QP Value or (dB)=ir	e (dBµV)	= QP Re	ading (d	lBµV)+ F	=actor (c	IB)	20.21			PABS	NG
	largin(dB)			. ,			-,					
9. QFIV	iaiyiii(uD		uuur (uph	1V) - QF	value (ubµv)						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Page 18 of 71

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54 G

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz) FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41		6.7	

Page 19 of 71

Report No.: CTA231115001W01

CTATES

CTATES

For Radiated Emission

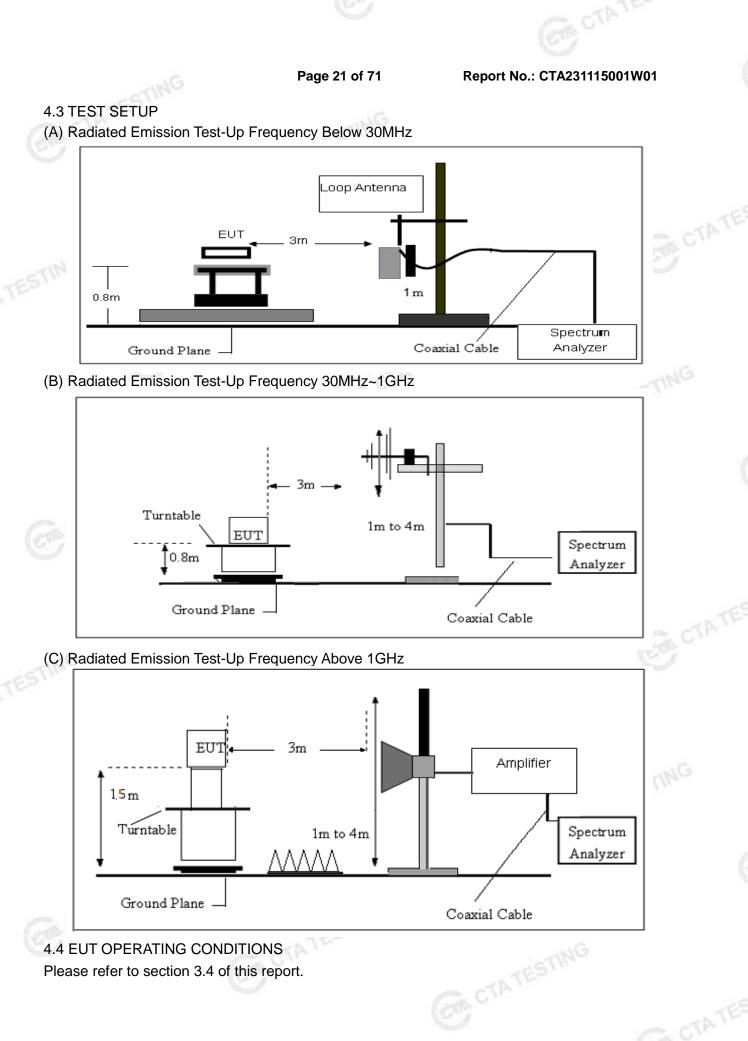
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
-6	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
TESIN	9KHz (From 0.15MHz to 30MHz)
CCV	TIPE

Spectrum Parameter	Setting			
Attenuation	Auto			
Detector	Peak/QP			
Start Frequency	30 MHz(Peak/QP)			
Stop Frequency	1000 MHz (Peak/QP)			
RB / VB (emission in restricted	120 KHz / 300 KHz			
band)	120 KHZ / 300 KHZ			

11-12						
	Spectrum Parameter	Setting				
	Attenuation	Auto				
	Detector	Peak/AV				
	Start Frequency	1000 MHz(Peak/AV)				
	Stop Frequency	10th carrier hamonic(Peak/AV)	2			
TES	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)				
CTAY	band)	1 MHz/1/T MHz(AVG)				
F	or Restricted band	100				

Spectrum ParameterSettingDetectorPeak/AVStart/Stop FrequencyLower Band Edge: 2310 to 2410 MHz
Upper Band Edge: 2475 to 2500 MHzRB / VB1 MHz / 3 MHz(Peak)
1 MHz/1/T MHz(AVG)

Page 20 of 71


Report No.: CTA231115001W01

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

4.4 EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

Page 22 of 71

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic TIE OTATESTI equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

AG = Amplifier Gain AF = Antenna Factor For example	CTIN					
Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG		6	9			TATE

Page 23 of 71

Report No.: CTA231115001W01

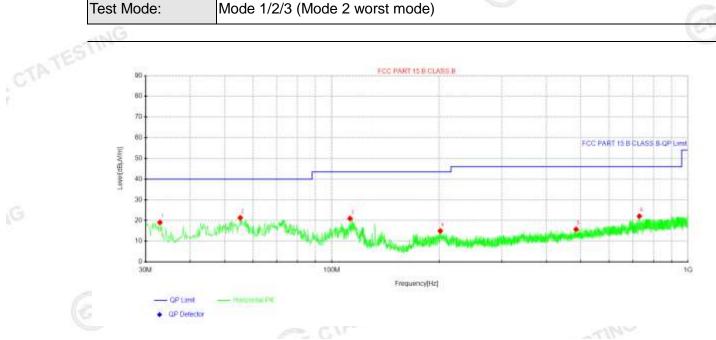
(Between 9KHz – 30 MHz)	

4.6 TEST RESU	JLTS					
(Between 9KHz	<u> </u>	MHz)				
Temperature:	23.	.1(C)	Relative	Humidtity:	60%RH	
Test Voltage:	DC	5V	Polarizat	tion:		
Test Mode:	TX	Mode	·	60	·	
					-	- 0
Freq.		Reading	Limit	Margin	State	500
(MHz)		(dBu\//m)	(dBu\//m)	(dB)	P/F	

	Freq.	Reading	Limit	Margin	State
TESTIN	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
CTA '		GTING			PASS
R.		TATES		ING	PASS
Note	(co) `		1.07	EST	

Note:

CTA TESTING The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

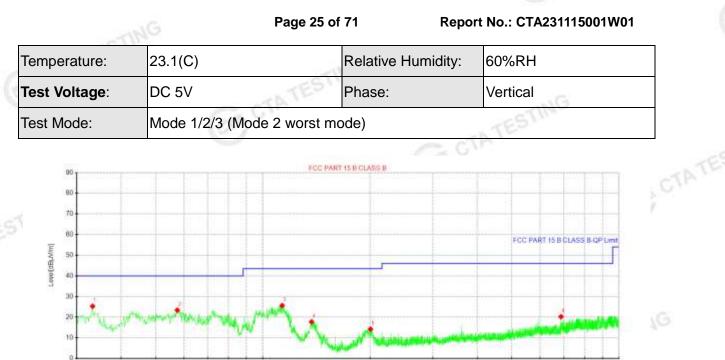

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

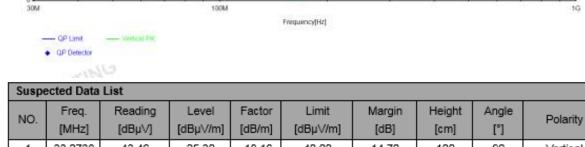
Page 24 of 71

Report No.: CTA231115001W01

(30MHz -1000MHz)

		1M PHY	
Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	Mode 1/2/3 (Mode 2	2 worst mode)	G
SG			6.




S	uspe	ected Data	List							
N	10.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
	Ю.	[MHz]	[dBµV]	[dBµ∖//m]	[dB/m]	[dBµ∖//m]	[dB]	[cm]	[°]	Polanty
	1	32.91	37.32	19.09	-18.23	40.00	20.91	100	180	Horizontal
	2	55.3412	38.52	21.31	-17.21	40.00	18.69	100	70	Horizontal
	3	112.45	40.18	20.98	-19.20	43.50	22.52	100	310	Horizontal
	4	201.568	34.25	14.99	-19.26	43.50	28.51	100	350	Horizontal
	5	485.172	30.27	15.74	-14.53	46.00	30.26	100	360	Horizontal
	6	730.34	33.21	22.08	-11.13	46.00	23.92	100	250	Horizontal

Note:1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m) 2). Factor(dB/m)

CTA TESTING 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

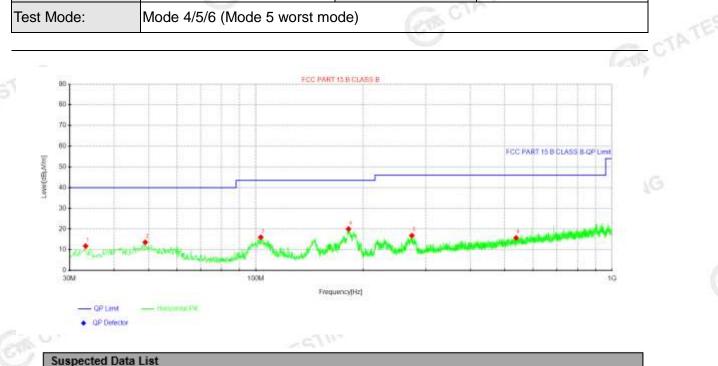
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)
- 4). All modes have been tested, only show the worst case.

	NO.								· · · · · · · · · · · · · · · · · ·	Polarity	
	NO.	[MHz]	[dBµ∨]	[dBµ∖//m]	[dB/m]	[dBµ∖//m]	[dB]	[cm]	[°]	Polarity	
	1	33.2738	43.46	25.30	-18.16	40.00	14.70	100	90	Vertical	
	2	57.5238	41.08	23.40	-17.68	40.00	16.60	100	50	Vertical	
	3	113.298	44.96	25.63	-19.33	43.50	17.87	100	240	Vertical	
	4	137.063	39.37	17.72	-21.65	43.50	25.78	100	290	Vertical	100
	5	200.598	33.50	14.22	-19.28	43.50	29.28	100	300	Vertical	TATE
	6	687.538	31.99	20.25	-11.74	46.00	25.75	100	200	Vertical	C.s.
e	e:1).Level (dBμV/m)= Reading (dBμV)+ Factor (dB/m)										

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m) 2). Factor(dB/m)=Antenna Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)


-se. CE CTA TESTING 4). All modes have been tested, only show the worst case.

Page 26 of 71

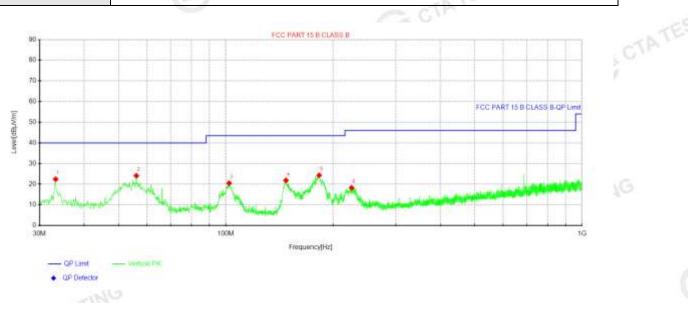
Report No.: CTA231115001W01

2M P	PHY
------	-----

		Page 26 of 71	Report No.: CTA231115001W01
- CTATEST		2M PHY	
Temperature:	23.1(C)	Relative H	Humidity: 60%RH
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	Mode 4/5/6 (Mo	de 5 worst mode)	Geow

	Suspe	ected Data	List]
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
	NO.	[MHz]	[dBµ∨]	[dBµ∖//m]	[dB/m]	[dBµ∖//m]	[dB]	[cm]	[°]	Polarity	
	1	33.2738	29.94	11.78	-18.16	40.00	28.22	100	0	Horizontal	169
	2	48.915	29.73	13.59	-16.14	40.00	26.41	100	214	Horizontal	-TAIL
	3	103.235	34.53	16.01	-18.52	43.50	27.49	100	230	Horizontal	C.S.
	4	182.047	40.44	20.03	-20.41	43.50	23.47	100	310	Horizontal	
E	5	274.197	34.50	16.81	-17.69	46.00	29.19	100	294	Horizontal]
	6	537.916	29.48	15.69	-13.79	46.00	30.31	100	214	Horizontal]

CTATESTIN Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)


> GR CTATESTING 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

4). All modes have been tested, only show the worst case.

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	Mode 4/5/6 (Mode 5 worst mo	ode)	TESTIN

	Suspe	cted Data	List							
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
2	NO.	[MHz]	[dBµ∨]	[dBµ∀/m]	[dB/m]	[dBµ∖//m]	[dB]	[cm]	[°]	Polanty
	1	33.2738	40.59	22.43	-18.16	40.00	17.57	100	74	Vertical
	2	56.0688	41.47	24.11	-17.36	40.00	15.89	100	359	Vertical
	3	102.143	38.98	20.51	-18.47	43.50	22.99	100	154	Vertical
	4	147.491	43.61	21.85	-21.76	43.50	21.65	100	360	Vertical
	5	182.775	44.68	24.31	-20.37	43.50	19.19	100	218	Vertical
	6	225.455	36.89	18.27	-18.62	46.00	27.73	100	211	Vertical

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m) 2). Factor(dB/m)-Antones F

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)
- 4). All modes have been tested, only show the worst case.

Page 28 of 71

(1GHz-25GHz) Spurious emission Requirements

1M	PHY
G	-SK

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Commen
				Low C	hannel (GFSK/	2402 MHz)	100			
3264.68	61.66	44.70	6.70	28.20	-9.80	51.86	74.00	-22.14	PK	Vertical
3264.68	50.56	44.70	6.70	28.20	-9.80	40.76	54.00	-13.24	AV	Vertical
3264.73	61.93	44.70	6.70	28.20	-9.80	52.13	74.00	-21.87	PK	Horizont
3264.73	50.74	44.70	6.70	28.20	-9.80	40.94	54.00	-13.06	AV	Horizonta
4804.40	59.47	44.20	9.04	31.60	-3.56	55.91	74.00	-18.09	PK	Vertical
4804.40	49.87	44.20	9.04	31.60	-3.56	46.31	54.00	-7.69	AV	Vertica
4804.55	59.28	44.20	9.04	31.60	-3.56	55.72	74.00	-18.28	PK	Horizont
4804.55	50.20	44.20	9.04	31.60	-3.56	46.64	54.00	-7.36	AV	Horizont
5359.78	48.40	44.20	9.86	32.00	-2.34	46.05	74.00	-27.95	PK	Vertica
5359.78	39.28	44.20	9.86	32.00	-2.34	36.94	54.00	-17.06	AV	Vertica
5359.81	47.57	44.20	9.86	32.00	-2.34	45.23	74.00	-28.77	PK	Horizonta
5359.81	39.00	44.20	9.86	32.00	-2.34	36.66	54.00	-17.34	AV	Horizonta
7205.70	53.63	43.50	11.40	35.50	3.40	57.03	74.00	-16.97	PK	Vertical
7205.70	43.61	43.50	11.40	35.50	3.40	47.01	54.00	-6.99	AV	Vertica
7205.76	54.52	43.50	11.40	35.50	3.40	57.92	74.00	-16.08	PK	Horizonta
7205.76	44.53	43.50	11.40	35.50	3.40	47.93	54.00	-6.07	AV	Horizont
				Middle (Channel (GFSK	(/2440 MHz)	•			
3263.07	61.54	44.70	6.70	28.20	-9.80	51.74	74.00	-22.26	PK	Vertical
3263.07	51.03	44.70	6.70	28.20	-9.80	41.23	54.00	-12.77	AV	Vertical
3263.00	61.07	44.70	6.70	28.20	-9.80	51.27	74.00	-22.73	PK	Horizonta
3263.00	50.90	44.70	6.70	28.20	-9.80	41.10	54.00	-12.90	AV	Horizont
4879.94	59.14	44.20	9.04	31.60	-3.56	55.58	74.00	-18.42	PK	Vertica
4879.94	49.26	44.20	9.04	31.60	-3.56	45.70	54.00	-8.30	AV	Vertical
4880.14	58.50	44.20	9.04	31.60	-3.56	54.94	74.00	-19.06	PK	Horizont
4880.14	49.72	44.20	9.04	31.60	-3.56	46.16	54.00	-7.84	AV	Horizont
5357.11	49.45	44.20	9.86	32.00	-2.34	47.10	74.00	-26.90	PK	Vertica
5357.11	39.24	44.20	9.86	32.00	-2.34	36.90	54.00	-17.10	AV	Vertical
5357.39	48.33	44.20	9.86	32.00	-2.34	45.99	74.00	-28.01	PK	Horizont
5357.06	38.16	44.20	9.86	32.00	-2.34	35.81	54.00	-18.19	AV	Horizonta
7320.85	53.57	43.50	11.40	35.50	3.40	56.97	74.00	-17.03	PK	Vertical
7320.85	44.64	43.50	11.40	35.50	3.40	48.04	54.00	-5.96	AV	Vertica
7320.54	53.85	43.50	11.40	35.50	3.40	57.25	74.00	-16.75	PK	Horizonta
7320.54	43.87	43.50	11.40	35.50	3.40	47.27	54.00	-6.73	AV	Horizont

Page 29 of 71

Report No.: CTA231115001W01

				5-	29 of 71			No.: CTA2		
	182			High Cha	nnel (GFSK/	2480 MHz)				
3264.81	61.49	44.70	6.70	28.20	-9.80	51.69	74.00	-22.31	PK	Vertical
3264.81	51.63	44.70	6.70	28.20	-9.80	41.83	54.00	-12.17	AV	Vertical
3264.67	61.05	44.70	6.70	28.20	-9.80	51.25	74.00	-22.75	PK	Horizontal
3264.67	50.57	44.70	6.70	28.20	-9.80	40.77	54.00	-13.23	AV	Horizontal
4960.54	58.68	44.20	9.04	31.60	-3.56	55.12	74.00	-18.88	PK	Vertical
4960.54	50.22	44.20	9.04	31.60	-3.56	46.66	54.00	-7.34	AV	Vertical
4960.41	58.77	44.20	9.04	31.60	-3.56	55.21	74.00	-18.79	PK	Horizontal
4960.41	50.14	44.20	9.04	31.60	-3.56	46.58	54.00	-7.42	AV	Horizontal
5359.62	49.35	44.20	9.86	32.00	-2.34	47.01	74.00	-26.99	PK	Vertical
5359.62	39.65	44.20	9.86	32.00	-2.34	37.31	54.00	-16.69	AV	Vertical
5359.63	47.79	44.20	9.86	32.00	-2.34	45.45	74.00	-28.55	PK	Horizontal
5359.63	38.46	44.20	9.86	32.00	-2.34	36.12	54.00	-17.88	AV	Horizontal
7439.75	54.44	43.50	11.40	35.50	3.40	57.84	74.00	-16.16	PK	Vertical
7439.75	44.72	43.50	11.40	35.50	3.40	48.12	54.00	-5.88	AV	Vertical
7439.87	53.88	43.50	11.40	35.50	3.40	57.28	74.00	-16.72	PK	Horizontal
7439.87	43.93	43.50	11.40	35.50	3.40	47.33	54.00	-6.67	AV	Horizontal
-			or + Cable ding + Fac		Pre-ampli	fier.				

Note:

²⁾ The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise. cta TESTIN

Page 30 of 71

2M PHY GFSK

	TATES				2M PH					
(etc)					GFSK	L				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
		-			hannel (GFSK/2	2402 MHz)	ALD -		-	-
3264.79	61.34	44.70	6.70	28.20	-9.80	51.54	74.00	-22.46	PK	Vertical
3264.79	50.02	44.70	6.70	28.20	-9.80	40.22	54.00	-13.78	AV	Vertical
3264.76	62.25	44.70	6.70	28.20	-9.80	52.45	74.00	-21.55	PK	Horizonta
3264.76	50.29	44.70	6.70	28.20	-9.80	40.49	54.00	-13.51	AV	Horizonta
4804.29	58.88	44.20	9.04	31.60	-3.56	55.32	74.00	-18.68	PK	Vertical
4804.29	50.00	44.20	9.04	31.60	-3.56	46.44	54.00	-7.56	AV	Vertical
4804.41	59.38	44.20	9.04	31.60	-3.56	55.82	74.00	-18.18	PK	Horizonta
4804.41	49.87	44.20	9.04	31.60	-3.56	46.31	54.00	-7.69	AV	Horizonta
5359.82	48.12	44.20	9.86	32.00	-2.34	45.78	74.00	-28.22	PK	Vertical
5359.82	39.63	44.20	9.86	32.00	-2.34	37.29	54.00	-16.71	AV	Vertical
5359.62	47.50	44.20	9.86	32.00	-2.34	45.16	74.00	-28.84	PK	Horizonta
5359.62	39.47	44.20	9.86	32.00	-2.34	37.13	54.00	-16.87	AV	Horizonta
7205.76	54.31	43.50	11.40	35.50	3.40	57.71	74.00	-16.29	PK	Vertical
7205.76	44.93	43.50	11.40	35.50	3.40	48.33	54.00	-5.67	AV	Vertical
7205.80	54.30	43.50	11.40	35.50	3.40	57.70	74.00	-16.30	PK	Horizonta
7205.80	44.14	43.50	11.40	35.50	3.40	47.54	54.00	-6.46	AV	Horizonta
				Middle (Channel (GFSK	/2440 MHz)		-		
3263.13	62.19	44.70	6.70	28.20	-9.80	52.39	74.00	-21.61	PK	Vertical
3263.13	50.31	44.70	6.70	28.20	-9.80	40.51	54.00	-13.49	AV	Vertical
3263.19	60.85	44.70	6.70	28.20	-9.80	51.05	74.00	-22.95	PK	Horizonta
3263.19	50.88	44.70	6.70	28.20	-9.80	41.08	54.00	-12.92	AV	Horizonta
4879.97	59.42	44.20	9.04	31.60	-3.56	55.86	74.00	-18.14	PK	Vertical
4879.97	49.29	44.20	9.04	31.60	-3.56	45.73	54.00	-8.27	AV	Vertical
4880.10	59.33	44.20	9.04	31.60	-3.56	55.77	74.00	-18.23	PK	Horizonta
4880.10	49.49	44.20	9.04	31.60	-3.56	45.93	54.00	-8.07	AV	Horizonta
5357.31	48.16	44.20	9.86	32.00	-2.34	45.82	74.00	-28.18	PK	Vertical
5357.31	39.30	44.20	9.86	32.00	-2.34	36.95	54.00	-17.05	AV	Vertical
5357.39	48.11	44.20	9.86	32.00	-2.34	45.77	74.00	-28.23	PK	Horizonta
5357.06	38.24	44.20	9.86	32.00	-2.34	35.89	54.00	-18.11	AV	Horizonta
7320.85	54.67	43.50	11.40	35.50	3.40	58.07	74.00	-15.93	PK	Vertical
7320.85	43.50	43.50	11.40	35.50	3.40	46.90	54.00	-7.10	AV	Vertical
7320.42	54.85	43.50	11.40	35.50	3.40	58.25	74.00	-15.75	PK	Horizonta
7320.42	44.48	43.50	11.40	35.50	3.40	47.88	54.00	-6.12	AV	Horizonta

Page 31 of 71

Report No.: CTA231115001W01

	285			High Cha	nnel (GFSK/	2480 MHz)				
3264.71	60.97	44.70	6.70	28.20	-9.80	51.17	74.00	-22.83	PK	Vertical
3264.71	51.17	44.70	6.70	28.20	-9.80	41.37	54.00	-12.63	AV	Vertical
3264.80	62.11	44.70	6.70	28.20	-9.80	52.31	74.00	-21.69	PK	Horizontal
3264.80	50.61	44.70	6.70	28.20	-9.80	40.81	54.00	-13.19	AV	Horizontal
4960.41	58.26	44.20	9.04	31.60	-3.56	54.70	74.00	-19.30	PK	Vertical
4960.41	50.36	44.20	9.04	31.60	-3.56	46.80	54.00	-7.20	AV	Vertical
4960.35	58.67	44.20	9.04	31.60	-3.56	55.11	74.00	-18.89	PK	Horizontal
4960.35	49.98	44.20	9.04	31.60	-3.56	46.42	54.00	-7.58	AV	Horizontal
5359.77	48.98	44.20	9.86	32.00	-2.34	46.63	74.00	-27.37	PK	Vertical
5359.77	40.24	44.20	9.86	32.00	-2.34	37.90	54.00	-16.10	AV	Vertical
5359.64	47.69	44.20	9.86	32.00	-2.34	45.35	74.00	-28.65	PK	Horizontal
5359.64	38.23	44.20	9.86	32.00	-2.34	35.89	54.00	-18.11	AV	Horizontal
7439.77	53.99	43.50	11.40	35.50	3.40	57.39	74.00	-16.61	PK	Vertical
7439.77	43.48	43.50	11.40	35.50	3.40	46.88	54.00	-7.12	AV	Vertical
7439.71	53.78	43.50	11.40	35.50	3.40	57.18	74.00	-16.82	PK	Horizontal
7439.71	44.04	43.50	11.40	35.50	3.40	47.44	54.00	-6.56	AV	Horizontal

Note:

²⁾ The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise. cta TESTIN

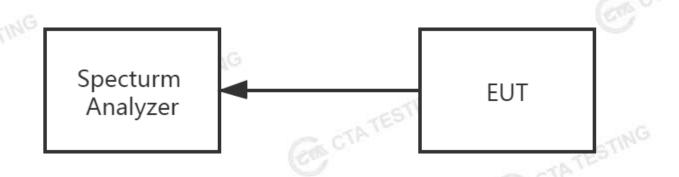
4.6 TEST RESULTS (Restricted Bands Requirements)

	2 6 1					1M PH	Y					
9		Meter			Antenna	Orrected	Emission					
	Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
	2390.00	67.03	43.80	4.91	25.90	-12.99	54.04	74.00	-19.96	РК	Vertical	CTATE
	2390.00	53.23	43.80	4.91	25.90	-12.99	40.24	54.00	-13.76	AV	Vertical	CI
3	2390.00	65.43	43.80	4.91	25.90	-12.99	52.44	74.00	-21.56	PK	Horizontal	1
	2390.00	54.40	43.80	4.91	25.90	-12.99	41.41	54.00	-12.59	AV	Horizontal	
Γ	2483.50	65.09	43.80	5.12	25.90	-12.78	52.31	74.00	-21.69	РК	Vertical	
	2483.50	52.38	43.80	5.12	25.90	-12.78	39.60	54.00	-14.40	AV	Vertical	
	2483.50	65.91	43.80	5.12	25.90	-12.78	53.13	74.00	-20.87	РК	Horizontal	G
Ī	2483.50	52.59	43.80	5.12	25.90	-12.78	39.81	54.00	-14.19	AV	Horizontal	
-		4				\sim			1	an C	16	1
						2M PH	Y					
						1			1	1 7		1

Page 32 of 71

					ľ				
Meter			Antenna	Orrected	Emission				
Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment
(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
66.42	43.80	4.91	25.90	-12.99	53.43	74.00	-20.57	PK	Vertical
53.19	43.80	4.91	25.90	-12.99	40.20	54.00	-13.80	AV	Vertical
66.10	43.80	4.91	25.90	-12.99	53.11	74.00	-20.89	PK	Horizontal
53.95	43.80	4.91	25.90	-12.99	40.96	54.00	-13.04	AV	Horizontal
65.44	43.80	5.12	25.90	-12.78	52.66	74.00	-21.34	PK	Vertical
53.19	43.80	5.12	25.90	-12.78	40.41	54.00	-13.59	AV	Vertical
65.93	43.80	5.12	25.90	-12.78	53.15	74.00	-20.85	PK	Horizontal
53.34	43.80	5.12	25.90	-12.78	40.56	54.00	-13.44	AV	Horizontal
		0.12	20.00	6	TATES		<u> </u>		
	Reading (dBµV) 66.42 53.19 66.10 53.95 65.44 53.19 65.93 53.34	Reading Amplifier (dBµV) (dB) 66.42 43.80 53.19 43.80 66.10 43.80 53.95 43.80 65.44 43.80 53.19 43.80 65.43 43.80 65.44 43.80 65.93 43.80	Reading Amplifier Loss (dBµV) (dB) (dB) 66.42 43.80 4.91 53.19 43.80 4.91 66.10 43.80 4.91 53.95 43.80 4.91 53.19 43.80 5.12 53.19 43.80 5.12 53.19 43.80 5.12 53.19 43.80 5.12 53.34 43.80 5.12	ReadingAmplifierLossFactor(dBµV)(dB)(dB)(dB/m)66.4243.804.9125.9053.1943.804.9125.9066.1043.804.9125.9053.9543.804.9125.9065.4443.805.1225.9053.1943.805.1225.90	Meter Amplifier Loss Antenna Orrected Reading Amplifier Loss Factor Factor (dBµV) (dB) (dB) (dB/m) (dB) 66.42 43.80 4.91 25.90 -12.99 53.19 43.80 4.91 25.90 -12.99 66.10 43.80 4.91 25.90 -12.99 53.95 43.80 4.91 25.90 -12.99 65.44 43.80 5.12 25.90 -12.78 53.19 43.80 5.12 25.90 -12.78 65.93 43.80 5.12 25.90 -12.78	Meter Amplifier Loss Antenna Orrected Emission Reading Amplifier Loss Factor Factor Level (dBµV) (dB) (dB) (dB/m) (dB) (dB/m) (dB) (dB/m) 66.42 43.80 4.91 25.90 -12.99 53.43 53.19 43.80 4.91 25.90 -12.99 40.20 66.10 43.80 4.91 25.90 -12.99 53.11 53.95 43.80 4.91 25.90 -12.99 53.11 53.95 43.80 5.12 25.90 -12.78 52.66 53.19 43.80 5.12 25.90 -12.78 52.66 53.19 43.80 5.12 25.90 -12.78 40.41 65.93 43.80 5.12 25.90 -12.78 53.15	Meter Amplifier Loss Antenna Orrected Emission (dBµV) (dB) 74.00 53.19 43.80 4.91 25.90 -12.99 40.96 54.00 65.44 43.80 5.12 25.90 -12.78 52.66 74.00 53.19 43.80 5.12 25.90 -12.78	ReadingAmplifierLossFactorFactorLevelLimitsMargin(dBµV)(dB)(dB)(dB/m)(dB)(dB)(dB)(dB)(dB)66.4243.804.9125.90-12.9953.4374.00-20.5753.1943.804.9125.90-12.9940.2054.00-13.8066.1043.804.9125.90-12.9940.2054.00-13.8066.1043.804.9125.90-12.9940.9654.00-20.8953.9543.804.9125.90-12.7852.6674.00-21.3465.4443.805.1225.90-12.7840.4154.00-13.5965.9343.805.1225.90-12.7853.1574.00-20.8553.3443.805.1225.90-12.7840.5654.0013.44	Meter Amplifier Loss Antenna Orrected Emission Limits Margin Detector (dBµV) (dB) (dB) (dB) (dB/m) (dB) (dB) (dB) Type 66.42 43.80 4.91 25.90 -12.99 53.43 74.00 -20.57 PK 53.19 43.80 4.91 25.90 -12.99 40.20 54.00 -13.80 AV 66.10 43.80 4.91 25.90 -12.99 53.11 74.00 -20.89 PK 53.19 43.80 4.91 25.90 -12.99 53.11 74.00 -20.89 PK 53.95 43.80 4.91 25.90 -12.99 40.96 54.00 -13.04 AV 65.44 43.80 5.12 25.90 -12.78 52.66 74.00 -21.34 PK 53.19 43.80 5.12 25.90 -12.78 40.41 54.00 -13.59 AV

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION


5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in CTATE! the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
For Band edge	(este
Spectrum Parameter	Setting
Detector	Peak
	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz

5.3 TEST SETUP

Max hold

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

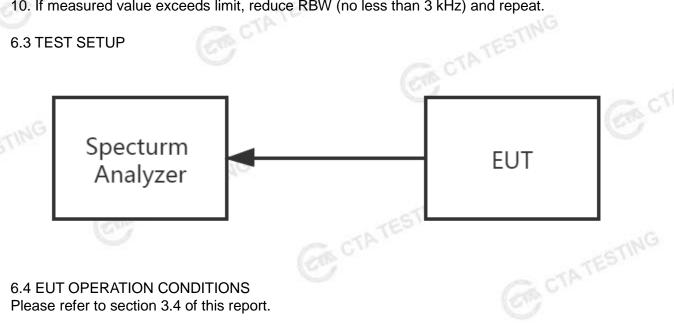
5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

Trace-Mode:

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Page 34 of 71


6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT		STIM				
FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS		
Ca						

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

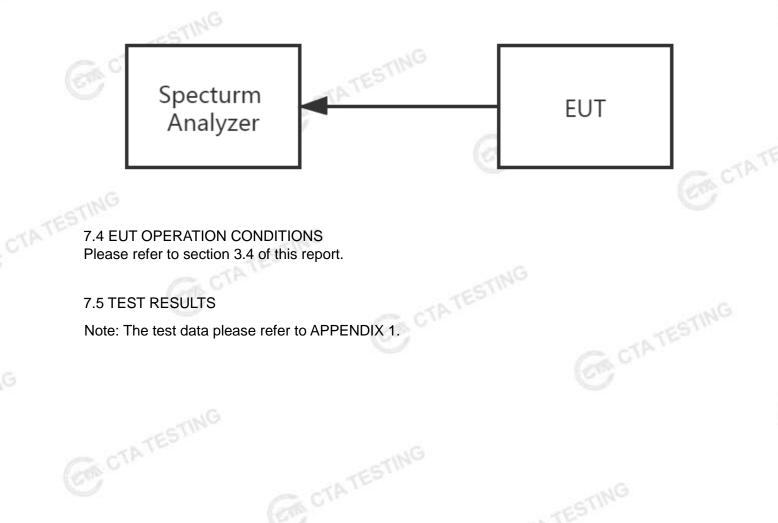
6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Page 35 of 71

Report No.: CTA231115001W01

7. BANDWIDTH TEST


7.1 LIMIT

BANDWIDTH TE	ST				
7.1 LIMIT					
1	-	ATA	Den	3	
FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	TATE
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	R.C.

CTATESTI 7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

Page 36 of 71

8. PEAK OUTPUT POWER TEST

8. PEAK OUTPUT	F POWER TEST	- iG					
8.1 LIMIT							
9		TATLAT	Ser	i i i			
FCC Part 15.247,Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS			

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW \geq DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is CTA TESTING greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 \times RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

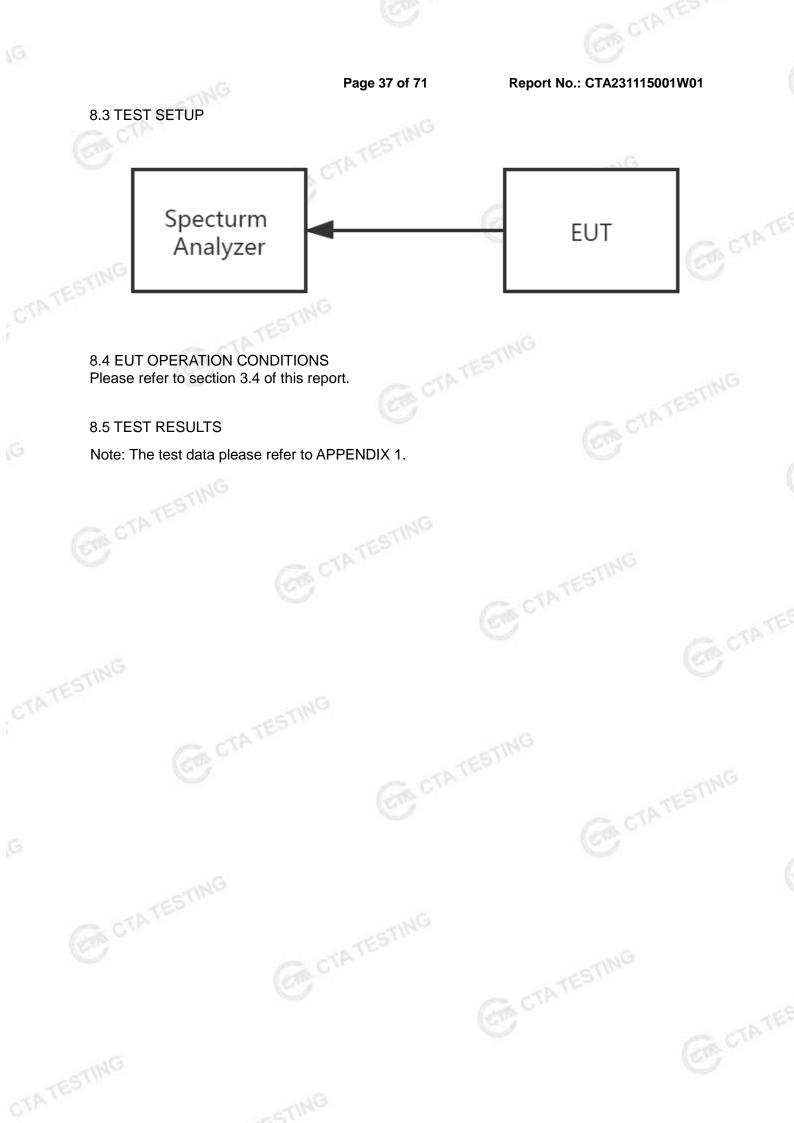
a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 \times DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.


f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

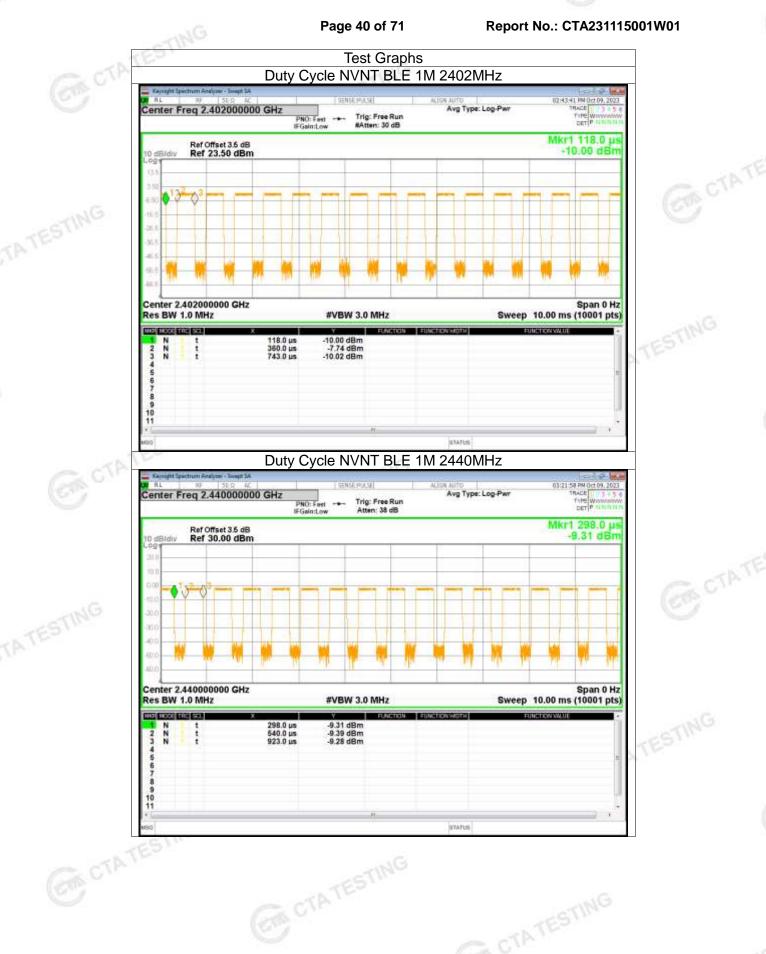
PKPM1 Peak power meter method:

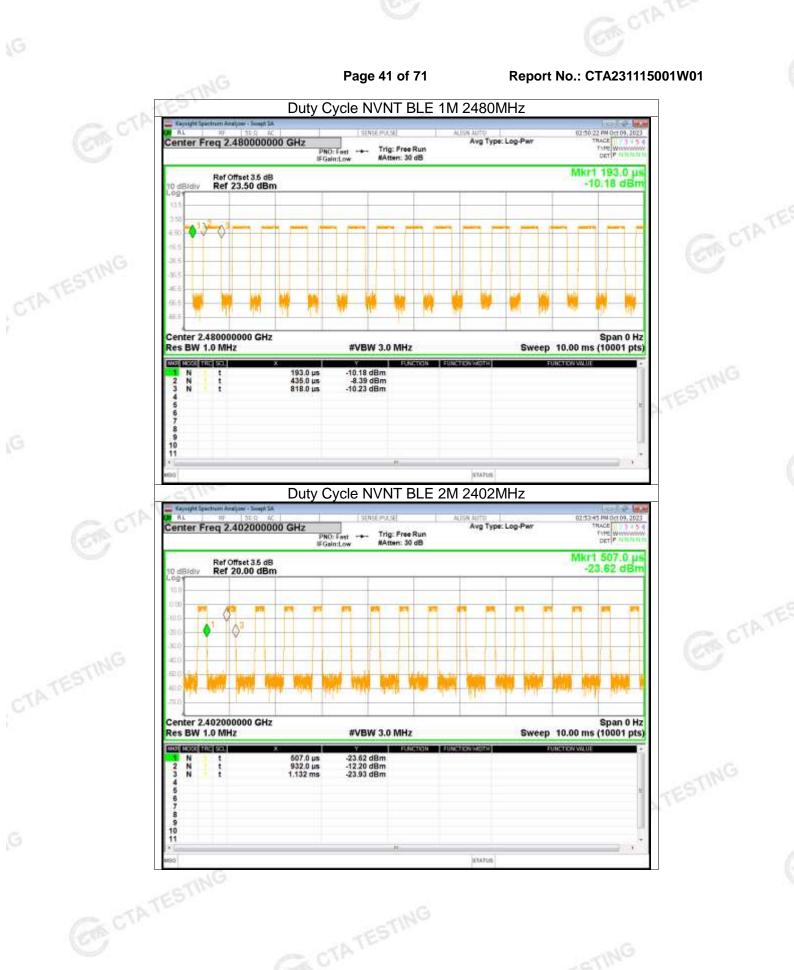
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

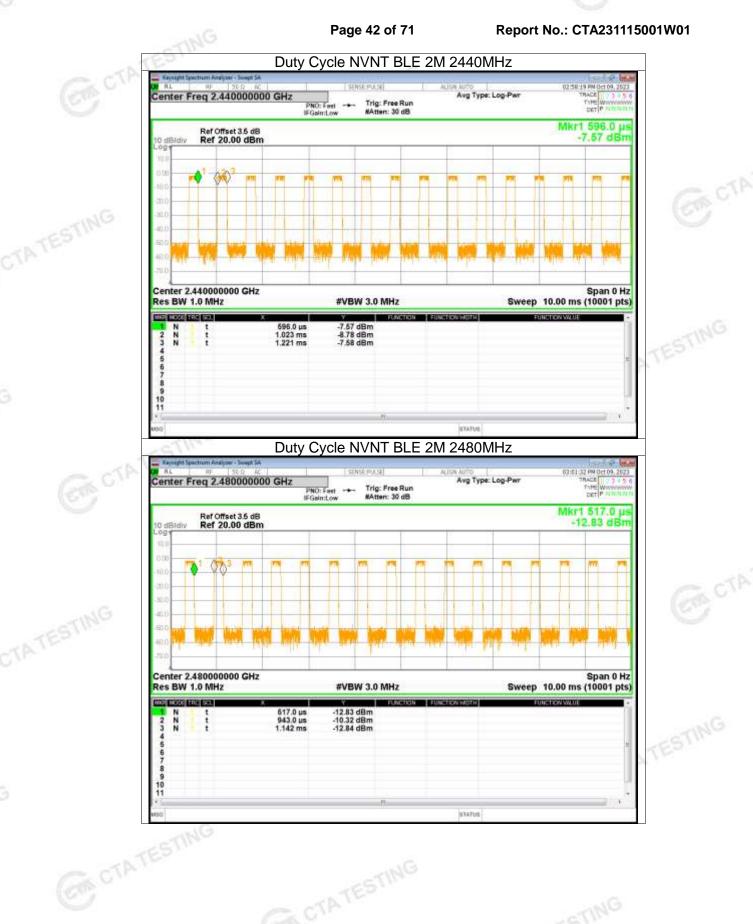
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

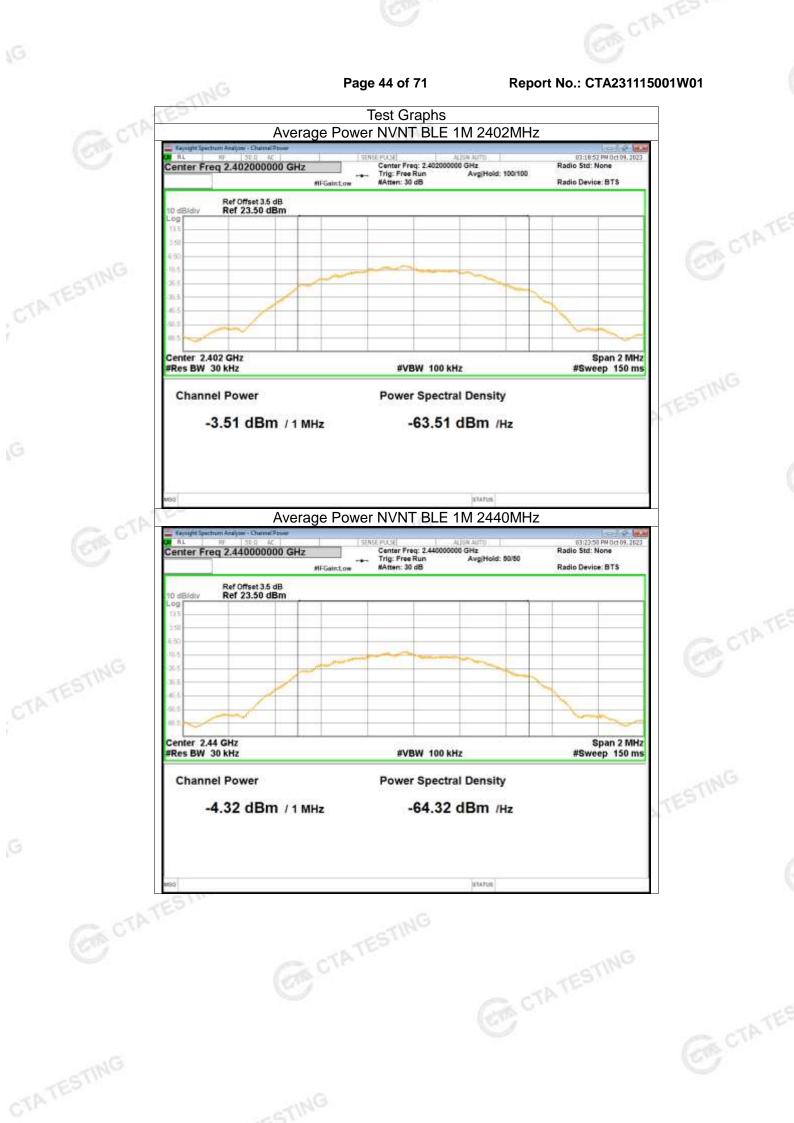

9.2 EUT ANTENNA

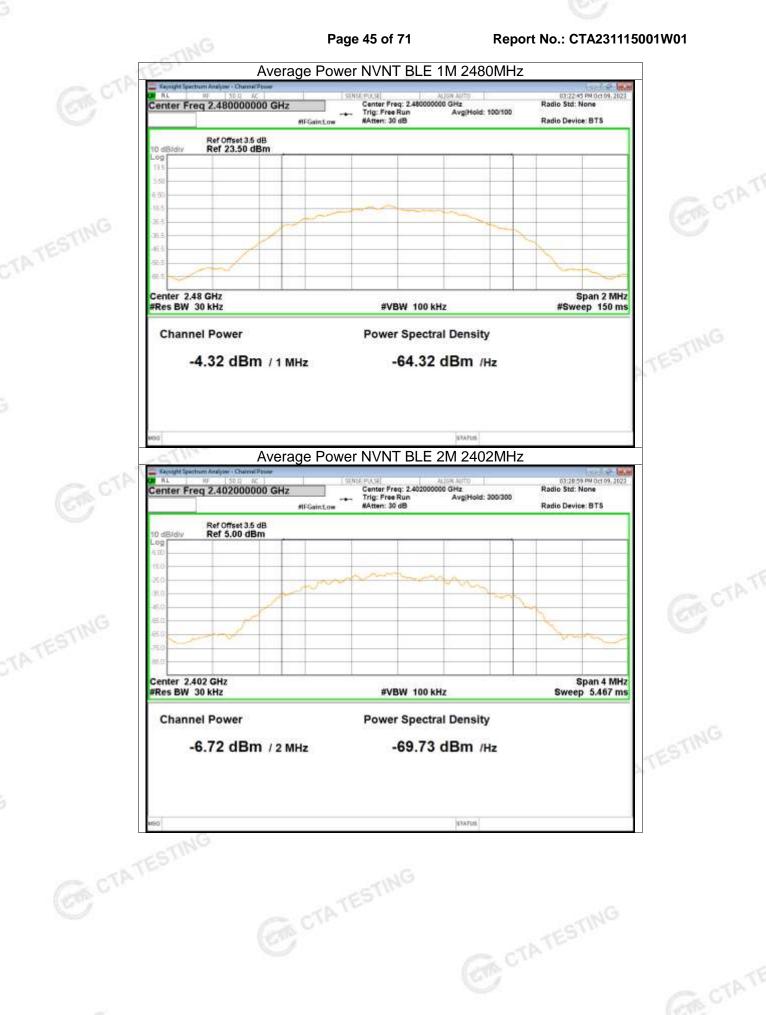

The EUT antenna is PCB Antenna. It comply with the standard requirement.

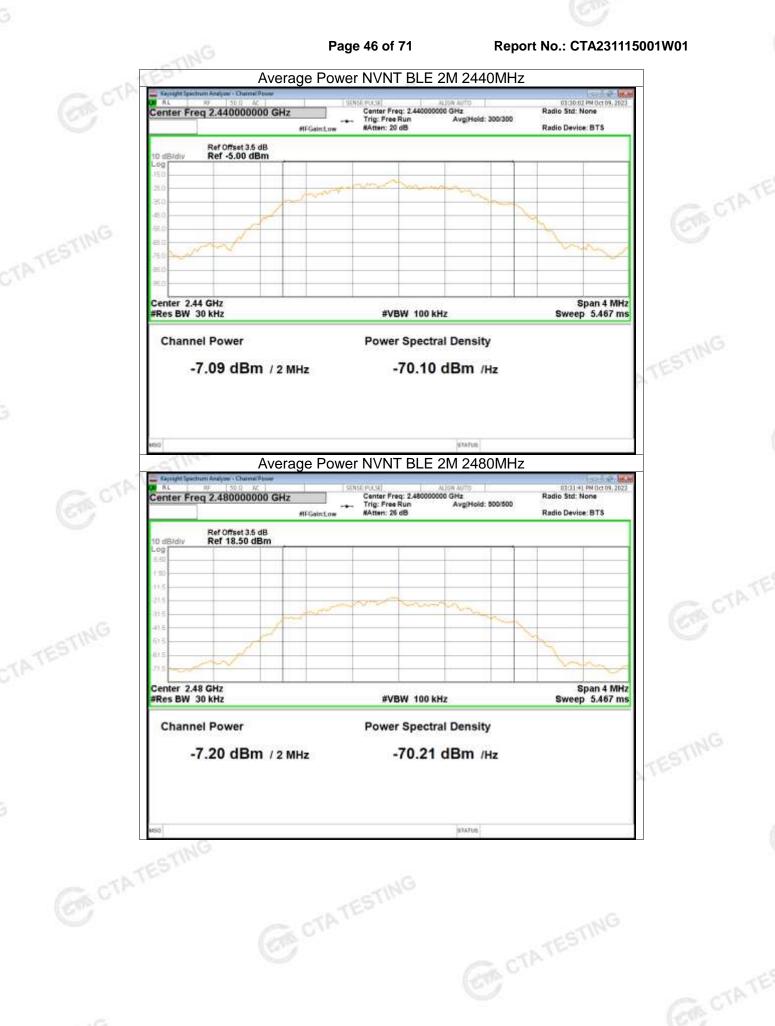

Page 39 of 71

1. Duty Cycle

1. Du	ty Cycle				
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz
NVNT	BLE 1M	2402	61.28	2.13	2.61
NVNT	BLE 1M	2440	61.28	2.13	2.61
NVNT	BLE 1M	2480	61.28	2.13	2.61
NVNT	BLE 2M	2402	32	4.95	5
NVNT	BLE 2M	2440	31.68	4.99	5.05
NVNT	BLE 2M	2480	31.84	4.97	5.03
	DLE 2IVI	2400	51.04		5.05





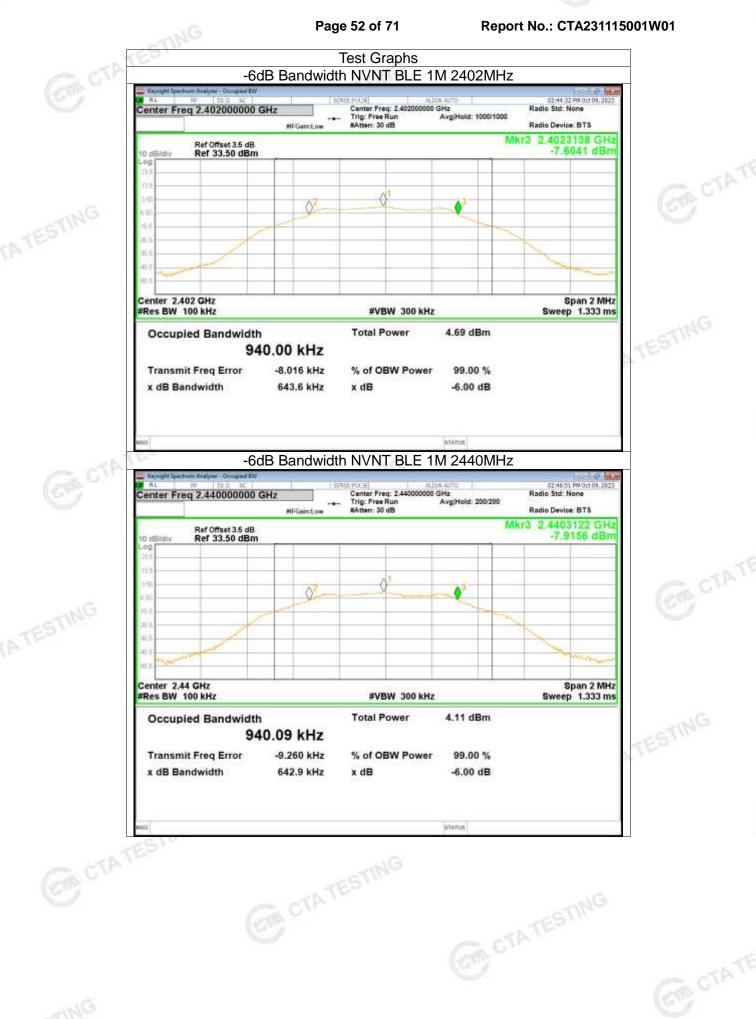


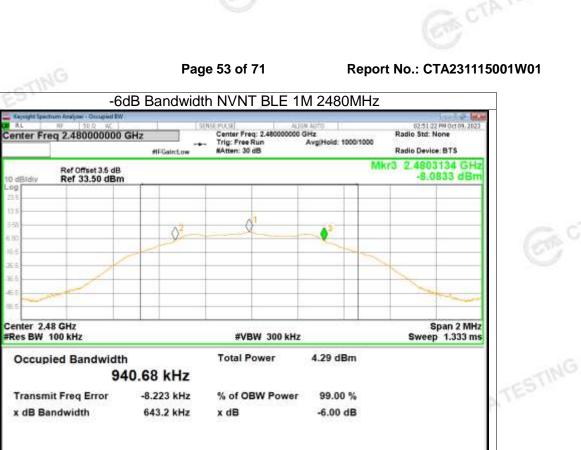
Page 43 of 71 Report 2. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-3.51	2.13	-1.38	<=30	Pass
NVNT	BLE 1M	2440	-4.32	2.13	-2.19	<=30	Pass
NVNT	BLE 1M	2480	-4.32	2.13	-2.19	<=30	Pass
NVNT	BLE 2M	2402	-6.72	4.95	-1.77	<=30	Pass
NVNT	BLE 2M	2440	-7.09	4.99	-2.1	<=30	Pass
NVNT	BLE 2M	2480	-7.2	4.97	-2.23	<=30	Pass
NVNT	BLE 2M		-	4.97	-2.23	<=30	Pas
		TATES					

Page 47 of 71 R 3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-1.01	<=30	Pass
NVNT	BLE 1M	2440	-1.49	<=30	Pass
NVNT	BLE 1M	2480	-1.41	<=30	Pass
NVNT	BLE 2M	2402	-1.21	<=30	Pass
NVNT	BLE 2M	2440	-1.6	<=30	Pass
NVNT	BLE 2M	2480	-1.59	<=30	Pass
		2480	-1.59	<=30	Pass
		TESTING			
		ATA			

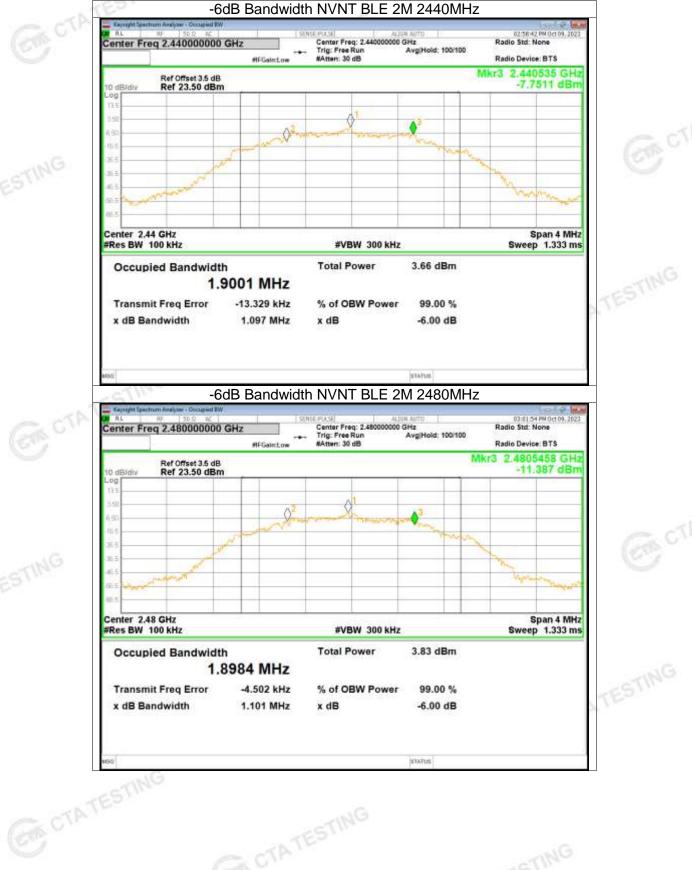




Page 51 of 71

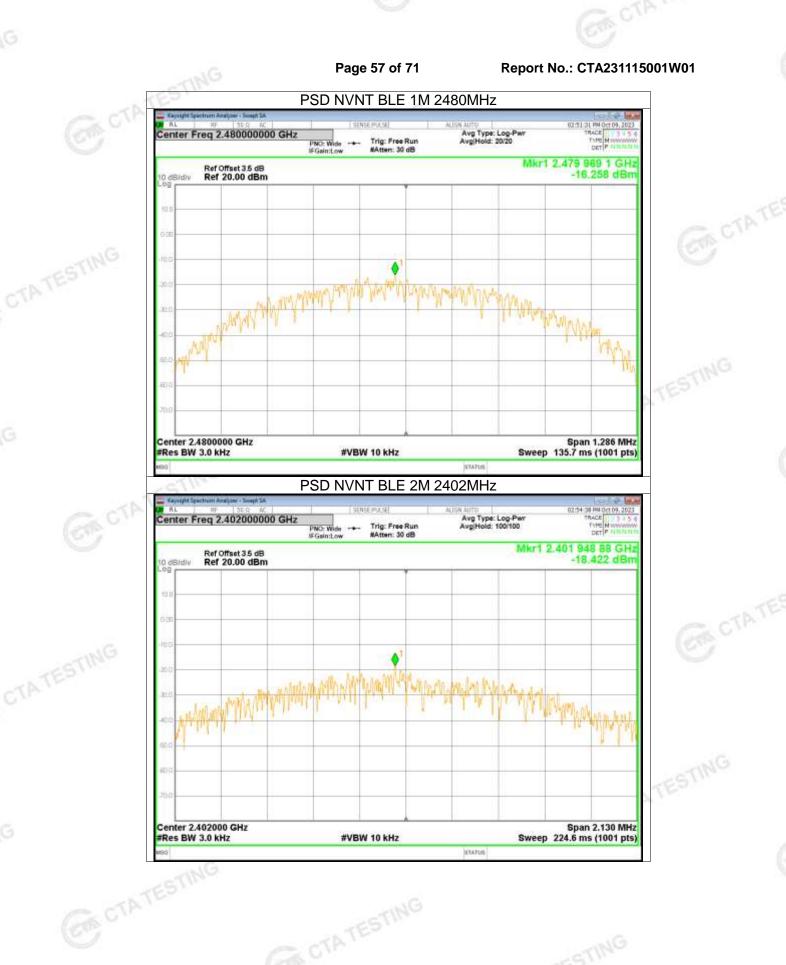
4. -6dB Bandwidth

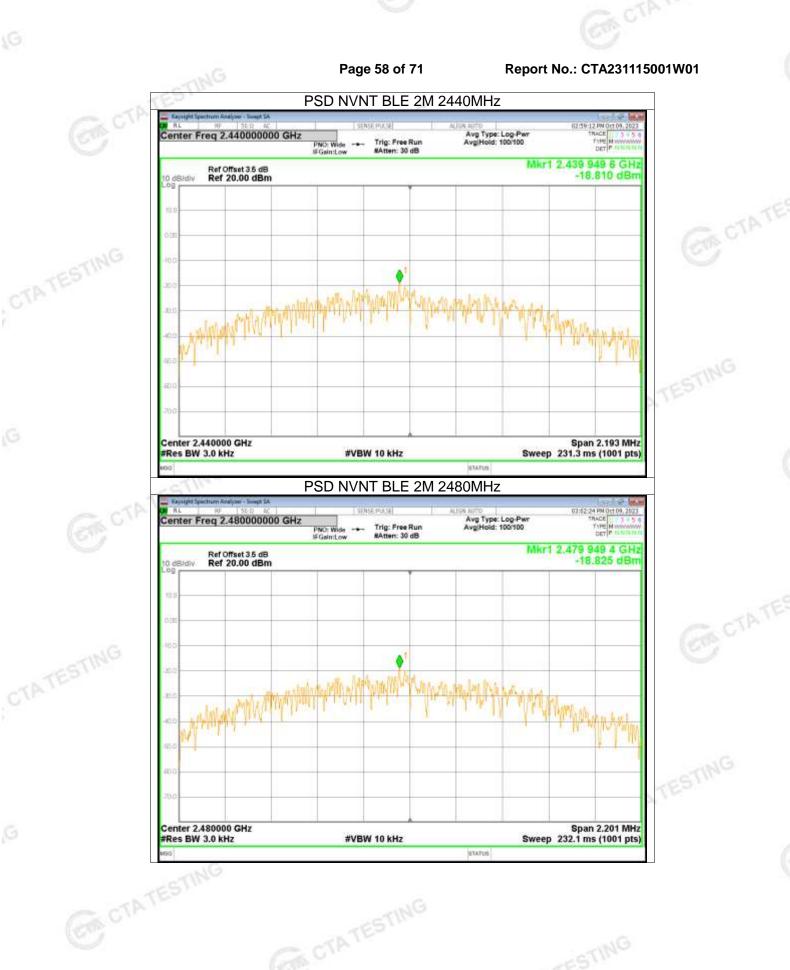
STATIS.


TESTING

-6dB Bandwidth NVNT BLE 2M 2402MHz

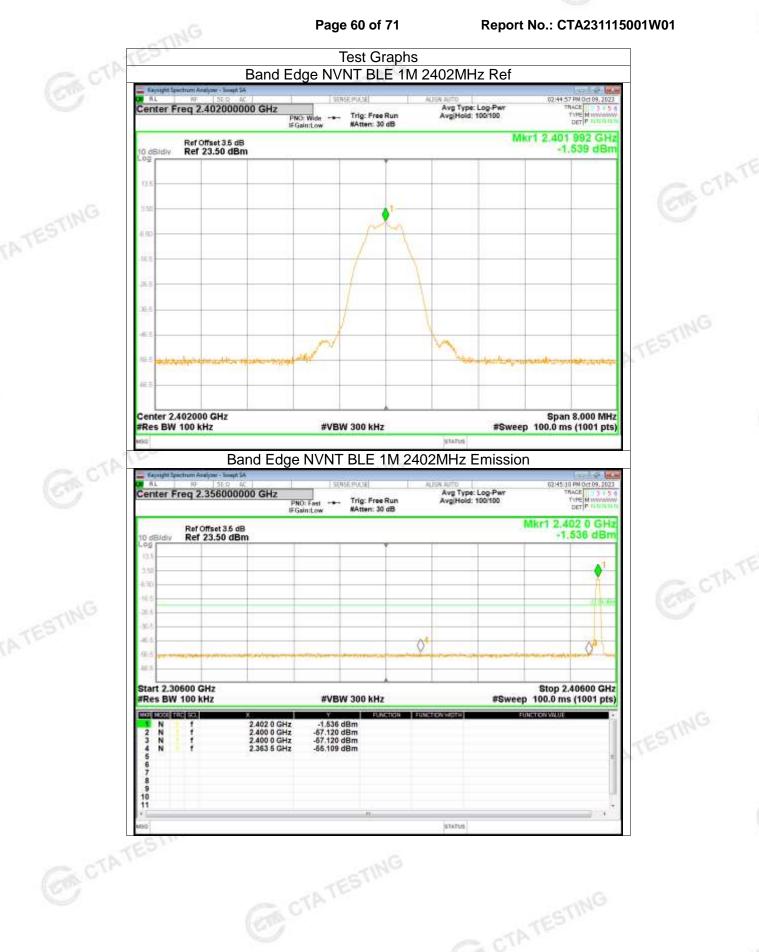
CTA

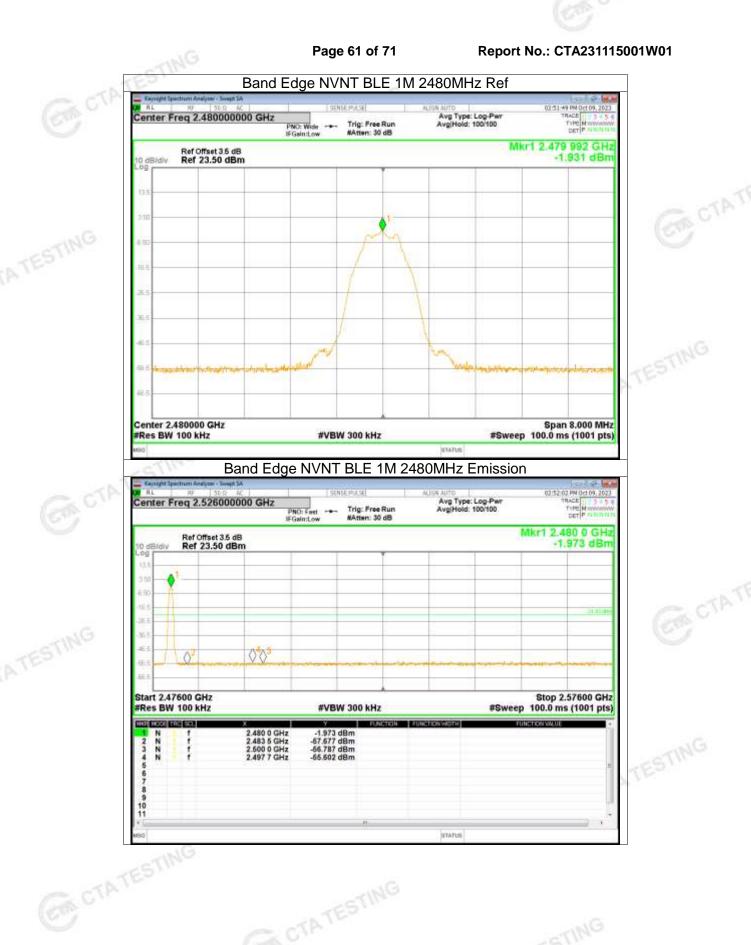


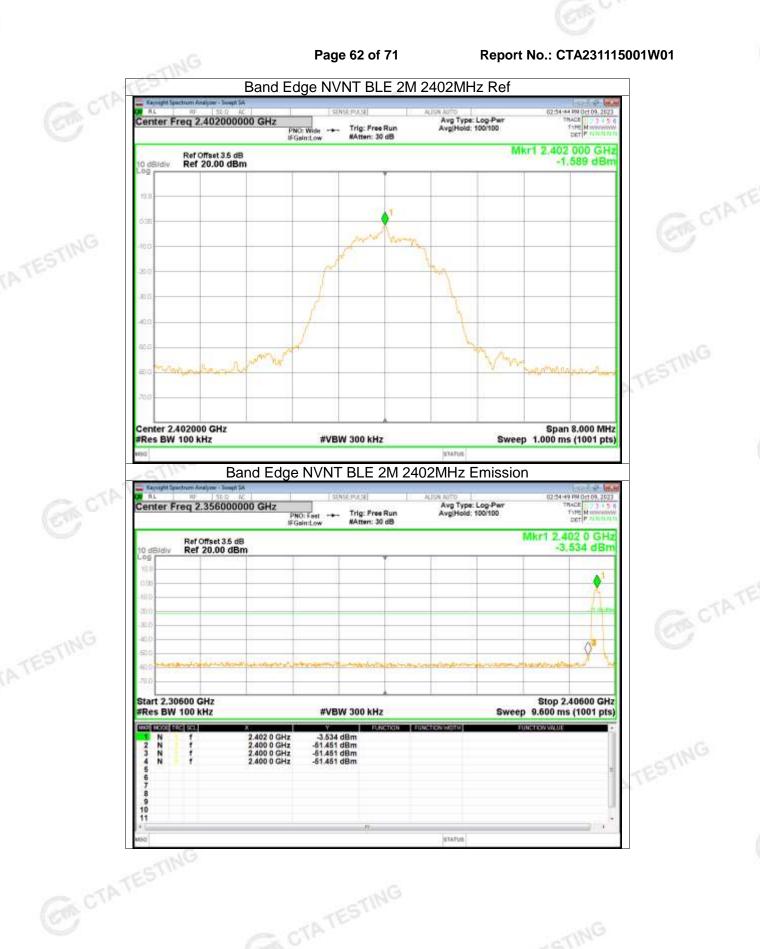

TING

5. Maximum Power Spectral Density Level

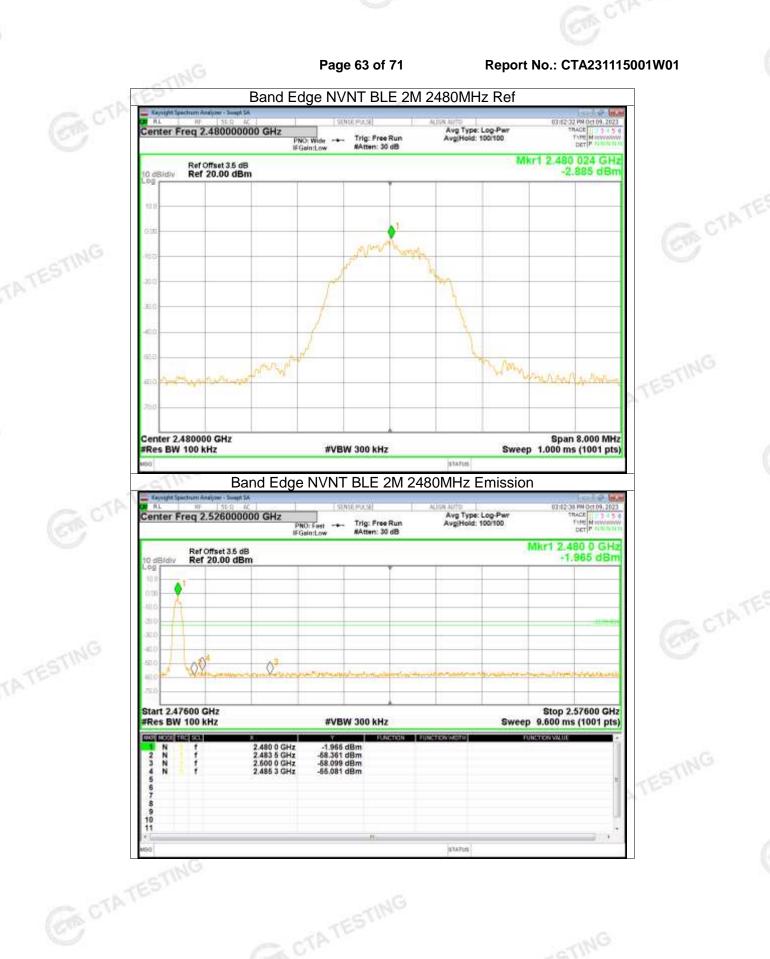
Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-15.8	<=8	Pass
NVNT	BLE 1M	2440	-16.22	<=8	Pass
NVNT	BLE 1M	2480	-16.26	<=8	Pass
NVNT	BLE 2M	2402	-18.42	<=8	Pass
NVNT	BLE 2M	2440	-18.81	<=8	Pass
NVNT	BLE 2M	2480	-18.83	<=8	Pass
		TATESTING			

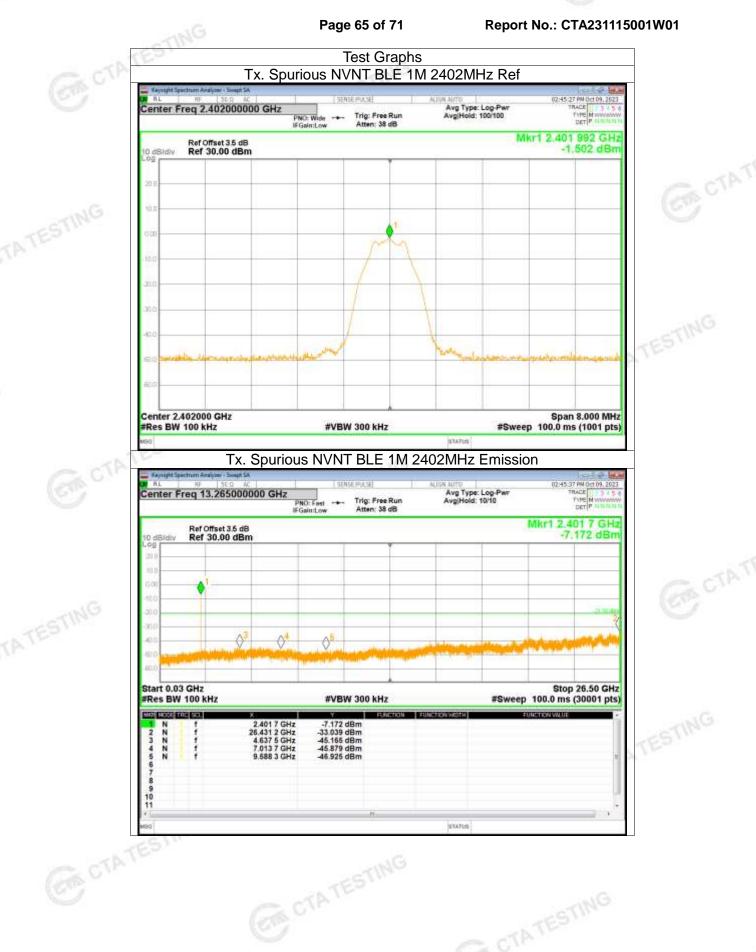


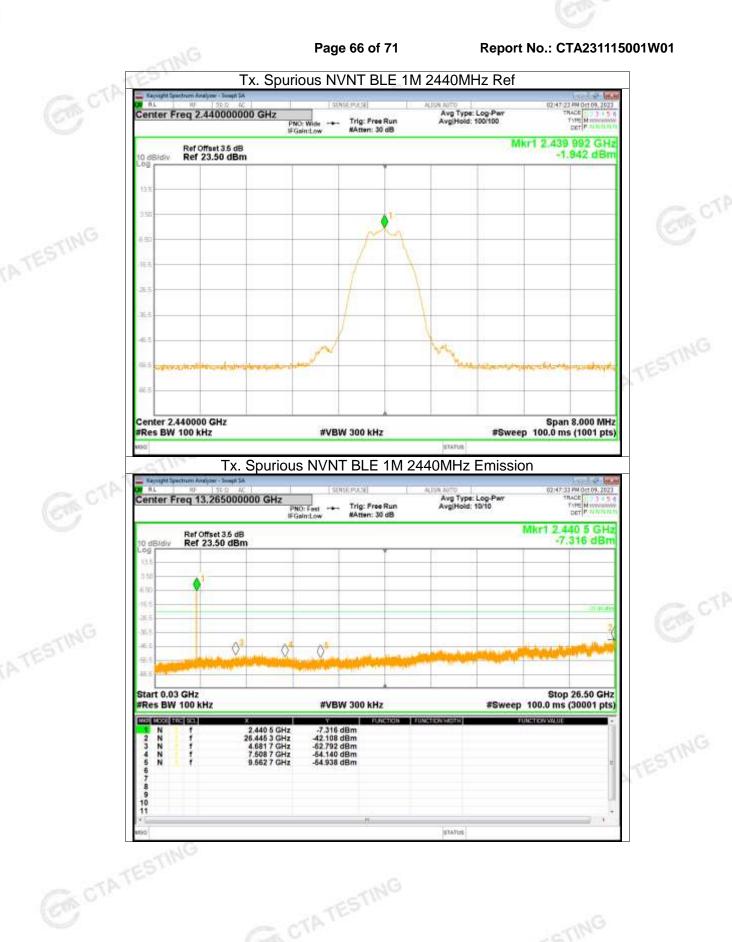

Page 59 of 71


Report No.: CTA231115001W01

6.	Band	Edge	


	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-53.56	<=-20	Pass
NVNT	BLE 1M	2480	-53.67	<=-20	Pass
NVNT	BLE 2M	2402	-49.86	<=-20	Pass
NVNT	BLE 2M	2480	-52.2	<=-20	Pass




ĮQ.

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-31.53	<=-20	Pass
NVNT	BLE 1M	2440	-40.16	<=-20	Pass
NVNT	BLE 1M	2480	-30.91	<=-20	Pass
NVNT	BLE 2M	2402	-48.09	<=-20	Pass
NVNT	BLE 2M	2440	-49.71	<=-20	Pass
NVNT	BLE 2M	2480	-49.33	<=-20	Pass
		ATESTING			

G

G

G

Page 71 of 71

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *