

TEST PROCEDURE

The transmitter output was connected to a R&S CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:

- Set the spectrum analyzer span to include the block edge frequency.
- Set a marker to point the corresponding band edge frequency in each test case.
- Set display line at -13dBm
- Set resolution bandwidth to at least 1% of emission bandwidth.

TEST RESULTS

Band	Channel	Freq (MHz)	Result (dBm)	Limit(dBm)	Verdict
GPRS850	128	823.98	-25.18	-13	PASS
GPRS850	251	849.02	-23.70	-13	PASS
EGPRS850	128	823.98	-32.22	-13	PASS
EGPRS850	251	849.00	-31.72	-13	PASS
GPRS1900	512	1849.99	-27.46	-13	PASS
GPRS1900	810	1910.02	-26.50	-13	PASS
EGPRS1900	512	1849.98	-36.19	-13	PASS
EGPRS1900	810	1910.02	-36.15	-13	PASS
Band2	9262	1850.00	-24.99	-13	PASS
Band2	9538	1910.00	-28.94	-13	PASS
Band5	4132	824.00	-26.03	-13	PASS
Band5	4233	849.00	-24.57	-13	PASS

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

3.7. Radiated Power Measurement

<u>LIMIT</u>

FCC: §2.1046, §22.913, §24.232, §27.50 and §90.635

IC: RSS132§5.4; RSS133§6.4 and RSS139§6.5.

TEST CONFIGURATION

For the actual test configuration, please refer to the related Item – EUT Test Photos.

Above 1GHz

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used N5182A microwave signal generator which signal level can up to 33dBm, so we not used power Amplifier for substitution test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Remark:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.
- Pre-scan all antenna, only show the test data for worse case antenna on the test report. 2.

Measurement Data (worst case) :

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	100	V	27.18		
	120	Н	22.76		
	100	V	27.40	20 15	Page
GFR3030	190	Н	22.60	30.45	Pass
	251	V	27.63		
	201	Н	22.29	-	
	100	V	27.62	38.45	Deve
	128	Н	22.75		
	100	V	27.91		
EGPR5850	190	Н	22.02		Fd55
	251	V	27.28		
	251	Н	22.89	-	

Mode	Channel	Antenna Pol.	ERIP	Limit (dBm)	Result	
	510	V	29.48			
	512	Н	24.62			
	661	V	29.28	22.00	Doop	
GPR5 1900	001	Н	25.48	33.00	Pass	
	810	V	28.28			
		Н	24.80			
	510	V	29.49		Dec	
	512	Н	25.26	- 33.00		
EGPRS1900	661	V	29.21			
		Н	25.94		Pass	
	910	V	28.42			
	010	Н	25.10			

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
WCDMA Band II (QPSK)	0262	V	25.70		Pass
	9262	Н	20.05		
	9400	V	25.16	- 33.00	
		Н	20.44		
		V	25.37		
	9000	Н	20.03		

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
WCDMA Band V (QPSK)	4120	V	20.46		Pass
	4152	Н	18.81		
	4183 4233	V	20.56	- 38.45	
		Н	18.05		
		V	20.15		
		Н	18.70		

3.8. Radiated Spurious Emission

<u>LIMIT</u>

FCC: §22.917(a), §24.238(a), §27.53 (h), §90.691

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

RSS132§5.5

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

(i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p (watts).

(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least43 +10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

RSS133§6.5

Equipment shall comply with the limits in (i) and (ii) below.

(i) In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p(watts).

(ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

RSS139§6.6

(i) In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, Footnote2 which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least43 + 10log10 p (watts) dB.

(ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.

TEST CONFIGURATION

For the actual test configuration, please refer to the related Item – EUT Test Photos.

Below 1GHz

Above 1GHz

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A microwave signal generator which signal level can up to 33dBm, so we not used

power Amplifier for substitution test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

8. Test frequency range should extend to 10th harmonic of highest fundamental frequency.

TEST RESULTS

Remark:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.

GPRS 850									
Channol	Frequency	Spurious	Emission	Linsit (dDna)	Desult				
Channel	(MHz)	Polarization	Level (dBm)		Result				
	1648.8	Horizontal	-39.65						
100	2473.2	Horizontal	-47.74						
120	1648.8	Vertical	-46.99						
	2473.2	Vertical	-54.19		Pass				
	1673.2	Horizontal	-41.74						
100	2509.8	Horizontal	-45.07	12.00					
190	1673.2	Vertical	-44.25	-13.00					
	2509.8	Vertical	-54.04						
	1697.6	Horizontal	-33.48						
251	2546.4	Horizontal	-43.37						
	1697.6	Vertical	-40.01						
	2546.4	Vertical	-46.22						

Remark :

1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

EGPRS 850									
Channel	Frequency	Spurious	Emission	Limit (dDm)	Desult				
Channel	(MHz)	Polarization	Level (dBm)	Limit (aBm)	Result				
	1648.8	Horizontal	-35.69						
100	2473.2	Horizontal	-48.00						
120	1648.8	Vertical	-49.15						
	2473.2 Vertical		-53.98						
	1673.2	Horizontal	-42.28						
100	2509.8	Horizontal	-49.61	-13.00	Pass				
190	1673.2	Vertical	-44.20						
	2509.8	Vertical	-52.37						
	1697.6	Horizontal	-37.36						
251	2546.4	Horizontal	-40.22						
	1697.6	Vertical	-40.79						
	2546.4	Vertical	-48.76						

Remark :

EN

1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

GPRS 1900								
Channel	Frequency	Spurious Emission		Limit (dPm)	Deput			
Channel	(MHz)	Polarization	Level (dBm)		Result			
	3700.4	Horizontal	-45.40					
E10	5550.6	Horizontal	-52.12					
512	3700.4	Vertical	-48.68					
	5550.6 Vertical		-52.84					
	3760	Horizontal	-42.53	12.00	Pass			
661	5640	Horizontal	-54.46					
001	3760	Vertical	-48.07	-13.00				
	5640	Vertical	-52.23					
	3819.6	Horizontal	-35.75					
810	5729.4	Horizontal	-45.79					
	3819.6	Vertical	-45.66					
	5729.4	Vertical	-53.78					

Remark :

1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

EGPRS 1900									
Channel	Frequency	Spurious	Emission	Limit (dPm)	Deput				
Channel	(MHz)	Polarization	Level (dBm)	сппп (автт)	Result				
	3700.4	Horizontal	-43.38						
510	5550.6	Horizontal	-51.18						
512	3700.4	Vertical	-48.34						
	5550.6 Vertical		-56.59						
	3760	Horizontal	-44.99	10.00	Pass				
661	5640	Horizontal	-51.83						
001	3760	Vertical	-47.61	-13.00					
	5640	Vertical	-56.84						
	3819.6	Horizontal	-35.01						
810	5729.4	Horizontal	-43.94						
	3819.6	Vertical	-47.51						
	5729.4	Vertical	-51.52						

Remark :

1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test

report.

EN

WCDMA Band II									
Channel	Frequency	Spurious Emission		Limit (dDm)	Desult				
Channel	(MHz)	Polarization	Level (dBm)		Result				
	3705.20	Vertical	-37.19						
0262	5557.80	Vertical	-53.21						
9202	3705.20	Horizontal	-50.90		Pass				
	5557.80	Horizontal	-53.64						
	3760.00	Vertical	-44.20						
0400	5640.00	Vertical	-52.42	12.00					
9400	3760.00	Horizontal	-44.06	-13.00					
	5640.00	Horizontal	-51.86						
	3814.80	Vertical	-39.53						
9538	5722.20	Vertical	-54.78						
	3814.80	Horizontal	-41.03						
	5722.20	Horizontal	-49.72						

Remark :

1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

WCDMA Band V									
Channel	Frequency	Spurious	Emission	Limit (dPm)	Desult				
Channel	(MHz)	Polarization	Level (dBm)		Result				
	1653.20	Vertical	-42.22						
4120	2479.80	Vertical	-54.84						
4152	1653.20	Horizontal	-50.11						
	2479.80	Horizontal	-53.08]					
	1672.80	Vertical	-42.14						
1102	2509.20	Vertical	-52.87	12.00	Pass				
4105	1672.80	Horizontal	-45.48	-13.00					
	2509.20	Horizontal	-54.01						
	1692.80	Vertical	-38.32						
4233	2539.20	Vertical	-51.89						
	1692.80	Horizontal	-44.92						
	2539.20	Horizontal	-54.25						

Remark :

1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

3.9. Frequency stability

<u>LIMIT</u>

FCC §22.355, §90.213

The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.

FCC §24.235 & §27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

RSS132§5.3

The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 SRSP for mobile stations and ± 1.5 ppm for base stations.

In lieu of meeting the above stability values, the test report may show that the frequency stability is sufficient to ensure that the occupied bandwidth stays within each of the sub-bands (see Section 5.1) when tested to the temperature and supply voltage variations specified in RSS-Gen.

RSS133§6.3

The carrier frequency shall not depart from the reference frequency, in excess of ± 2.5 ppm for mobile stations and ± 1.0 ppm for base stations.

In lieu of meeting the above stability values, the test report may show that the frequency stability is sufficient to ensure that the emission bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

RSS139§6.4

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to 0°C. After the temperature stabilized for

approximately 30 minutes recorded the frequency.

- 6. Repeat step measure with 0°C increased per stage until the highest temperature of +45°C reached.
- 7. Reduce the input voltage to specified extreme voltage variation (+/- 10%) and endpoint, record the maximum frequency change.

TEST RESULTS

Voltage									
Band	Channel	Voltage [Vdc]	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict		
GPRS850	128	VN	NT	-8.42	-0.010216	±2.5	PASS		
GPRS850	128	VL	NT	-11.17	-0.013553	±2.5	PASS		
GPRS850	128	VH	NT	-8.92	-0.010823	±2.5	PASS		
GPRS850	190	VN	NT	-6.76	-0.008080	±2.5	PASS		
GPRS850	190	VL	NT	-6.04	-0.007220	±2.5	PASS		
GPRS850	190	VH	NT	-10.03	-0.011989	±2.5	PASS		
GPRS850	251	VN	NT	-8.85	-0.010426	±2.5	PASS		
GPRS850	251	VL	NT	-9.25	-0.010898	±2.5	PASS		
GPRS850	251	VH	NT	-4.27	-0.005031	±2.5	PASS		
EGPRS850	128	VN	NT	-5.33	-0.006467	±2.5	PASS		
EGPRS850	128	VL	NT	-9.63	-0.011684	±2.5	PASS		
EGPRS850	128	VH	NT	-5.48	-0.006649	±2.5	PASS		
EGPRS850	190	VN	NT	-5.69	-0.006801	±2.5	PASS		
EGPRS850	190	VL	NT	-4.85	-0.005797	±2.5	PASS		
EGPRS850	190	VH	NT	-4.62	-0.005522	±2.5	PASS		
EGPRS850	251	VN	NT	-6.17	-0.007269	±2.5	PASS		
EGPRS850	251	VL	NT	-6.19	-0.007293	±2.5	PASS		
EGPRS850	251	VH	NT	-6.15	-0.007246	±2.5	PASS		
GPRS1900	512	VN	NT	-7.00	-0.003783	±2.5	PASS		
GPRS1900	512	VL	NT	-8.75	-0.004729	±2.5	PASS		
GPRS1900	512	VH	NT	-3.63	-0.001962	±2.5	PASS		
GPRS1900	661	VN	NT	-4.01	-0.002133	±2.5	PASS		
GPRS1900	661	VL	NT	-6.93	-0.003686	±2.5	PASS		
GPRS1900	661	VH	NT	-6.03	-0.003207	±2.5	PASS		
GPRS1900	810	VN	NT	-2.09	-0.001094	±2.5	PASS		
GPRS1900	810	VL	NT	-2.65	-0.001388	±2.5	PASS		
GPRS1900	810	VH	NT	-2.34	-0.001225	±2.5	PASS		
EGPRS1900	512	VN	NT	4.39	0.002373	±2.5	PASS		
EGPRS1900	512	VL	NT	5.99	0.003237	±2.5	PASS		
EGPRS1900	512	VH	NT	2.54	0.001373	±2.5	PASS		
EGPRS1900	661	VN	NT	0.21	0.000112	±2.5	PASS		
EGPRS1900	661	VL	NT	-1.01	-0.000537	±2.5	PASS		
EGPRS1900	661	VH	NT	-1.90	-0.001011	±2.5	PASS		
EGPRS1900	810	VN	NT	-2.19	-0.001147	±2.5	PASS		
EGPRS1900	810	VL	NT	0.39	0.000204	±2.5	PASS		
EGPRS1900	810	VH	NT	-0.95	-0.000497	±2.5	PASS		
Band2	9262	VN	NT	-7.50	-0.004049	±2.5	PASS		
Band2	9262	VL	NT	-8.75	-0.004724	±2.5	PASS		
Band2	9262	VH	NT	-10.16	-0.005485	±2.5	PASS		

Band2	9400	VN	NT	-6.73	-0.003580	±2.5	PASS
Band2	9400	VL	NT	-11.16	-0.005936	±2.5	PASS
Band2	9400	VH	NT	-15.87	-0.008441	±2.5	PASS
Band2	9538	VN	NT	-7.64	-0.004005	±2.5	PASS
Band2	9538	VL	NT	-4.43	-0.002322	±2.5	PASS
Band2	9538	VH	NT	-7.39	-0.003874	±2.5	PASS
Band5	4132	VN	NT	-14.83	-0.017945	±2.5	PASS
Band5	4132	VL	NT	-6.91	-0.008362	±2.5	PASS
Band5	4132	VH	NT	-12.62	-0.015271	±2.5	PASS
Band5	4182	VN	NT	-8.67	-0.010366	±2.5	PASS
Band5	4182	VL	NT	-10.97	-0.013116	±2.5	PASS
Band5	4182	VH	NT	-12.65	-0.015124	±2.5	PASS
Band5	4233	VN	NT	-6.29	-0.007430	±2.5	PASS
Band5	4233	VL	NT	-9.44	-0.011150	±2.5	PASS
Band5	4233	VH	NT	-11.94	-0.014103	±2.5	PASS

Temperature							
Band	Channel	Voltage [Vdc]	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
GPRS850	128	NV	-10	-8.14	-0.009876	±2.5	PASS
GPRS850	128	NV	0	-5.29	-0.006418	±2.5	PASS
GPRS850	128	NV	10	-5.88	-0.007134	±2.5	PASS
GPRS850	128	NV	20	-7.89	-0.009573	±2.5	PASS
GPRS850	128	NV	30	-5.34	-0.006479	±2.5	PASS
GPRS850	128	NV	40	-8.68	-0.010531	±2.5	PASS
GPRS850	128	NV	50	-8.50	-0.010313	±2.5	PASS
GPRS850	190	NV	-10	-5.18	-0.006192	±2.5	PASS
GPRS850	190	NV	0	-3.81	-0.004554	±2.5	PASS
GPRS850	190	NV	10	-4.88	-0.005833	±2.5	PASS
GPRS850	190	NV	20	-6.86	-0.008200	±2.5	PASS
GPRS850	190	NV	30	-5.99	-0.007160	±2.5	PASS
GPRS850	190	NV	40	-5.93	-0.007088	±2.5	PASS
GPRS850	190	NV	50	-6.89	-0.008236	±2.5	PASS
GPRS850	251	NV	-10	-4.53	-0.005337	±2.5	PASS
GPRS850	251	NV	0	-3.13	-0.003688	±2.5	PASS
GPRS850	251	NV	10	-2.88	-0.003393	±2.5	PASS
GPRS850	251	NV	20	-1.80	-0.002121	±2.5	PASS
GPRS850	251	NV	30	-4.81	-0.005667	±2.5	PASS
GPRS850	251	NV	40	-7.88	-0.009284	±2.5	PASS
GPRS850	251	NV	50	-4.74	-0.005584	±2.5	PASS
EGPRS850	128	NV	-10	-4.77	-0.005787	±2.5	PASS
EGPRS850	128	NV	0	-4.97	-0.006030	±2.5	PASS
EGPRS850	128	NV	10	-6.79	-0.008238	±2.5	PASS
EGPRS850	128	NV	20	-7.24	-0.008784	±2.5	PASS
EGPRS850	128	NV	30	-10.62	-0.012885	±2.5	PASS
EGPRS850	128	NV	40	-6.46	-0.007838	±2.5	PASS
EGPRS850	128	NV	50	-8.15	-0.009888	±2.5	PASS
EGPRS850	190	NV	-10	-9.02	-0.010782	±2.5	PASS
EGPRS850	190	NV	0	-8.22	-0.009825	±2.5	PASS
EGPRS850	190	NV	10	-4.14	-0.004949	±2.5	PASS

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

EGPRS850	190	NV	20	-6.43	-0.007686	±2.5	PASS
EGPRS850	190	NV	30	-3.31	-0.003956	±2.5	PASS
EGPRS850	190	NV	40	-6.01	-0.007184	±2.5	PASS
EGPRS850	190	NV	50	-8.44	-0.010088	±2.5	PASS
EGPRS850	251	NV	-10	-6.02	-0.007092	±2.5	PASS
EGPRS850	251	NV	0	-12.62	-0.014868	±2.5	PASS
EGPRS850	251	NV	10	-8.26	-0.009731	±2.5	PASS
EGPRS850	251	NV	20	-4.35	-0.005125	±2.5	PASS
EGPRS850	251	NV	30	-5.93	-0.006986	±2.5	PASS
EGPRS850	251	NV	40	-6.39	-0.007528	±2.5	PASS
EGPRS850	251	NV	50	-9.39	-0.011063	±2.5	PASS
GPRS1900	512	NV	-10	5.85	0.003162	±2.5	PASS
GPRS1900	512	NV	0	3.92	0.002119	±2.5	PASS
GPRS1900	512	NV	10	5.41	0.002924	±2.5	PASS
GPRS1900	512	NV	20	0.17	0.000092	±2.5	PASS
GPRS1900	512	NV	30	4.06	0.002194	±2.5	PASS
GPRS1900	512	NV	40	6.46	0.003492	±2.5	PASS
GPRS1900	512	NV	50	4.15	0.002243	±2.5	PASS
GPRS1900	661	NV	-10	7.37	0.003920	±2.5	PASS
GPRS1900	661	NV	0	5.53	0.002941	±2.5	PASS
GPRS1900	661	NV	10	2.19	0.001165	±2.5	PASS
GPRS1900	661	NV	20	7.43	0.003952	±2.5	PASS
GPRS1900	661	NV	30	8.17	0.004346	±2.5	PASS
GPRS1900	661	NV	40	6.58	0.003500	±2.5	PASS
GPRS1900	661	NV	50	5.82	0.003096	±2.5	PASS
GPRS1900	810	NV	-10	5.76	0.003016	±2.5	PASS
GPRS1900	810	NV	0	4.34	0.002272	±2.5	PASS
GPRS1900	810	NV	10	5.06	0.002649	±2.5	PASS
GPRS1900	810	NV	20	3.00	0.001571	±2.5	PASS
GPRS1900	810	NV	30	3.17	0.001660	±2.5	PASS
GPRS1900	810	NV	40	8.39	0.004393	±2.5	PASS
GPRS1900	810	NV	50	-0.72	-0.000377	±2.5	PASS
EGPRS1900	512	NV	-10	15.70	0.008486	±2.5	PASS
EGPRS1900	512	NV	0	7.32	0.003956	±2.5	PASS
EGPRS1900	512	NV	10	11.04	0.005967	±2.5	PASS
EGPRS1900	512	NV	20	12.53	0.006772	±2.5	PASS
EGPRS1900	512	NV	30	7.13	0.003854	±2.5	PASS
EGPRS1900	512	NV	40	5.21	0.002816	±2.5	PASS
EGPRS1900	512	NV	50	14.59	0.007886	±2.5	PASS
EGPRS1900	661	NV	-10	6.72	0.003574	±2.5	PASS
EGPRS1900	661	NV	0	3.69	0.001963	±2.5	PASS
EGPRS1900	661	NV	10	12.69	0.006750	±2.5	PASS
EGPRS1900	661	NV	20	10.73	0.005707	±2.5	PASS
EGPRS1900	661	NV	30	12.87	0.006846	±2.5	PASS
EGPRS1900	661	NV	40	5.52	0.002936	±2.5	PASS
EGPRS1900	661	NV	50	3.88	0.002064	±2.5	PASS
EGPRS1900	810	NV	-10	9.74	0.005100	±2.5	PASS
EGPRS1900	810	NV	0	11.96	0.006262	±2.5	PASS
EGPRS1900	810	NV	10	14.29	0.007482	±2.5	PASS
EGPRS1900	810	NV	20	9.04	0.004733	±2.5	PASS

EN 中国国家认证认可监督管理委员会

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

EGPRS1900	810	NV	30	13.34	0.006985	±2.5	PASS
EGPRS1900	810	NV	40	9.37	0.004906	±2.5	PASS
EGPRS1900	810	NV	50	10.62	0.005561	±2.5	PASS
Band2	9262	NV	-10	-10.65	-0.005749	±2.5	PASS
Band2	9262	NV	0	-7.12	-0.003844	±2.5	PASS
Band2	9262	NV	10	-11.60	-0.006262	±2.5	PASS
Band2	9262	NV	20	-12.06	-0.006510	±2.5	PASS
Band2	9262	NV	30	-9.89	-0.005339	±2.5	PASS
Band2	9262	NV	40	-14.77	-0.007973	±2.5	PASS
Band2	9262	NV	50	-7.44	-0.004016	±2.5	PASS
Band2	9400	NV	-10	-7.90	-0.004202	±2.5	PASS
Band2	9400	NV	0	-9.71	-0.005165	±2.5	PASS
Band2	9400	NV	10	-15.34	-0.008160	±2.5	PASS
Band2	9400	NV	20	-9.42	-0.005011	±2.5	PASS
Band2	9400	NV	30	-4.77	-0.002537	±2.5	PASS
Band2	9400	NV	40	-11.03	-0.005867	±2.5	PASS
Band2	9400	NV	50	-11.47	-0.006101	±2.5	PASS
Band2	9538	NV	-10	-9.00	-0.004718	±2.5	PASS
Band2	9538	NV	0	-5.52	-0.002894	±2.5	PASS
Band2	9538	NV	10	-8.99	-0.004713	±2.5	PASS
Band2	9538	NV	20	-5.80	-0.003040	±2.5	PASS
Band2	9538	NV	30	-4.42	-0.002317	±2.5	PASS
Band2	9538	NV	40	-7.66	-0.004016	±2.5	PASS
Band2	9538	NV	50	-3.29	-0.001725	±2.5	PASS
Band5	4132	NV	-30	-8.72	-0.010552	±2.5	PASS
Band5	4132	NV	-20	-12.37	-0.014969	±2.5	PASS
Band5	4132	NV	-10	-10.49	-0.012694	±2.5	PASS
Band5	4132	NV	0	-12.29	-0.014872	±2.5	PASS
Band5	4132	NV	10	-7.25	-0.008773	±2.5	PASS
Band5	4132	NV	20	-16.05	-0.019422	±2.5	PASS
Band5	4132	NV	30	-12.86	-0.015561	±2.5	PASS
Band5	4132	NV	40	-9.71	-0.011750	±2.5	PASS
Band5	4132	NV	50	-12.89	-0.015598	±2.5	PASS
Band5	4182	NV	-10	-13.06	-0.015615	±2.5	PASS
Band5	4182	NV	0	-12.70	-0.015184	±2.5	PASS
Band5	4182	NV	10	-11.36	-0.013582	±2.5	PASS
Band5	4182	NV	20	-7.13	-0.008525	±2.5	PASS
Band5	4182	NV	30	-6.95	-0.008309	±2.5	PASS
Band5	4182	NV	40	-12.42	-0.014849	±2.5	PASS
Band5	4182	NV	50	-14.86	-0.017767	±2.5	PASS
Band5	4233	NV	-10	-10.12	-0.011954	±2.5	PASS
Band5	4233	NV	0	-9.41	-0.011115	±2.5	PASS
Band5	4233	NV	10	-8.16	-0.009639	±2.5	PASS
Band5	4233	NV	20	-8.59	-0.010146	±2.5	PASS
Band5	4233	NV	30	-10.88	-0.012851	±2.5	PASS
Band5	4233	NV	40	-9.67	-0.011422	±2.5	PASS
Band5	4233	NV	50	-7.05	-0.008327	±2.5	PASS

日 中国国家认证认可监督管理委员会

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn