

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24103100103 FCC ID.....:: 2AYD5-I24D02

Compiled by

(position+printed name+signature)..: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Test Engineer Lushan Kong Jushan Kong

ting Techno

Approved by

(position+printed name+signature)... Manager Eric Wang

Date of issue....: Sep.20, 2024

Representative Laboratory Name .: Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address:

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... **Imin Technology Pte Ltd**

Address: 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Test specification:

FCC Part 15.247: Operation within the bands 902-928 MHz, 2400-Standard:

2483.5 MHz and 5725-5850 MHz

TRF Originator.....: Shenzhen Global Test Service Co.,Ltd.

Master TRF..... Dated 2014-12

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: **POS Device**

Trade Mark:

Manufacturer: Imin Technology Pte Ltd

Model/Type reference....: 124D02

Listed Models: N/A

Operation Frequency.....: From 2412MHz to 2462MHz

Hardware Version N/A Software Version: N/A

Rating: DC 24V/1.5A by adapter

Result....: **PASS** Report No.: CTA24103100103 Page 2 of 51

TEST REPORT

Tool Donort No.	CT 4 2 4 4 0 2 4 0 0 4 0 2	Sep.20, 2024
Test Report No. :	CTA24103100103	Date of issue

Equipment under Test : POS Device

Model /Type : I24D02

Listed model : N/A

Applicant : Imin Technology Pte Ltd

Address : 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Manufacturer : Imin Technology Pte Ltd

Address : 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	5
2.4. Short description of the Equipment under Test (EUT)	7
2.5. EUT operation mode	7
2.6. Block Diagram of Test Setup	7
2.7. Related Submittal(s) / Grant (s)	7
2.8. EUT Exercise Software	8
2.9. Special Accessories	8
2.10. External I/O Cable	8
2.11. Modifications	8
3. TEST ENVIRONMENT	9
3.1. Address of the test laboratory	9
3.2. Test Facility	9
3.3. Environmental conditions	9
3.4. Statement of the measurement uncertainty	9
3.5. Test Description	10
3.6. Equipments Used during the Test	12
4. TEST CONDITIONS AND RESULTS	13
4.1. AC Power Conducted Emission	13
4.2. Radiated Emission	26
4.3. Maximum Peak Output Power	45
4.4. Power Spectral Density	46
4.5. 99% and 6dB Bandwidth	47
4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	48
4.7. Antenna Requirement	50
5. TEST SETUP PHOTOS OF THE EUT	51
6 EXTERNAL AND INTERNAL PHOTOS OF THE FLIT	51

Report No.: CTA24103100103 Page 4 of 51

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

Report No.: CTA24103100103 Page 5 of 51

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Aug.29, 2024
Testing commenced on		Aug.29, 2024
-		
Testing concluded on		Sep.19, 2024

2.2. Product Description

Product Name:	POS Device
Trade Mark:	iMiN
Model/Type reference:	I24D02
List Model:	N/A
Model Declaration	N/A
Power supply:	DC 24V/1.5A by adapter
Hardware Version	N/A
Software Version	N/A
Sample ID	CTA241031001-S0001-3# CTA241031001-S0001-4#(Version A) CTA241031001-S0001-5#(Version B) CTA241031001-S0001-6#(Version C) CTA241031001-S0001-7#(Version D)
Bluetooth	
Frequency Range	2402MHz ~ 2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
2.4GWLAN	
WLAN Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11n HT40:2422-2452MHz IEEE 802.11ax HE20:2412-2462MHz IEEE 802.11ax HE40:2422-2452MHz
WLAN Modulation Type	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax HE20: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax HE40: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Channel number:	11 Channel for IEEE 802.11b/g/n/ax (HT20) 7 Channel for IEEE 802.11n/ax (HT40)
Channel separation:	5MHz
WIFI(5.2G/5.3G/5.7G/5.8G Ban	T T
WLAN Operation frequency	5180-5240MHz/ 5260MHz to 5320MHz/ 5500MHz to 5700MHz/ 5745MHz

Report No.: CTA24103100103 Page 6 of 51

	to 5825MHz			
	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)			
	IEEE 802.11ac VHT20: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)			
	IEEE 802.11ax HE20: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)			
VVI ANIMA di dation Timo	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)			
WLAN Modulation Type	IEEE 802.11ac VHT40: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)			
	IEEE 802.11ax HE40: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)			
	IEEE 802.11ac VHT80: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)			
	IEEE 802.11ax HE80: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)			
	4 Channels for 20MHz bandwidth(5180-5240MHz)			
	4 Channels for 20MHz bandwidth(5260-5320MHz)			
	11 Channels for 20MHz bandwidth(5500-5700MHz)			
	5 channels for 20MHz bandwidth(5745-5825MHz)			
	2 channels for 40MHz bandwidth(5190~5230MHz)			
Channel number:	2 channels for 40MHz bandwidth(5270~5310MHz)			
Chamile number.	5 Channels for 40MHz bandwidth(5510-5670MHz)			
	2 channels for 40MHz bandwidth(5755~5795MHz)			
	1 channels for 80MHz bandwidth(5210MHz)			
	1 channels for 80MHz bandwidth(5290MHz)			
	2 Channels for 80MHz bandwidth(5530-5610MHz)			
	1 channels for 80MHz bandwidth(5775MHz)			
Antenna Description	Internal Antenna, 2.05dBi(Max.) for 2.4G Band and 3.87dBi(Max.) for 5G Band			
RFID(13.56MHz) (Optional)				
Frequency Range	13.56MHz			
Channel Number	1			
Modulation Type	ASK			
Antenna Description Internal Antenna, 0dBi (Max.), NFC has two optional antennas, antenna 1(Model:DS2-52) and antenna 2 (Model:DS2-51).				
Remark:The I24D02 model h				
	and one small display(large display+ 10 inch small display)			
Version B: Only one large dis Version C: Double large disp				
	vand and amall display (large display). 5 inch small display)			

Version D: One large display and one small display (large display+ 5 inch small display)

Report No.: CTA24103100103 Page 7 of 51

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	•	24 V DC
		0	Other (specified in blank below))

DC 24.0V

2.4. Short description of the Equipment under Test (EUT)

This is a POS Device.

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

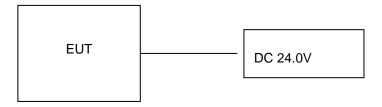
The application provider specific test software to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDS758074 test requirement.

IEEE 802.11b/g/n/ax: Thirteen channels are provided to the EUT.

Antenna	Chai	in 0	Cha	Simultaneously	
Bandwidth Mode	20MHz	40MHz	20MHz	40MHz	/
IEEE 802.11b	Ø				
IEEE 802.11g	Ø				
IEEE 802.11n	Ø	Ø			
IEEE 802.11ax	Ø	V			

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

The EUT has been tested under operating condition.


AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case(AC 120V/60Hz).

AC main conducted emission pre-test at charge from PC modes, recorded worst case;

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position. Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11g mode (MCH).

AX mode tested all RU, only worst case mode (Full RU) recorded in report.

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AYD5-I24D02** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

Report No.: CTA24103100103 Page 8 of 51

2.8. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (XWHammer) provided by application.

2.9. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN HONOR ELECTRONIC CO.,LTD.	Adapter	ADS-65HI-19A- 124036F	1	SDOC
Shenzhen SOY Technology Co.,Ltd.	Adapter	SOY-2400150-332-A	1	SDOC
Jiangsu Chenyang Electron Co.,Ltd.	Adapter	CYZS36-240150	1	SDOC
LENOVO	PC	DESKYOP-EUIVCNR	-	SDOC
LENOVO	Keyboard	T460S	1	SDOC
LENOVO	Mouse	Howard		SDOC
aigo	USB flash disk	U330		SDOC
THTF	Display	LE23CW-D	-	SDOC
SONY	Earphone	MDR-XB550AP		SDOC
	Electronic Scale			SDOC
	Cashbox			SDOC

Note: The PC, Display, Electronic Scale, Cashbox, Keyboard, Mouse and USB flash disk is only used for auxiliary testing.

2.10. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	Non-Shielded, 1.0m
USB Port	5	N/A
LAN Port	1	Non-Shielded, 10m
RJ11 Port	1	N/A
RJ12 Port	1	N/A
HDMI Port	1	N/A
Type-C Port	1	N/A
Earphone Port	1	N/A

2.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CTA24103100103 Page 9 of 51

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CTA24103100103 Page 10 of 51

3.5. Test Description

Applied Standard: FCC Part 15 Subpart C										
ISED Rules	Description of Test	Test Sample	Result	Remark						
/	On Time and Duty Cycle	CTA241031001-S0001-3#	/	/						
§15.247(b)	Maximum Conducted Output Power	CTA241031001-S0001-3#	Compliant	Appendix C						
§15.247(e)	Power Spectral Density	CTA241031001-S0001-3#	Compliant	Appendix C						
§15.247(a)(2)	6dB Bandwidth	CTA241031001-S0001-3#	Compliant	Appendix C						
§2.1047	99% Occupied Bandwidth	CTA241031001-S0001-3#	Compliant	Appendix C						
§15.209, §15.247(d)	Conducted Spurious Emissions and Band Edges Test	Compliant	Appendix C							
§15.209, §15.247(d)	Radiated Spurious Emissions	CTA241031001-S0001-3# CTA241031001-S0001-4# CTA241031001-S0001-5# CTA241031001-S0001-6# CTA241031001-S0001-7#	Compliant	Note 1						
§15.205	Emissions at Restricted Band	CTA241031001-S0001-3#	Compliant	Appendix C						
§15.207(a)	AC Conducted Emissions	CTA241031001-S0001-4# CTA241031001-S0001-5# CTA241031001-S0001-6# CTA241031001-S0001-7#	Compliant	Note 1						
§15.203 §15.247(c)	Antenna Requirements	CTA241031001-S0001-3#	Compliant	Note 1						
§15.247(i)§2.1 091	RF Exposure	1	Compliant	Note 2						

Remark:

- The measurement uncertainty is not included in the test result.
- 2.
- 3.
- NA = Not Applicable; NP = Not Performed

 Note 1 Test results inside test report;

 Note 2 Test results in other test report (MPE Report). 4.
- We tested all test mode and recorded worst case in report 5.

Report No.: CTA24103100103 Page 11 of 51

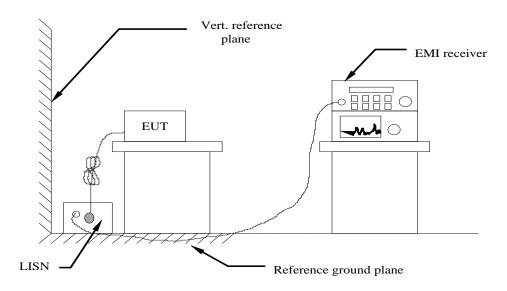
Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
	11b/DSSS	1 Mbps	1/6/11
Maximum Peak Conducted Output Power	11g/OFDM	6 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz&	11n(40MHz)/OFDM	13.5Mbps	3/6/09
Radiated Emission 1GHz~10 th Harmonic	11ax(20MHz)/OFDMA	8.6Mbps	1/6/11
	11ax(40MHz)/OFDMA	17.2Mbps	3/6/09
	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
Danid Edua	11n(20MHz)/OFDM	6.5Mbps	1/11
Band Edge	11n(40MHz)/OFDM	13.5Mbps	3/9
	11ax(20MHz)/OFDMA	8.6Mbps	1/11
	11ax(40MHz)/OFDMA	17.2Mbps	3/09

Report No.: CTA24103100103 Page 12 of 51

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/02	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/02	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/02	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/02	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/02	2025/08/02
Spectrum Analyzer	R&S	FSP	CTA-337	2024/08/02	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/02	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/02	2025/08/02
Universal Radio Communication	CMW500	R&S	CTA-302	2024/08/02	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020 CTA-326		2024/08/02	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2024/08/02	2025/08/02
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2024/08/02	2025/08/02
Loop Antenna	Zhinan	ZN30900C	CTA-311	2024/08/02	2025/08/02
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2024/08/06	2027/08/05
Antenna Tower	Suzhou Keletuo electronic Technology Co., LTD	BK-*AT-BS	N/A	N/A	N/A
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/02	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/02	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/02	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/02	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/02	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/02	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/02	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/02	2025/08/02


Note: The Cal.Interval was one year.

Report No.: CTA24103100103 Page 13 of 51

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020.
- 4 The EUT received DC 24V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (d	BuV)				
r requericy rarige (initiz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						

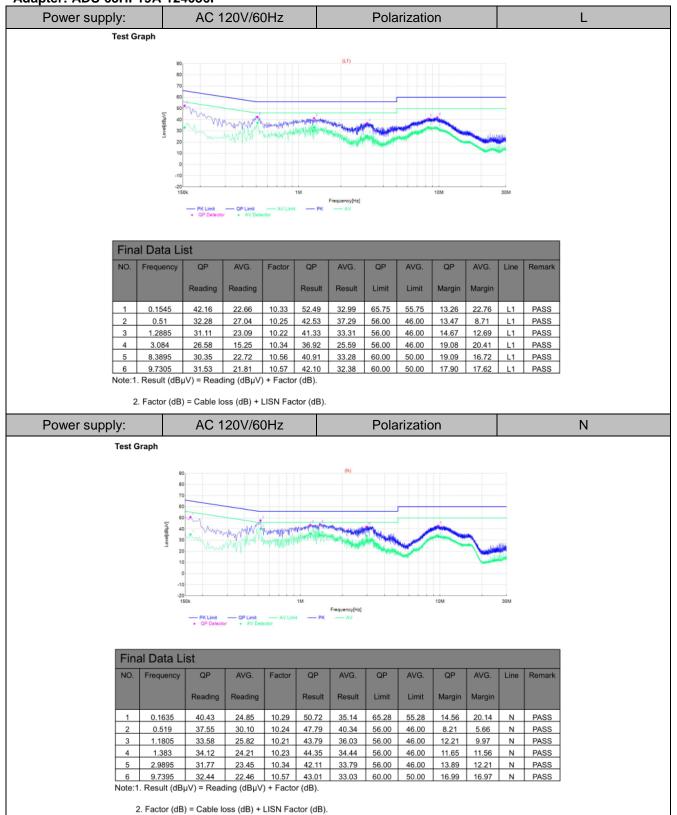
DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

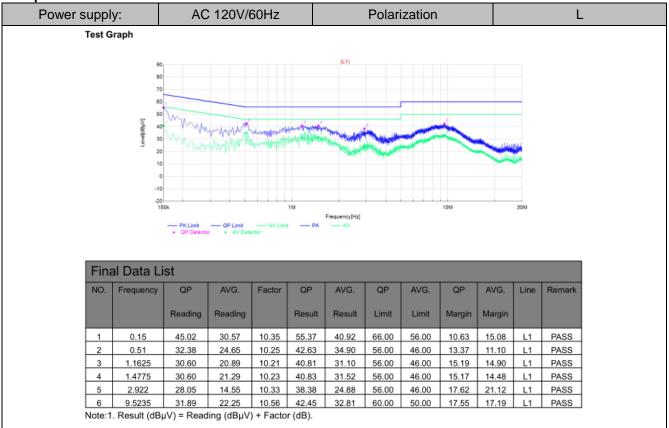
Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Report No.: CTA24103100103 Page 14 of 51


TEST RESULTS

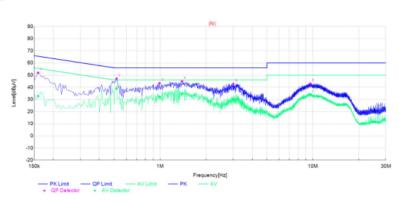
Remark: We measured Conducted Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40/802.11ax HE20/802.11ax HE40 mode from 150 KHz to 30MHz in AC120V and the worst case was recorded.

Temperature	25℃	Humidity	60%
Test Engineer	Lushan Kong	Configurations	IEEE 802.11g (MCH)


Version A:

Adapter: ADS-65HI-19A-124036F

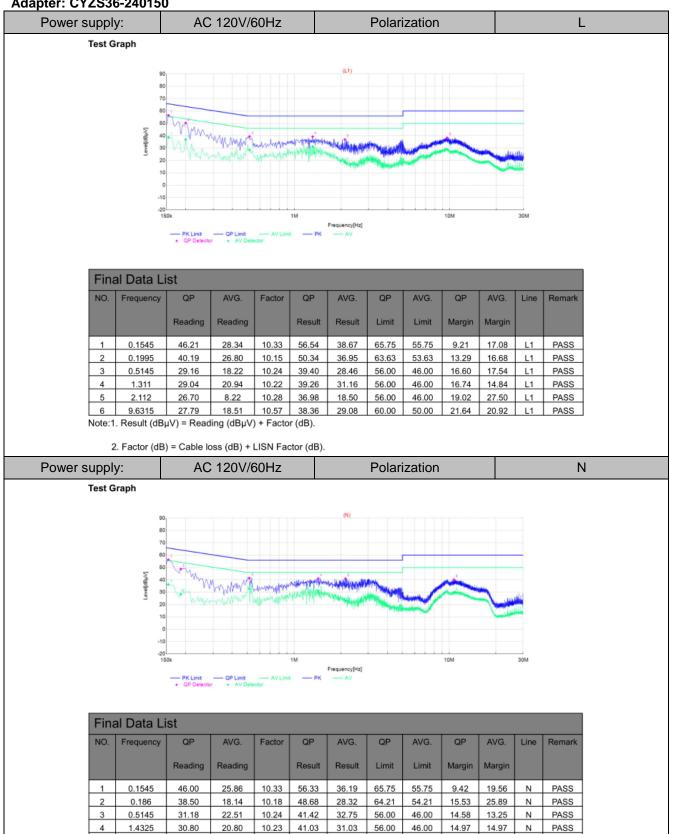
Report No.: CTA24103100103 Page 15 of 51


Adapter: SOY-2400150-332-A

Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply: AC 120V/60Hz	Polarization	N
----------------------------	--------------	---

Test Graph



Fina	Final Data List												
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark	
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin			
1	0.159	41.60	22.41	10.31	51.91	32.72	65.52	55.52	13.61	22.80	N	PASS	
2	0.519	36.86	28.69	10.24	47.10	38.93	56.00	46.00	8.90	7.07	N	PASS	
3	0.9915	33.21	22.09	10.19	43.40	32.28	56.00	46.00	12.60	13.72	N	PASS	
4	1.392	34.66	24.73	10.23	44.89	34.96	56.00	46.00	11.11	11.04	N	PASS	
5	3.0165	32.47	19.90	10.34	42.81	30.24	56.00	46.00	13.19	15.76	N	PASS	
6	9.609	32.43	23.31	10.57	43.00	33.88	60.00	50.00	17.00	16.12	N	PASS	

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

Report No.: CTA24103100103 Page 16 of 51

Adapter: CYZS36-240150

PASS

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

30.73

29.51

2.1435

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

12.67

19.00

10.28

10.69

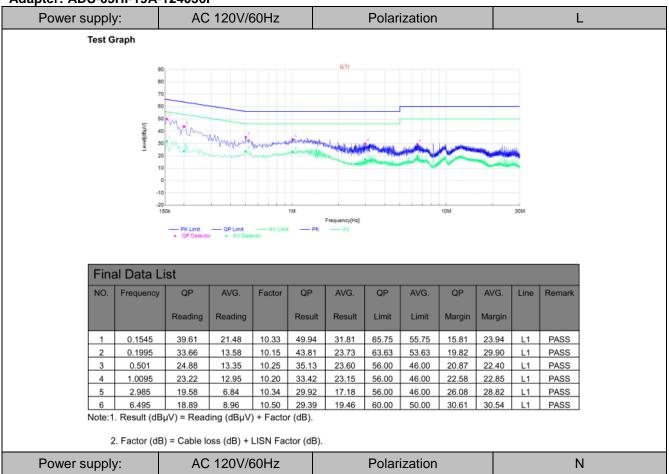
41.01

22.95

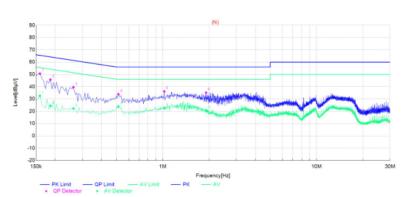
56.00

46.00

14.99


23.05

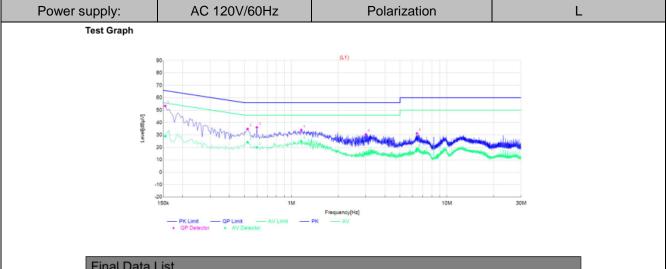
Ν


Report No.: CTA24103100103 Page 17 of 51

Version B:

Adapter: ADS-65HI-19A-124036F

Test Graph

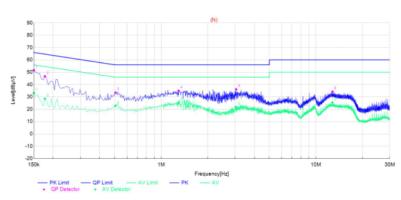


Fina	Final Data List												
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark	
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin			
1	0.159	40.30	22.19	10.31	50.61	32.50	65.52	55.52	14.91	23.02	N	PASS	
2	0.186	35.55	14.22	10.18	45.73	24.40	64.21	54.21	18.48	29.81	N	PASS	
3	0.2625	29.47	12.10	10.12	39.59	22.22	61.35	51.35	21.76	29.13	N	PASS	
4	0.5145	23.64	13.63	10.24	33.88	23.87	56.00	46.00	22.12	22.13	N	PASS	
5	1.023	25.93	12.48	10.20	36.13	22.68	56.00	46.00	19.87	23.32	N	PASS	
6	1.914	24.86	10.09	10.26	35.12	20.35	56.00	46.00	20.88	25.65	N	PASS	

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

Report No.: CTA24103100103 Page 18 of 51

Adapter: SOY-2400150-332-A

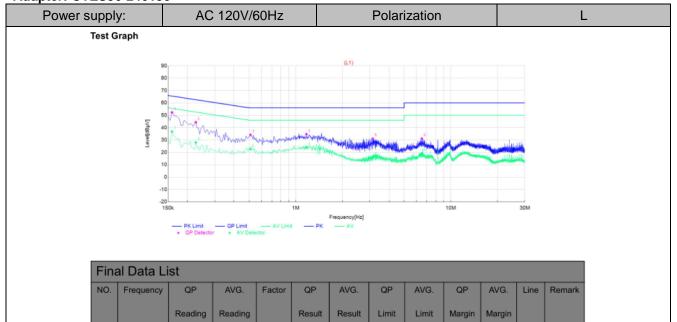

Fina	Final Data List												
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark	
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin			
1	0.1545	43.06	18.63	10.33	53.39	28.96	65.75	55.75	12.36	26.79	L1	PASS	
2	0.5235	24.60	13.87	10.24	34.84	24.11	56.00	46.00	21.16	21.89	L1	PASS	
3	0.6	25.92	9.78	10.19	36.11	19.97	56.00	46.00	19.89	26.03	L1	PASS	
4	1.158	23.82	14.83	10.21	34.03	25.04	56.00	46.00	21.97	20.96	L1	PASS	
5	3.012	20.20	4.43	10.34	30.54	14.77	56.00	46.00	25.46	31.23	L1	PASS	
6	6.4185	20.77	8.38	10.50	31.27	18.88	60.00	50.00	28.73	31.12	L1	PASS	

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply: AC 120V/6	60Hz Polarization	N
-------------------------	-------------------	---

Test Graph



Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.15	41.18	22.69	10.35	51.53	33.04	66.00	56.00	14.47	22.96	N	PASS
2	0.177	36.42	18.22	10.22	46.64	28.44	64.63	54.63	17.99	26.19	N	PASS
3	0.5055	23.24	12.36	10.25	33.49	22.61	56.00	46.00	22.51	23.39	N	PASS
4	1.293	24.72	15.17	10.22	34.94	25.39	56.00	46.00	21.06	20.61	N	PASS
5	3.048	25.78	11.40	10.34	36.12	21.74	56.00	46.00	19.88	24.26	N	PASS
6	12.795	23.32	14.47	10.89	34.21	25.36	60.00	50.00	25.79	24.64	N	PASS

Note:1. Result (dBµV) = Reading (dBµV) + Factor (dB).

Report No.: CTA24103100103 Page 19 of 51

Adapter: CYZS36-240150

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

42.01

34.22

23.96

24.53

20.81

20.63

0.159

0.2265

0.51

1.1715

3.138

6.504

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

26.45

17.91

12.32

14.01

5.69

8.55

10.31

10.14

10.25

10.21

10.34

10.50 31.13

52.32

44.36

34.21

34.74

31.15

65.52

62.58

56.00

56.00

56.00

55.52

52.58

46.00

46.00

46.00

50.00

13.20

18.22

21.79

21.26

24.85

28.87

18.76

24.53

23.43

21.78

29.97

30.95

L1

L1

L1

36.76

28.05

22.57

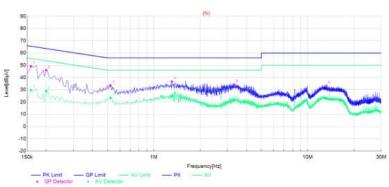
24.22

16.03

19.05

PASS

PASS

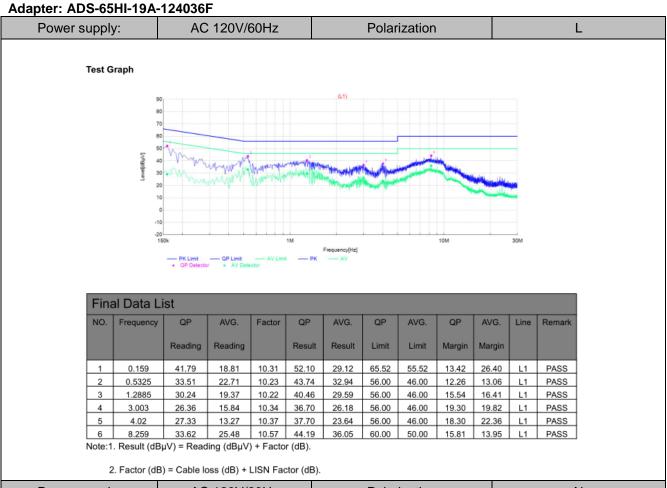

PASS

PASS

PASS

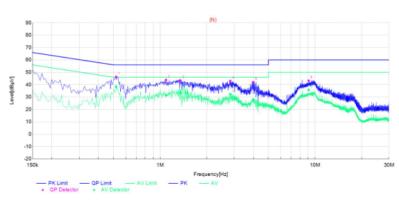
PASS

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
	90	(%)	



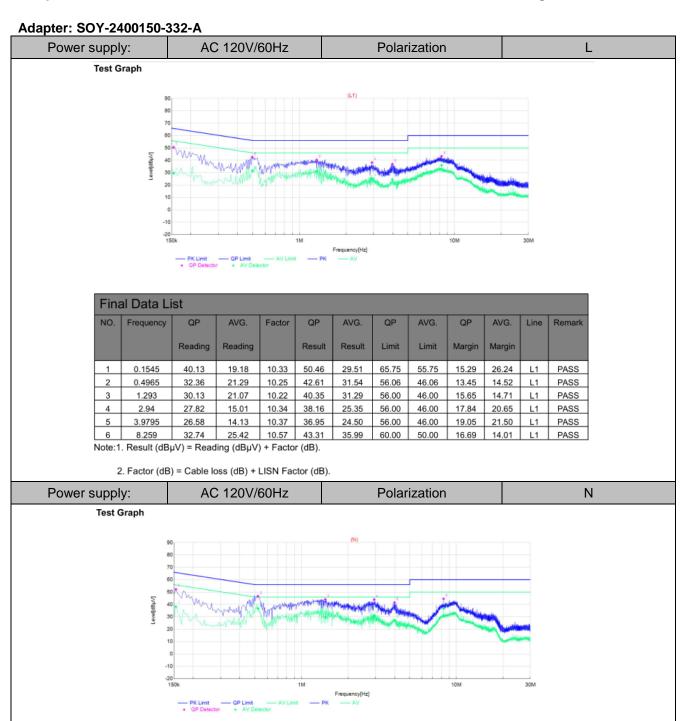
Final Data List												
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.159	38.87	19.47	10.31	49.18	29.78	65.52	55.52	16.34	25.74	N	PASS
2	0.1995	35.90	18.71	10.15	46.05	28.86	63.63	53.63	17.58	24.77	N	PASS
3	0.5235	23.25	13.09	10.24	33.49	23.33	56.00	46.00	22.51	22.67	N	PASS
4	1.311	26.44	14.68	10.22	36.66	24.90	56.00	46.00	19.34	21.10	N	PASS
5	3.318	23.97	10.82	10.35	34.32	21.17	56.00	46.00	21.68	24.83	N	PASS
6	13.2045	22.30	12.15	10.90	33.20	23.05	60.00	50.00	26.80	26.95	N	PASS

Note:1. Result (dBµV) = Reading (dBµV) + Factor (dB).


Report No.: CTA24103100103 Page 20 of 51

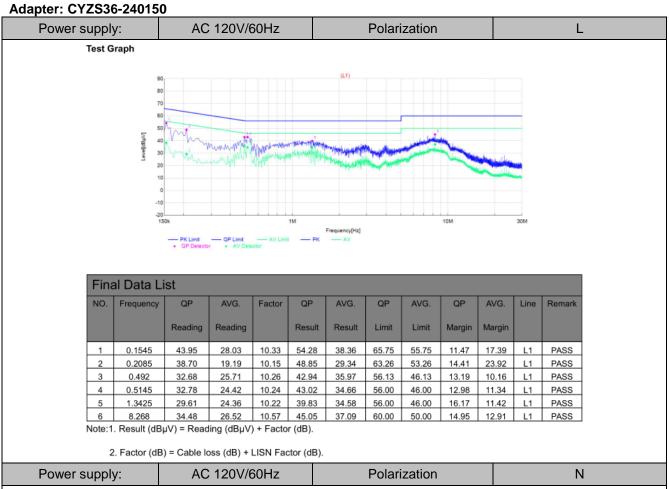
Version C:

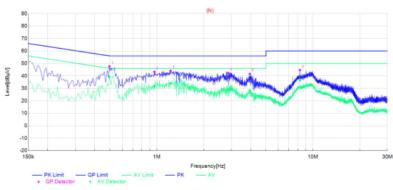
Power supply:	AC 120V/60Hz	Polarization	N


Test Graph

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.519	36.02	28.17	10.24	46.26	38.41	56.00	46.00	9.74	7.59	N	PASS
2	1.0905	33.60	21.16	10.21	43.81	31.37	56.00	46.00	12.19	14.63	N	PASS
3	1.347	33.29	23.31	10.22	43.51	33.53	56.00	46.00	12.49	12.47	N	PASS
4	2.8365	32.70	21.89	10.33	43.03	32.22	56.00	46.00	12.97	13.78	N	PASS
5	3.984	31.64	17.65	10.37	42.01	28.02	56.00	46.00	13.99	17.98	N	PASS
6	9.087	32.65	25.26	10.55	43.20	35.81	60.00	50.00	16.80	14.19	N	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

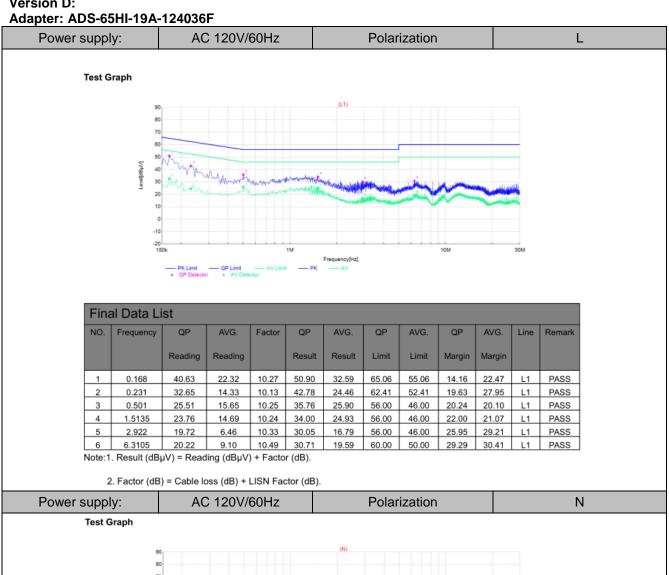

Report No.: CTA24103100103 Page 21 of 51

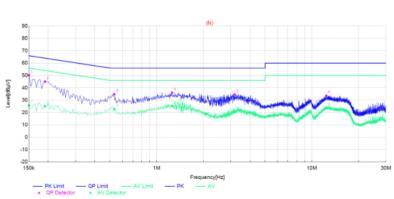

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1545	41.86	27.83	10.33	52.19	38.16	65.75	55.75	13.56	17.59	N	PASS
2	0.5235	36.36	26.52	10.24	46.60	36.76	56.00	46.00	9.40	9.24	N	PASS
3	1.4235	33.79	19.19	10.23	44.02	29.42	56.00	46.00	11.98	16.58	N	PASS
4	2.9445	33.60	20.54	10.34	43.94	30.88	56.00	46.00	12.06	15.12	N	PASS
5	3.984	31.15	16.98	10.37	41.52	27.35	56.00	46.00	14.48	18.65	N	PASS
6	8.259	34.00	25.95	10.57	44.57	36.52	60.00	50.00	15.43	13.48	N	PASS

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

Report No.: CTA24103100103 Page 22 of 51

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
	_	(N)	

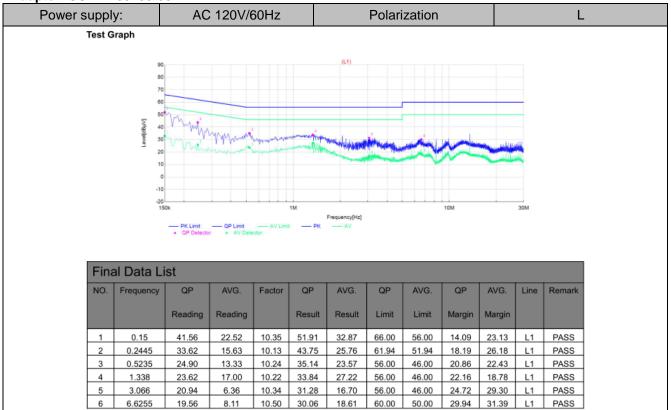



Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.4965	37.34	28.76	10.25	47.59	39.01	56.06	46.06	8.47	7.05	N	PASS
2	0.9645	33.07	21.78	10.20	43.27	31.98	56.00	46.00	12.73	14.02	N	PASS
3	1.2255	33.89	23.79	10.22	44.11	34.01	56.00	46.00	11.89	11.99	N	PASS
4	2.859	32.02	18.75	10.33	42.35	29.08	56.00	46.00	13.65	16.92	N	PASS
5	3.9435	31.23	17.99	10.37	41.60	28.36	56.00	46.00	14.40	17.64	N	PASS
6	8.259	34.11	25.87	10.57	44.68	36.44	60.00	50.00	15.32	13.56	N	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

Report No.: CTA24103100103 Page 23 of 51

Version D:

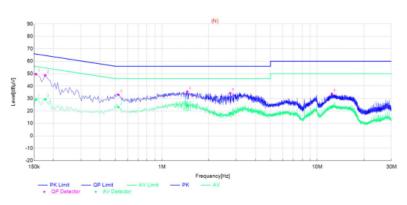


Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.15	39.94	15.55	10.35	50.29	25.90	66.00	56.00	15.71	30.10	N	PASS
2	0.1905	34.92	14.91	10.16	45.08	25.07	64.01	54.01	18.93	28.94	N	PASS
3	0.5325	24.60	12.58	10.23	34.83	22.81	56.00	46.00	21.17	23.19	N	PASS
4	1.257	25.90	15.22	10.22	36.12	25.44	56.00	46.00	19.88	20.56	N	PASS
5	3.174	24.24	10.03	10.35	34.59	20.38	56.00	46.00	21.41	25.62	N	PASS
6	12.39	22.84	12.93	10.85	33.69	23.78	60.00	50.00	26.31	26.22	N	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

Report No.: CTA24103100103 Page 24 of 51

Adapter: SOY-2400150-332-A

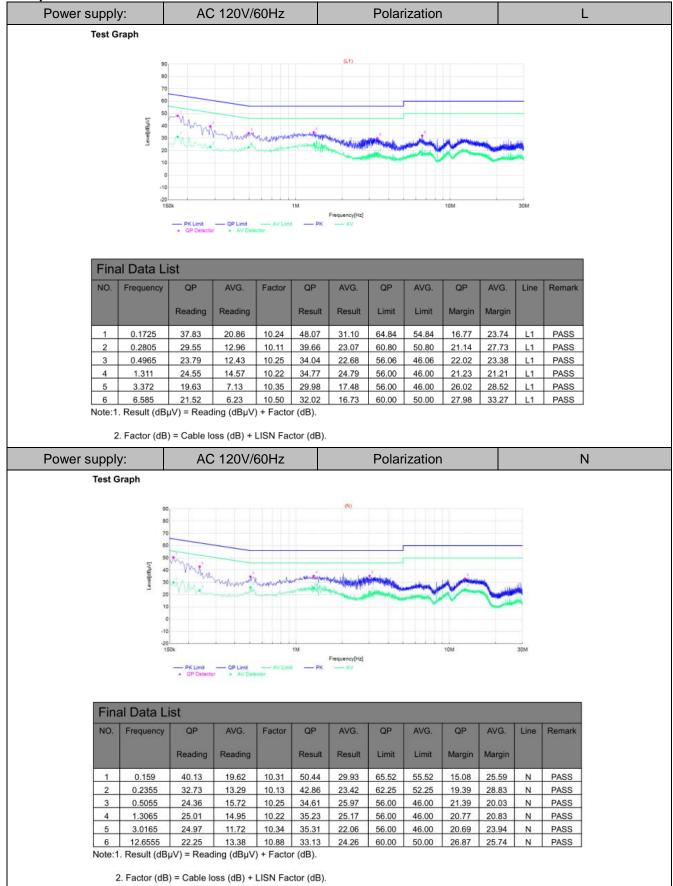


Note:1. Result $(dB\mu V)$ = Reading $(dB\mu V)$ + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply:	AC 120V/60Hz	Polarization	N
Tost Granh			

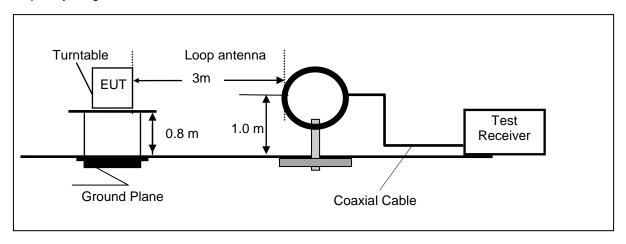
Test Graph



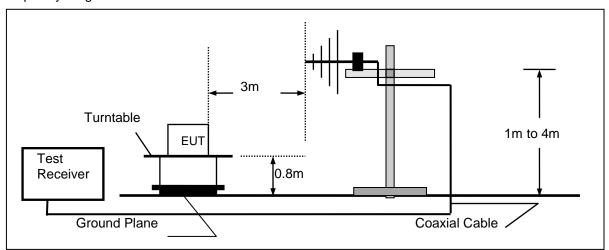
Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1545	39.21	18.75	10.33	49.54	29.08	65.75	55.75	16.21	26.67	N	PASS
2	0.177	38.41	19.20	10.22	48.63	29.42	64.63	54.63	16.00	25.21	N	PASS
3	0.5235	22.76	12.85	10.24	33.00	23.09	56.00	46.00	23.00	22.91	N	PASS
4	1.455	25.30	14.19	10.23	35.53	24.42	56.00	46.00	20.47	21.58	N	PASS
5	2.751	23.90	7.98	10.32	34.22	18.30	56.00	46.00	21.78	27.70	N	PASS
6	12.4035	22.97	12.14	10.85	33.82	22.99	60.00	50.00	26.18	27.01	N	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

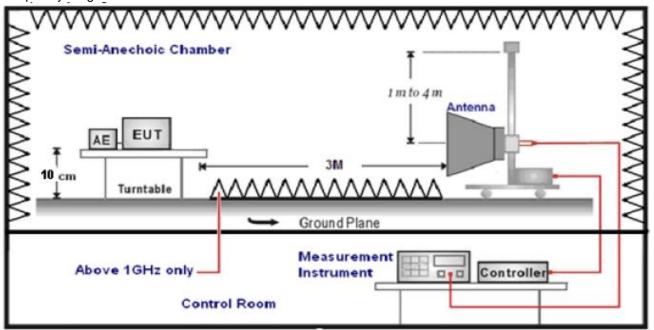
Report No.: CTA24103100103 Page 25 of 51


Note: All modes have been tested and the worst mode is recorded in the report, NFC has two optional antennas, with the worst mode recorded in the report (NFC antenna Model:DS2-52).

Report No.: CTA24103100103 Page 26 of 51


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24103100103 Page 27 of 51

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 30MHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

Report No.: CTA24103100103 Page 28 of 51

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at 802.11b/802.11g/802.11n HT20 mode from 30 MHz to 25GHz in AC120V and the worst case was recorded.

Temperature	25℃	Humidity	60%
Test Engineer	Lushan Kong	Configurations	IEEE 802.11g (MCH)

For 9 KHz~30MHz

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: CTA24103100103 Page 29 of 51

For 30MHz-1GHz Version A:

Adapter: ADS-65HI-19A-124036F

2

3

88.2

110.51

162.405

265.71

Horizontal Test Graph 70 50 .evel[dBµV/m] 40 30 20 Frequency[Hz] QP Detector Suspected List requency [MHz] Factor Result Limit Margin Height Angle Detector Remark Polarity [dB] [dBµV/m] [dB] [°] [dBµV/m] [cm] 1 62.495 38.20 -11.89 26.31 40.00 13.69 100 264 PK Horizonta PASS

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

40.90

39.31

42.24

50.06

48.93

-13.50

-11.56

-13.05

-8.05

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

27.40

27.75

29.19

42.01

43.50

43.50

43.50

46.00

46.00

16.10

15.75

14.31

3.99

100

100

100

100

108

85

298

311

PΚ

PΚ

PΚ

Horizonta

Horizonta

Horizonta

Horizonta

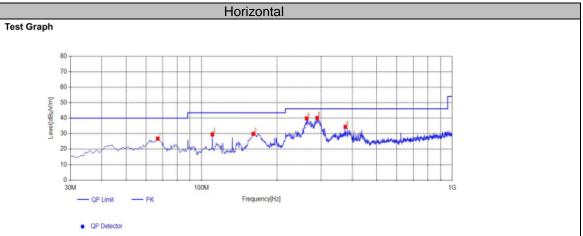
PASS

PASS

PASS

PASS

PASS

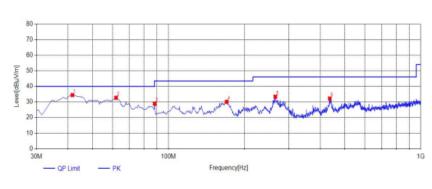

Test Graph Test Graph Operation of the property of the prope

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	([dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	41.64	46.22	-11.68	34.54	40.00	5.46	100	327	PK	Vertical	PASS			
2	62.01	44.22	-11.76	32.46	40.00	7.54	100	155	PK	Vertical	PASS			
3	170.65	43.09	-12.71	30.38	43.50	13.12	100	62	PK	Vertical	PASS			
4	269.59	43.06	-7.89	35.17	46.00	10.83	100	357	PK	Vertical	PASS			
5	436.43	39.16	-4.13	35.03	46.00	10.97	100	347	PK	Vertical	PASS			
6	563.015	31.89	-1.16	30.73	46.00	15.27	100	334	PK	Vertical	PASS			

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: CTA24103100103 Page 30 of 51

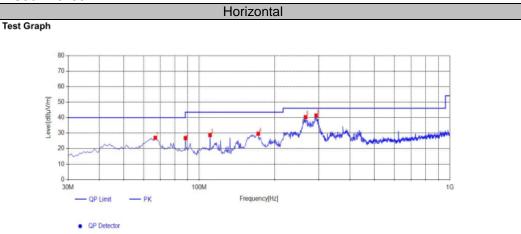
Adapter: SOY-2400150-332-A


Sus	Suspected List												
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark		
	([dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]					
1	66.86	39.99	-13.20	26.79	40.00	13.21	100	95	PK	Horizonta	PASS		
2	110.51	41.12	-11.56	29.56	43.50	13.94	100	98	PK	Horizonta	PASS		
3	160.95	43.02	-13.14	29.88	43.50	13.62	100	317	PK	Horizonta	PASS		
4	262.8	48.01	-8.17	39.84	46.00	6.16	100	306	PK	Horizonta	PASS		
5	289.475	47.86	-7.66	40.20	46.00	5.80	100	280	PK	Horizonta	PASS		
6	374.835	40.09	-5.71	34.38	46.00	11.62	100	244	PK	Horizonta	PASS		

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

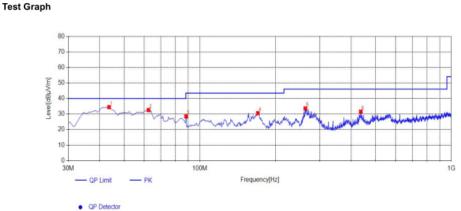

QP Detector

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
		[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	41.64	46.10	-11.68	34.42	40.00	5.58	100	192	PK	Vertical	PASS			
2	62.01	44.44	-11.76	32.68	40.00	7.32	100	140	PK	Vertical	PASS			
3	88.2	42.44	-13.50	28.94	43.50	14.56	100	38	PK	Vertical	PASS			
4	170.165	42.86	-12.73	30.13	43.50	13.37	100	54	PK	Vertical	PASS			
5	265.225	41.44	-8.06	33.38	46.00	12.62	100	149	PK	Vertical	PASS			
6	435.945	36.34	-4.16	32.18	46.00	13.82	100	334	PK	Vertical	PASS			

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: CTA24103100103 Page 31 of 51

Adapter: CYZS36-240150

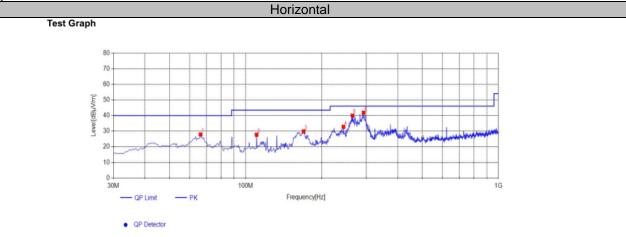


Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	66.86	40.17	-13.20	26.97	40.00	13.03	100	94	PK	Horizonta	PASS			
2	88.2	40.32	-13.50	26.82	43.50	16.68	100	110	PK	Horizonta	PASS			
3	110.51	40.31	-11.56	28.75	43.50	14.75	100	91	PK	Horizonta	PASS			
4	172.105	42.31	-12.66	29.65	43.50	13.85	100	262	PK	Horizonta	PASS			
5	265.71	48.38	-8.05	40.33	46.00	5.67	100	308	PK	Horizonta	PASS			
6	292.87	48.98	-7.61	41.37	46.00	4.63	100	0	PK	Horizonta	PASS			

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical


Suspected List Result Limit Margin Height Frequency [MHz] Reading Factor Angle Detector Polarity Remark [dBµV/m] [°] [dBµV/m] 43.58 45.91 -11.49 34.42 40.00 5.58 100 238 PΚ Vertical PASS 2 62.495 -11.89 32.52 40.00 7.48 100 212 PΚ Vertical PASS 44.41 88.2 -13.50 28.48 43.50 15.02 100 32 Vertical PASS 170.165 43.32 -12.73 30.59 43.50 12.91 100 62 PK PASS Vertical 262.8 41.78 -8.17 33.61 46.00 12.39 100 163 PΚ Vertical PASS PΚ 436.43 35.66 -4.13 31.53 46.00 14.47 100 344 Vertical PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: CTA24103100103 Page 32 of 51

Version B:

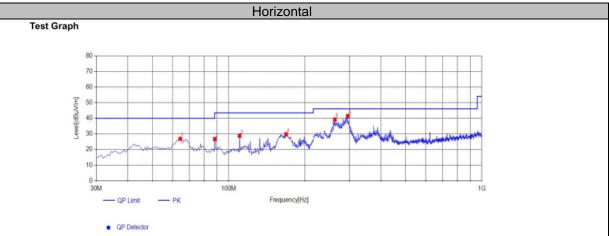
Adapter: ADS-65HI-19A-124036F

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	,,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	66.375	40.96	-13.06	27.90	40.00	12.10	100	91	PK	Horizonta	PASS			
2	110.51	39.27	-11.56	27.71	43.50	15.79	100	75	PK	Horizonta	PASS			
3	169.68	42.60	-12.75	29.85	43.50	13.65	100	280	PK	Horizonta	PASS			
4	243.885	41.78	-8.96	32.82	46.00	13.18	100	102	PK	Horizonta	PASS			
5	264.74	48.07	-8.08	39.99	46.00	6.01	100	310	PK	Horizonta	PASS			
6	292.87	49.44	-7.61	41.83	46.00	4.17	100	254	PK	Horizonta	PASS			

Note:1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical


Suspected List Frequency [MHz] Reading Factor Result Limit Margin Height Angle Detector Polarity Remark [dBµV/m] [dB] [°] 41.64 46.03 -11.68 34.35 40.00 5.65 100 341 PΚ PASS Vertical 62.01 44.18 -11.76 32.42 40.00 7.58 100 185 Vertical PASS 88.2 41.90 -13.50 28.40 15.10 100 PK PASS 3 43.50 46 Vertical 4 168.71 43.37 30.61 12.89 72 PK Vertical PASS 265.71 41.00 -8.05 32.95 46.00 13.05 100 139 PK Vertical PASS 435.945 32.78 46.00 PASS

Note:1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

QP Detector

Report No.: CTA24103100103 Page 33 of 51

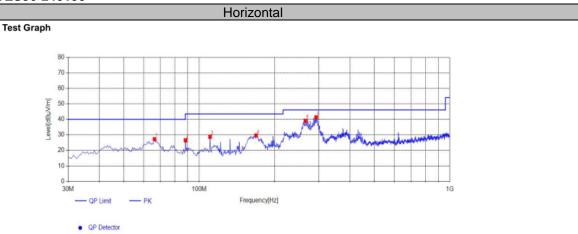
Adapter: SOY-2400150-332-A

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
		[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	64.435	39.37	-12.48	26.89	40.00	13.11	100	130	PK	Horizonta	PASS			
2	88.2	40.21	-13.50	26.71	43.50	16.79	100	104	PK	Horizonta	PASS			
3	110.51	40.43	-11.56	28.87	43.50	14.63	100	80	PK	Horizonta	PASS			
4	168.71	42.50	-12.76	29.74	43.50	13.76	100	275	PK	Horizonta	PASS			
5	262.8	47.40	-8.17	39.23	46.00	6.77	100	321	PK	Horizonta	PASS			
6	295.78	49.03	-7.58	41.45	46.00	4.55	100	220	PK	Horizonta	PASS			

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical Test Graph Real Street Graph Test Graph T

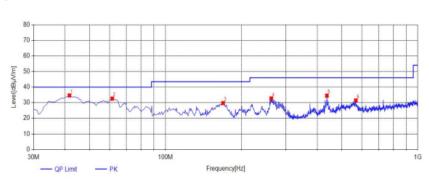

QP Detector

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	62.495	45.33	-11.89	33.44	40.00	6.56	100	178	PK	Vertical	PASS			
2	110.025	41.31	-11.47	29.84	43.50	13.66	100	320	PK	Vertical	PASS			
3	168.225	42.75	-12.78	29.97	43.50	13.53	100	86	PK	Vertical	PASS			
4	265.71	44.30	-8.05	36.25	46.00	9.75	100	172	PK	Vertical	PASS			
5	436.43	37.01	-4.13	32.88	46.00	13.12	100	352	PK	Vertical	PASS			
6	567 38	33.25	-1.07	32 18	46.00	13.82	100	326	PK	Vertical	PASS			

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

Report No.: CTA24103100103 Page 34 of 51

Adapter: CYZS36-240150


Sus	Suspected List														
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark				
	([dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]							
1	66.375	40.27	-13.06	27.21	40.00	12.79	100	72	PK	Horizonta	PASS				
2	88.2	39.99	-13.50	26.49	43.50	17.01	100	95	PK	Horizonta	PASS				
3	110.51	40.30	-11.56	28.74	43.50	14.76	100	98	PK	Horizonta	PASS				
4	168.71	42.37	-12.76	29.61	43.50	13.89	100	285	PK	Horizonta	PASS				
5	265.225	47.08	-8.06	39.02	46.00	6.98	100	302	PK	Horizonta	PASS				
6	292.87	48.92	-7.61	41.31	46.00	4.69	100	246	PK	Horizonta	PASS				

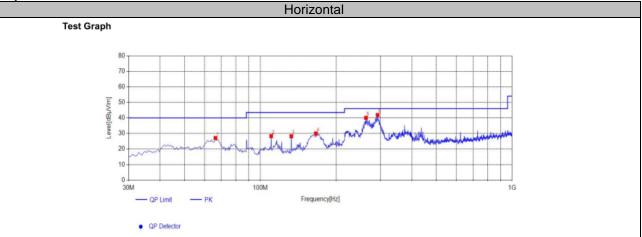
Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	41.64	46.32	-11.68	34.64	40.00	5.36	100	249	PK	Vertical	PASS			
2	61.525	44.27	-11.65	32.62	40.00	7.38	100	174	PK	Vertical	PASS			
3	169.195	42.48	-12.75	29.73	43.50	13.77	100	84	PK	Vertical	PASS			
4	262.8	40.95	-8.17	32.78	46.00	13.22	100	131	PK	Vertical	PASS			
5	436.43	38.64	-4.13	34.51	46.00	11.49	100	334	PK	Vertical	PASS			
6	568.35	32.51	-1.06	31.45	46.00	14.55	100	338	PK	Vertical	PASS			


Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: CTA24103100103 Page 35 of 51

Version C:

Adapter: ADS-65HI-19A-124036F

Test Graph

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	([dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	66.375	40.14	-13.06	27.08	40.00	12.92	100	100	PK	Horizonta	PASS			
2	110.51	39.86	-11.56	28.30	43.50	15.20	100	103	PK	Horizonta	PASS			
3	132.82	42.11	-13.85	28.26	43.50	15.24	100	93	PK	Horizonta	PASS			
4	166.285	42.82	-12.83	29.99	43.50	13.51	100	276	PK	Horizonta	PASS			
5	262.8	48.25	-8.17	40.08	46.00	5.92	100	316	PK	Horizonta	PASS			
6	292.385	49.48	-7.63	41.85	46.00	4.15	100	253	PK	Horizonta	PASS			

Note:1. Result $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB) .

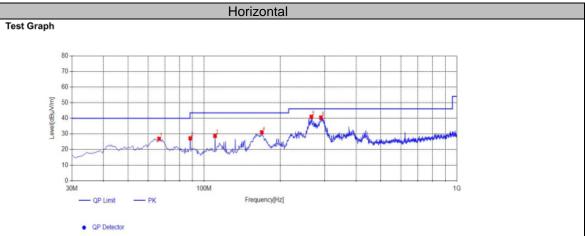
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

100M

Vertical

QP Detector

- QP Limit

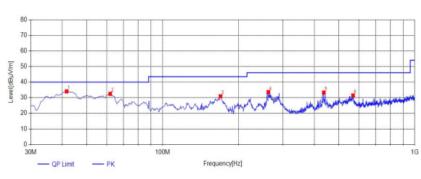

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
		[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	42.125	45.39	-11.60	33.79	40.00	6.21	100	166	PK	Vertical	PASS			
2	62.01	44.30	-11.76	32.54	40.00	7.46	100	156	PK	Vertical	PASS			
3	174.045	42.53	-12.59	29.94	43.50	13.56	100	75	PK	Vertical	PASS			
4	271.53	40.74	-7.87	32.87	46.00	13.13	100	150	PK	Vertical	PASS			
5	436.915	36.65	-4.12	32.53	46.00	13.47	100	331	PK	Vertical	PASS			
6	730.34	30.89	0.88	31.77	46.00	14.23	100	328	PK	Vertical	PASS			

Frequency[Hz]

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

Report No.: CTA24103100103 Page 36 of 51

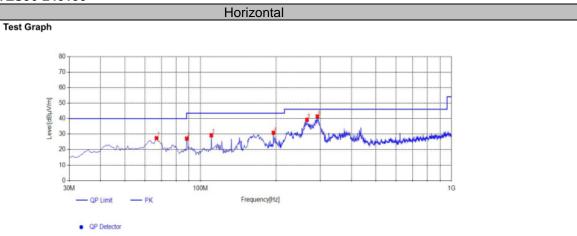
Adapter: SOY-2400150-332-A


Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	66.375	39.93	-13.06	26.87	40.00	13.13	100	103	PK	Horizonta	PASS			
2	88.2	40.69	-13.50	27.19	43.50	16.31	100	106	PK	Horizonta	PASS			
3	110.51	40.33	-11.56	28.77	43.50	14.73	100	83	PK	Horizonta	PASS			
4	169.195	43.75	-12.75	31.00	43.50	12.50	100	76	PK	Horizonta	PASS			
5	265.71	49.01	-8.05	40.96	46.00	5.04	100	302	PK	Horizonta	PASS			
6	289.96	48.12	-7.66	40.46	46.00	5.54	100	253	PK	Horizonta	PASS			

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

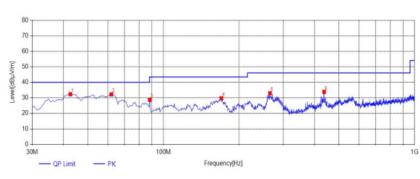

QP Detector

Sus	Suspected List														
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark				
	[[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]							
1	41.64	45.73	-11.68	34.05	40.00	5.95	100	285	PK	Vertical	PASS				
2	62.01	44.23	-11.76	32.47	40.00	7.53	100	160	PK	Vertical	PASS				
3	169.68	43.66	-12.75	30.91	43.50	12.59	100	81	PK	Vertical	PASS				
4	262.8	41.76	-8.17	33.59	46.00	12.41	100	160	PK	Vertical	PASS				
5	435.945	37.45	-4.16	33.29	46.00	12.71	100	325	PK	Vertical	PASS				
6	569.32	32.46	-1.03	31.43	46.00	14.57	100	328	PK	Vertical	PASS				

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: CTA24103100103 Page 37 of 51

Adapter: CYZS36-240150


Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	66.86	40.60	-13.20	27.40	40.00	12.60	100	93	PK	Horizonta	PASS
2	88.2	40.65	-13.50	27.15	43.50	16.35	100	109	PK	Horizonta	PASS
3	110.51	40.81	-11.56	29.25	43.50	14.25	100	99	PK	Horizonta	PASS
4	195.385	41.48	-10.61	30.87	43.50	12.63	100	44	PK	Horizonta	PASS
5	265.71	47.28	-8.05	39.23	46.00	6.77	100	298	PK	Horizonta	PASS
6	292.385	49.05	-7.63	41.42	46.00	4.58	100	252	PK	Horizonta	PASS

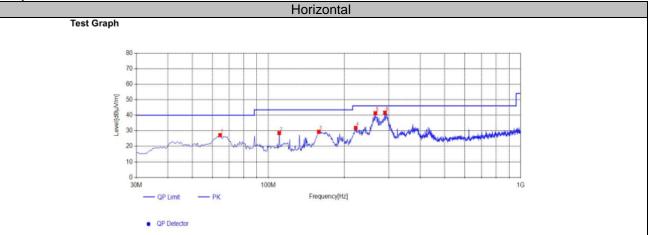
Note:1. Result $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	42.61	43.89	-11.56	32.33	40.00	7.67	100	275	PK	Vertical	PASS
2	62.01	43.98	-11.76	32.22	40.00	7.78	100	174	PK	Vertical	PASS
3	88.2	42.21	-13.50	28.71	43.50	14.79	100	49	PK	Vertical	PASS
4	170.165	42.46	-12.73	29.73	43.50	13.77	100	75	PK	Vertical	PASS
5	265.71	41.01	-8.05	32.96	46.00	13.04	100	141	PK	Vertical	PASS
6	436.43	37.99	-4.13	33.86	46.00	12.14	100	342	PK	Vertical	PASS

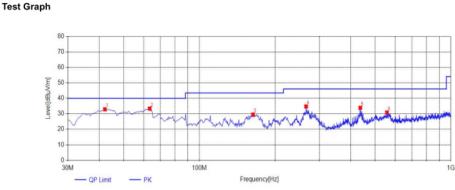

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: CTA24103100103 Page 38 of 51

Version D:

Adapter: ADS-65HI-19A-124036F



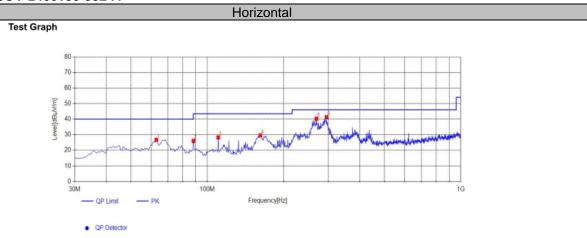
Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	64.435	39.69	-12.48	27.21	40.00	12.79	100	291	PK	Horizonta	PASS
2	110.51	40.16	-11.56	28.60	43.50	14.90	100	97	PK	Horizonta	PASS
3	158.525	42.67	-13.32	29.35	43.50	14.15	100	309	PK	Horizonta	PASS
4	222.06	41.32	-9.48	31.84	46.00	14.16	100	17	PK	Horizonta	PASS
5	265.71	49.36	-8.05	41.31	46.00	4.69	100	301	PK	Horizonta	PASS
6	289.96	49.32	-7.66	41.66	46.00	4.34	100	242	PK	Horizonta	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	42.125	44.51	-11.60	32.91	40.00	7.09	100	312	PK	Vertical	PASS
2	63.465	45.56	-12.18	33.38	40.00	6.62	100	210	PK	Vertical	PASS
3	163.375	42.49	-12.98	29.51	43.50	13.99	100	229	PK	Vertical	PASS
4	265.71	42.82	-8.05	34.77	46.00	11.23	100	141	PK	Vertical	PASS
5	436.43	38.01	-4.13	33.88	46.00	12.12	100	334	PK	Vertical	PASS
6	557.195	32.19	-1.30	30.89	46.00	15.11	100	334	PK	Vertical	PASS

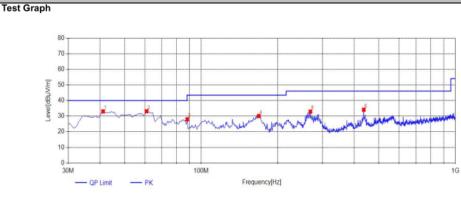

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

QP Detector

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: CTA24103100103 Page 39 of 51

Adapter: SOY-2400150-332-A



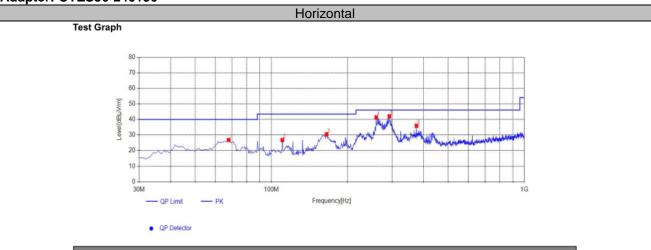
Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	62.98	38.79	-12.03	26.76	40.00	13.24	100	282	PK	Horizonta	PASS
2	88.2	39.56	-13.50	26.06	43.50	17.44	100	106	PK	Horizonta	PASS
3	110.51	39.86	-11.56	28.30	43.50	15.20	100	112	PK	Horizonta	PASS
4	161.92	42.65	-13.08	29.57	43.50	13.93	100	308	PK	Horizonta	PASS
5	269.59	48.20	-7.89	40.31	46.00	5.69	100	315	PK	Horizonta	PASS
6	295.78	48.87	-7.58	41.29	46.00	4.71	100	0	PK	Horizonta	PASS

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	41.155	44.80	-11.77	33.03	40.00	6.97	100	187	PK	Vertical	PASS
2	61.04	44.66	-11.54	33.12	40.00	6.88	100	184	PK	Vertical	PASS
3	88.2	41.51	-13.50	28.01	43.50	15.49	100	69	PK	Vertical	PASS
4	168.71	42.87	-12.76	30.11	43.50	13.39	100	72	PK	Vertical	PASS
5	269.105	40.81	-7.91	32.90	46.00	13.10	100	131	PK	Vertical	PASS
6	436.43	38.28	-4.13	34.15	46.00	11.85	100	336	PK	Vertical	PASS


Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

QP Detector

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: CTA24103100103 Page 40 of 51

Adapter: CYZS36-240150

Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	67.83	40.31	-13.48	26.83	40.00	13.17	100	125	PK	Horizonta	PASS
2	110.51	38.35	-11.56	26.79	43.50	16.71	100	128	PK	Horizonta	PASS
3	165.315	43.34	-12.85	30.49	43.50	13.01	100	292	PK	Horizonta	PASS
4	259.89	49.60	-8.28	41.32	46.00	4.68	100	308	PK	Horizonta	PASS
5	292.87	49.62	-7.61	42.01	46.00	3.99	100	360	PK	Horizonta	PASS
6	374.835	41.64	-5.71	35.93	46.00	10.07	100	237	PK	Horizonta	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Test Graph **Prequency Hz | Company | Company

Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	40.185	46.57	-11.93	34.64	40.00	5.36	100	1	PK	Vertical	PASS
2	62.01	44.84	-11.76	33.08	40.00	6.92	100	211	PK	Vertical	PASS
3	164.83	43.14	-12.89	30.25	43.50	13.25	100	60	PK	Vertical	PASS
4	268.62	42.38	-7.93	34.45	46.00	11.55	100	152	PK	Vertical	PASS
5	436.915	37.37	-4.12	33.25	46.00	12.75	100	331	PK	Vertical	PASS
6	573.2	31.79	-0.96	30.83	46.00	15.17	100	328	PK	Vertical	PASS

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Note: All modes have been tested and the worst mode is recorded in the report, NFC has two optional antennas, with the worst mode recorded in the report (NFC antenna Model:DS2-52).

Report No.: CTA24103100103 Page 41 of 51

For 1GHz to 25GHz

IEEE 802.11b_ (Worst Case)

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	49.45	32.44	30.25	7.95	59.59	74.00	-14.41	Peak	Horizontal
4824.00	35.59	32.44	30.25	7.95	45.73	54.00	-8.27	Average	Horizontal
4824.00	50.17	31.60	36.50	7.00	52.27	74.00	-21.73	Peak	Vertical
4824.00	35.44	31.60	36.50	7.00	37.54	54.00	-16.46	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	50.91	32.52	30.31	8.12	61.24	74.00	-12.76	Peak	Horizontal
4874.00	37.17	32.52	30.31	8.12	47.50	54.00	-6.50	Average	Horizontal
4874.00	49.98	31.02	36.50	7.60	52.10	74.00	-21.90	Peak	Vertical
4874.00	35.95	31.02	36.50	7.60	38.07	54.00	-15.93	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	50.20	32.68	30.27	7.88	60.49	74.00	-13.51	Peak	Horizontal
4924.00	36.30	32.68	30.27	7.88	46.59	54.00	-7.41	Average	Horizontal
4924.00	51.71	31.58	36.20	7.82	54.91	74.00	-19.09	Peak	Vertical
4924.00	37.83	31.58	36.20	7.82	41.03	54.00	-12.97	Average	Vertical

Note: All modes were tested and the worst mode was recorded in the report (version A_Adapter: ADS-65HI-19A-124036F_NFC antenna Model:DS2-52).

Report No.: CTA24103100103 Page 42 of 51

IEEE 802.11b_ (Worst Case)

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	50.72	32.44	30.25	7.95	60.86	74.00	-13.14	Peak	Horizontal
4824.00	36.05	32.44	30.25	7.95	46.19	54.00	-7.81	Average	Horizontal
4824.00	50.66	31.60	36.50	7.00	52.76	74.00	-21.24	Peak	Vertical
4824.00	36.18	31.60	36.50	7.00	38.28	54.00	-15.72	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	50.39	32.52	30.31	8.12	60.72	74.00	-13.28	Peak	Horizontal
4874.00	37.80	32.52	30.31	8.12	48.13	54.00	-5.87	Average	Horizontal
4874.00	49.96	31.02	36.50	7.60	52.08	74.00	-21.92	Peak	Vertical
4874.00	35.23	31.02	36.50	7.60	37.35	54.00	-16.65	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	51.47	32.68	30.27	7.88	61.76	74.00	-12.24	Peak	Horizontal
4924.00	35.64	32.68	30.27	7.88	45.93	54.00	-8.07	Average	Horizontal
4924.00	51.15	31.58	36.20	7.82	54.35	74.00	-19.65	Peak	Vertical
4924.00	38.26	31.58	36.20	7.82	41.46	54.00	-12.54	Average	Vertical

Note: All modes were tested and the worst mode was recorded in the report (version B_Adapter: ADS-65HI-19A-124036F_NFC antenna Model:DS2-52).

Report No.: CTA24103100103 Page 43 of 51

IEEE 802.11b_ (Worst Case)

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	50.32	32.44	30.25	7.95	60.46	74.00	-13.54	Peak	Horizontal
4824.00	35.31	32.44	30.25	7.95	45.45	54.00	-8.55	Average	Horizontal
4824.00	49.51	31.60	36.50	7.00	51.61	74.00	-22.39	Peak	Vertical
4824.00	36.15	31.60	36.50	7.00	38.25	54.00	-15.75	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.82	32.52	30.31	8.12	60.15	74.00	-13.85	Peak	Horizontal
4874.00	36.54	32.52	30.31	8.12	46.87	54.00	-7.13	Average	Horizontal
4874.00	51.10	31.02	36.50	7.60	53.22	74.00	-20.78	Peak	Vertical
4874.00	36.28	31.02	36.50	7.60	38.40	54.00	-15.60	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	50.72	32.68	30.27	7.88	61.01	74.00	-12.99	Peak	Horizontal
4924.00	35.84	32.68	30.27	7.88	46.13	54.00	-7.87	Average	Horizontal
4924.00	51.11	31.58	36.20	7.82	54.31	74.00	-19.69	Peak	Vertical
4924.00	37.52	31.58	36.20	7.82	40.72	54.00	-13.28	Average	Vertical

Note: All modes were tested and the worst mode was recorded in the report (version C_Adapter: ADS-65HI-19A-124036F_NFC antenna Model:DS2-52).

Report No.: CTA24103100103 Page 44 of 51

IEEE 802.11b_ (Worst Case)

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	50.62	32.44	30.25	7.95	60.76	74.00	-13.24	Peak	Horizontal
4824.00	34.82	32.44	30.25	7.95	44.96	54.00	-9.04	Average	Horizontal
4824.00	51.02	31.60	36.50	7.00	53.12	74.00	-20.88	Peak	Vertical
4824.00	35.99	31.60	36.50	7.00	38.09	54.00	-15.91	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	50.83	32.52	30.31	8.12	61.16	74.00	-12.84	Peak	Horizontal
4874.00	36.75	32.52	30.31	8.12	47.08	54.00	-6.92	Average	Horizontal
4874.00	50.65	31.02	36.50	7.60	52.77	74.00	-21.23	Peak	Vertical
4874.00	36.30	31.02	36.50	7.60	38.42	54.00	-15.58	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	51.70	32.68	30.27	7.88	61.99	74.00	-12.01	Peak	Horizontal
4924.00	36.65	32.68	30.27	7.88	46.94	54.00	-7.06	Average	Horizontal
4924.00	52.68	31.58	36.20	7.82	55.88	74.00	-18.12	Peak	Vertical
4924.00	37.18	31.58	36.20	7.82	40.38	54.00	-13.62	Average	Vertical

Note: All modes were tested and the worst mode was recorded in the report (version D_Adapter: ADS-65HI-19A-124036F_NFC antenna Model:DS2-52).

Notes:

- 1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Measured= Reading- Pre. Fac.+ Ant. Fac.+ Cab. Loss
- 5). Margin = Measured- Limit

Report No.: CTA24103100103 Page 45 of 51

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 15.247 Measurement Guidance v05r02 Section 8.3.1 Maximum peak conducted output power, 8.3.1.3 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix C.3.

Report No.: CTA24103100103 Page 46 of 51

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix C.4.

Report No.: CTA24103100103 Page 47 of 51

4.5. 99% and 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDI23M0258074 D01 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

For reporting purpose only.

Please refer to Appendix C.1.

Please refer to Appendix C.2.

Report No.: CTA24103100103 Page 48 of 51

4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship: E = EIRP 20log D + 104.8

where:

E = electric field strength in dBµV/m,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test dures until all measured frequencies were complete.

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

Report No.: CTA24103100103 Page 49 of 51

TEST RESULTS

4.6.1 For Conducted at Restricted Band Measurement

For reporting purpose only.

Please refer to Appendix C.7.

4.6.2 For Conducted Bandedge Measurement

For reporting purpose only.

Please refer to Appendix C.5.

4.6.3 For Conducted Spurious Emissions Measurement

For reporting purpose only.

Please refer to Appendix C.6.

Report No.: CTA24103100103 Page 50 of 51

4.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna is Internal Antenna, through the buckle stretched out, The directional gains of antenna used for transmitting is 2.05dBi.

Reference to the **Internal photos**.

Report No.: CTA24103100103 Page 51 of 51

5. TEST SETUP PHOTOS OF THE EUT

Reference to the Test Report: CTA24103100101.

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the Test Report: CTA24103100101.	
End of Report	