Shenzhen Global Test Service Co.,Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... GTS20230704026-1-21

FCC ID.....: : 2AYD5-I23D01

Compiled by

(position+printed name+signature) .: File administrators Peter Xiao

Supervised by

(position+printed name+signature) .: Test Engineer Evan Ouyang

Approved by

(position+printed name+signature) .: Manager Jason Hu

Date of issue Aug.18, 2023

Representative Laboratory Name.: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address: Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong, China

Applicant's name...... Imin Technology Pte Ltd

Test specification:

Standard FCC Part 15.247

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF Dated 2014-12

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description POS Device

Trade Mark:

Manufacturer: Imin Technology Pte Ltd

Model/Type reference: I23D01

Listed Models: N/A

Modulation Type GFSK

Operation Frequency...... From 2402MHz to 2480MHz

Hardware Version N/A

Software Version: N/A

Rating DC 24V/2.5A by adapter

Result PASS

Report No.: GTS20230704026-1-21 Page 2 of 47

TEST REPORT

Test Report No. :	GTS20230704026-1-21	Aug.18, 2023
	G1320230704020-1-21	Date of issue

Equipment under Test : POS Device

Model /Type : I23D01

Listed model : N/A

Applicant : Imin Technology Pte Ltd

Address : 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Manufacturer : Imin Technology Pte Ltd

Address : 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	7
2.4. Short description of the Equipment under Test (EUT)	7
2.5. EUT operation mode	7
2.6. Block Diagram of Test Setup	8
2.7. EUT Exercise Software	8
2.8. Special Accessories	8
2.9. External I/O Cable	8
2.10. Related Submittal(s) / Grant (s)	8
2.11. Modifications	8
3. TEST ENVIRONMENT	9
3.1. Address of the test laboratory	9
3.2. Test Facility	9
3.3. Environmental conditions	9
3.4. Statement of the measurement uncertainty	9
3.5. Test Description	10
3.6. Equipments Used during the Test	11
4. TEST CONDITIONS AND RESULTS	12
4.1. AC Power Conducted Emission	12
4.2. Radiated Emission	
4.3. Maximum Peak Output Power	41
4.4. Power Spectral Density	42
4.5. 99% and 6dB Bandwidth	43
4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	44
4.7. Antenna Requirement	46
5. TEST SETUP PHOTOS OF THE EUT	47
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	

Report No.: GTS20230704026-1-21 Page 4 of 47

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB 558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

Report No.: GTS20230704026-1-21 Page 5 of 47

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Jul.21, 2023
Testing commenced on	:	Jul.21, 2023
Testing concluded on	:	Aug.17, 2023

2.2. Product Description

Product Name:	POS Device
Trade Mark:	imin
Model/Type reference:	I23D01
List Model:	N/A
Model Declaration	N/A
Power supply:	DC 24V/2.5A by adapter
Hardware Version	N/A
Software Version	N/A
Sample ID	GTS20230704026-1-S0001-1#& GTS20230704026-1-S0001-2#
Bluetooth	
Frequency Range	2402MHz ~ 2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
2.4GWLAN	or extra Blacketti (BTG)
WLAN Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11ax HE20:2412-2462MHz
IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) WLAN Modulation Type IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ax HE20: OFDMA (1024QAM,256QAM,64QAM,160QPSK,BPSK)	
Channel number:	11 Channel for IEEE 802.11b/g/n/ax (HT20)
Channel separation:	5MHz
WIFI(5.2G/5.3G/5.7G/5.8G Ban	
WLAN Operation frequency	5180-5240MHz/ 5260MHz to 5320MHz/ 5500MHz to 5700MHz/ 5745MHz to 5825MHz
WLAN Modulation Type	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac VHT20: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ax HE20: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac VHT40: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)

Report No.: GTS20230704026-1-21 Page 6 of 47

	IEEE 802.11ax HE40: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ac VHT80: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ax HE80: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)
	4 Channels for 20MHz bandwidth(5180-5240MHz)
	4 Channels for 20MHz bandwidth(5260-5320MHz)
	11 Channels for 20MHz bandwidth(5500-5700MHz)
	5 channels for 20MHz bandwidth(5745-5825MHz)
	2 channels for 40MHz bandwidth(5190~5230MHz)
Channel number:	2 channels for 40MHz bandwidth(5270~5310MHz)
Channel number.	5 Channels for 40MHz bandwidth(5510-5670MHz)
	2 channels for 40MHz bandwidth(5755~5795MHz)
	1 channels for 80MHz bandwidth(5210MHz)
	1 channels for 80MHz bandwidth(5290MHz)
	2 Channels for 80MHz bandwidth(5530-5610MHz)
	1 channels for 80MHz bandwidth(5775MHz)
	Three Internal antenna respectively.WLAN support 2*2MIMO technology. ANT0 used for WIFI TX/RX, 2.00 dBi(Max.) for 2.4G Band and 2.00dBi(Max.) for 5G Band
Antenna Description	ANT1 used for WIFI TX/RX, 2.00 dBi(Max.) for 2.4G Band and 2.00dBi (Max.) for 5G Band
	ANT2 used for BT TX/RX, 2.00 dBi(Max.) for 2.4G Band

Remark:The I23D01 model has 3 versions; Version A: Two identical large screens

Version B: One large display and one small display

Version C: Only one large display

Report No.: GTS20230704026-1-21 Page 7 of 47

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	•	24 V DC
		0	Other (specified in blank below)		

DC 24.0V

2.4. Short description of the Equipment under Test (EUT)

This is a POS Device

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

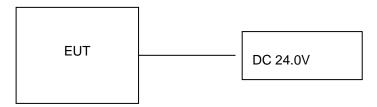
The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)		
	2402	1		
(BLE)	2440	1		
	2480	1		
For Conducted Emission				
Test Mode		TX Mode		
For Radiated Emission				
Test Mode		TX Mode		

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
18	2438	38	2478
19	2440	39	2480

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.


AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/60Hz modes, recorded worst case.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be BT LE mode (MCH).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be BT LE mode(MCH).

Report No.: GTS20230704026-1-21 Page 8 of 47

2.6. Block Diagram of Test Setup

2.7. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (adb model) provided by application.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Jiangsu Chenyang Electron	Adapter	CYSE65-240250		SDOC
Co.,Ltd.	πααριοί			
Shenzhen SOY Technology	Adapter	SOY-2400250-332-A		SDOC
Co.,Ltd.	Adapter	301-2400250-332-A		3000
JiangSu Sunward				
Electronic Technology Co.,	Adapter	AD65CM249250A		SDOC
Ltd				
SHENZHEN HONOR	Adoptor	ADS-65HI-19A-1		SDOC
ELECTRONIC CO.,LTD.	Adapter	24060E		3500
LENOVO	PC	DESKYOP-EUIVCNR		SDOC
LENOVO	Keyboard	T460S		SDOC
LENOVO	Mouse	Howard		SDOC
SONY	Earphone	MDR-XB550AP		SDOC
aigo	USB flash disk	U330		SDOC

Note: The PC, Keyboard, Mouse, Earphone and USB flash disk is only used for auxiliary testing.

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	Non-Shielded, 1.0m
USB Port	3	N/A
LAN Port	1	Non-Shielded, 10m
Type-C Port	1	N/A
TF Cart	1	N/A
RJ11 Port	2	N/A
Earphone	1	N/A

2.10. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AYD5-I23D01** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20230704026-1-21 Page 9 of 47

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 of 47 Report No.: GTS20230704026-1-21

3.5. Test Description

	Applied Standar	rd: FCC Part 15 Subpart C	,	
FCC Rules	Description of Test	Test Sample	Result	Remark
/	On Time and Duty Cycle	GTS20230704026-1- S0001-1#	/	/
§15.247(b)	Maximum Conducted Output Power	GTS20230704026-1- S0001-1#	Compliant	Appendix B
§15.247(e)	Power Spectral Density	GTS20230704026-1- S0001-1#	Compliant	Appendix B
§15.247(a)(2)	6dB Bandwidth	GTS20230704026-1- S0001-1#	Compliant	Appendix B
§2.1047	99% Occupied Bandwidth GTS20230704026-1- S0001-1#		Compliant	Appendix B
§15.209, §15.247(d)	Conducted Spurious Emissions and Band Edges Test	GTS20230704026-1- S0001-1#	Compliant	Appendix B
§15.209, §15.247(d)	Radiated Spurious Emissions	GTS20230704026-1- S0001-1# GTS20230704026-1- S0001-2#	Compliant	Note 1
§15.205	Emissions at Restricted Band	GTS20230704026-1- S0001-1#	Compliant	Note 1
§15.207(a)	AC Conducted Emissions	GTS20230704026-1- S0001-2#	Compliant	Note 1
§15.203 §15.247(c)	Antenna Requirements	GTS20230704026-1- S0001-1#	Compliant	Note 1
§15.247(i)§2.1 091	RF Exposure	/	Compliant	Note 2

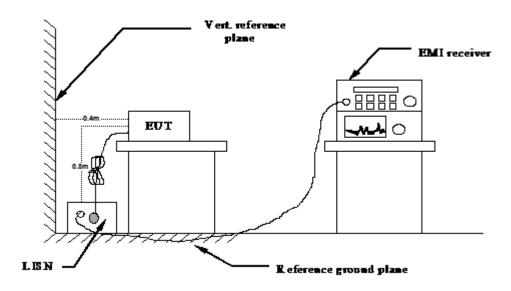
Remark:

- The measurement uncertainty is not included in the test result. $NA = Not \ Applicable; \ NP = Not \ Performed$ 1.
- 2.
- Note 1 Test results inside test report; 3.
- 4.
- Note 2 Test results in other test report (MPE Report). We tested all test mode and recorded worst case in report 5.

3.6. Equipments Used during the Test

Report No.: GTS20230704026-1-21

				Online at	0-11
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2023/07/13	2024/07/12
LISN	R&S	ESH2-Z5	893606/008	2023/07/13	2024/07/12
EMI Test Receiver	R&S	ESPI3	101841-cd	2023/07/13	2024/07/12
EMI Test Receiver	R&S	ESCI7	101102	2022/09/09	2023/09/08
Spectrum Analyzer	Agilent	N9020A	MY48010425	2022/09/09	2023/09/08
Spectrum Analyzer	R&S	FSV40	100019	2023/07/13	2024/07/12
Vector Signal generator	Agilent	N5181A	MY49060502	2023/07/13	2024/07/12
Signal generator	Agilent	N5182A	3610AO1069	2022/09/09	2023/09/08
Climate Chamber	ESPEC	EL-10KA	A20120523	2022/09/09	2023/09/08
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2022/09/09	2023/09/08
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2022/09/09	2023/09/08
Bilog Antenna	Schwarzbeck	VULB9163	000976	2023/07/13	2024/07/12
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2022/09/09	2023/09/08
Amplifier	Schwarzbeck	BBV 9743	#202	2023/07/13	2024/07/12
Amplifier	Schwarzbeck	BBV9179	9719-025	2023/07/13	2024/07/12
Amplifier	EMCI	EMC051845B	980355	2023/07/13	2024/07/12
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2023/07/13	2024/07/12
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2023/07/13	2024/07/12
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2023/07/13	2024/07/12
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2023/07/13	2024/07/12
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2023/07/13	2024/07/12
Data acquisition card	Agilent	U2531A	TW53323507	2023/07/13	2024/07/12
Power Sensor	Agilent	U2021XA	MY5365004	2023/07/13	2024/07/12
Test Control Unit	Tonscend	JS0806-1	178060067	2023/07/13	2024/07/12
Automated filter bank	Tonscend	JS0806-F	19F8060177	2023/07/13	2024/07/12
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/


Note: 1. The Cal.Interval was one year.

Report No.: GTS20230704026-1-21 Page 12 of 47

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

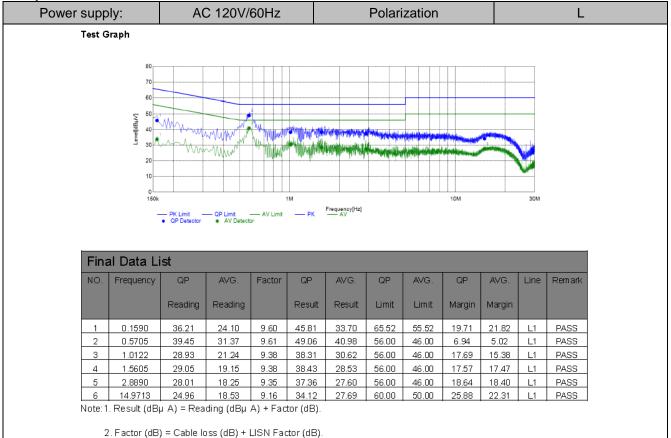
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received DC 24V power, the adapter received AC120V/60Hz or AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

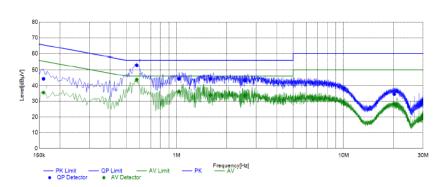
Frequency range (MHz)	Limit (d	dBuV)
r requericy rarige (IMI IZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncy.	

TEST RESULTS


Remark: We measured Conducted Emission at GFSK mode from 150 KHz to 30MHz in AC120V and the worst case was recorded.

Temperature	25℃	Humidity	60%
Test Engineer	Evan Ouyang	Configurations	BT

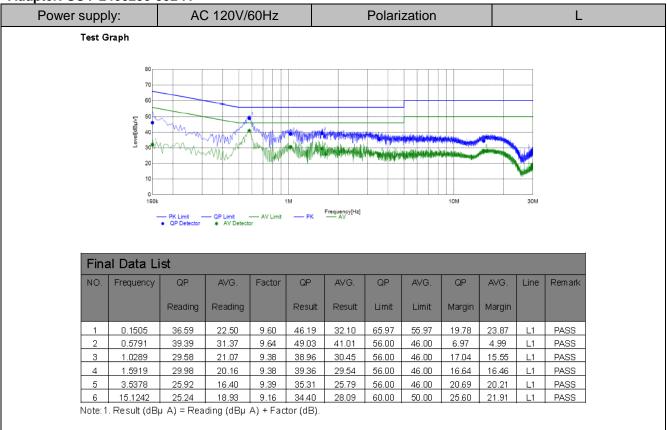
Report No.: GTS20230704026-1-21 Page 13 of 47


Version A:

Adapter: CYSE65-240250

Power supply:	AC 120V/60Hz	Polarization	N
FUWEL SUDDIV.	AC IZUV/OULIZ	r rojanzanon	I N

Test Graph



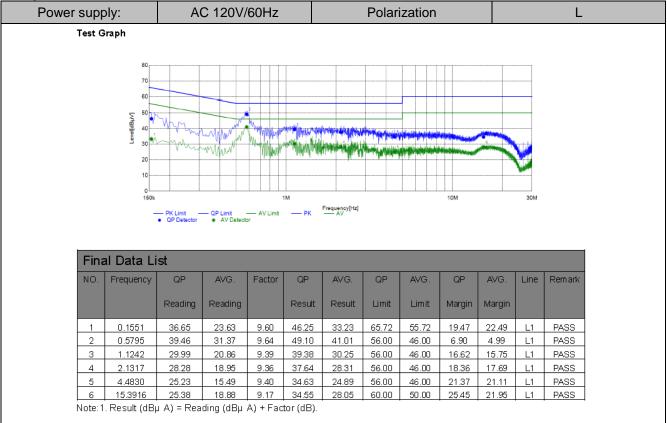
Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1595	34.67	25.89	9.60	44.27	35.49	65.49	55.49	21.22	20.00	N	PASS
2	0.5775	43.47	34.37	9.40	52.87	43.77	56.00	46.00	3.13	2.23	N	PASS
3	1.0319	34.89	26.80	9.36	44.25	36.16	56.00	46.00	11.75	9.84	N	PASS
4	1.5961	34.91	24.60	9.36	44.27	33.96	56.00	46.00	11.73	12.04	N	PASS
5	2.5692	33.83	24.31	9.34	43.17	33.65	56.00	46.00	12.83	12.35	N	PASS
6	20.1672	25.29	19.00	9.22	34.51	28.22	60.00	50.00	25.49	21.78	N	PASS

Note: 1. Result (dB μ A) = Reading (dB μ A) + Factor (dB).

Report No.: GTS20230704026-1-21 Page 14 of 47

Adapter: SOY-2400250-332-A

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
Widdle 1	PK Limit — QP Limit — Pi	Tom (Frequency[Hz]	ЗОМ

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1677	33.32	23.54	9.59	42.91	33.13	65.07	55.07	22.16	21.94	N	PASS
2	0.5769	43.82	34.31	9.40	53.22	43.71	56.00	46.00	2.78	2.29	N	PASS
3	1.1228	35.75	26.67	9.37	45.12	36.04	56.00	46.00	10.88	9.96	N	PASS
4	1.6597	35.18	25.64	9.36	44.54	35.00	56.00	46.00	11.46	11.00	N	PASS
5	2.9591	34.56	24.87	9.33	43.89	34.20	56.00	46.00	12.11	11.80	N	PASS
6	21.1265	25.15	18.85	9.23	34.38	28.08	60.00	50.00	25.62	21.92	N	PASS

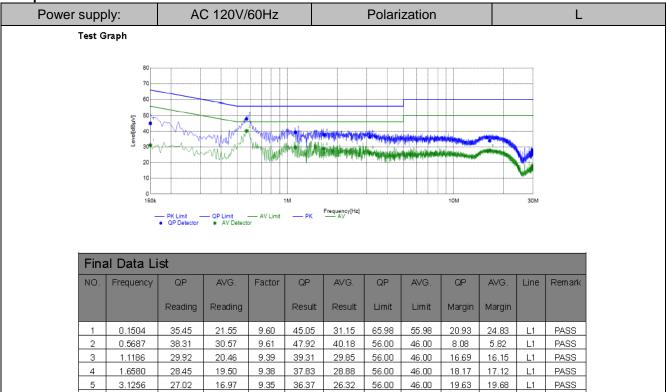
Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

Report No.: GTS20230704026-1-21 Page 15 of 47

Adapter: AD65CM249250A

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

2.1 actor (ab)	cable loss (ab) · Eletti actor (ab):	


Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
80 70 60 50 40 40 40 10 0	PK Linit — QP Linit — AV Linit — Pi	Frequency(Hz)	ЗОМ

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1584	35.27	26.03	9.60	44.87	35.63	65.55	55.55	20.68	19.92	N	PASS
2	0.5774	44.12	34.35	9.40	53.52	43.75	56.00	46.00	2.48	2.25	N	PASS
3	1.0438	34.68	26.87	9.36	44.04	36.23	56.00	46.00	11.96	9.77	N	PASS
4	1.5912	36.02	26.12	9.36	45.38	35.48	56.00	46.00	10.62	10.52	N	PASS
5	3.0991	33.65	24.08	9.33	42.98	33.41	56.00	46.00	13.02	12.59	N	PASS
6	20.1903	25.29	18.97	9.22	34.51	28.19	60.00	50.00	25.49	21.81	N	PASS

Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

Report No.: GTS20230704026-1-21 Page 16 of 47

Adapter: ADS-65HI-19A-1 24060E

Note: 1. Result (dB μ A) = Reading (dB μ A) + Factor (dB).

24.78

16.4359

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

18.57

PK Limit — QP Limit — AV Limit — PK

• QP Detector * AV Detector

9.17

33.95

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
80			
60			
5 50 T			
(fgp]jev	WANT THE THE THE THE THE THE THE THE THE TH	William day while to	
30		L. Albert States and Later At Middle States desired and second se	
20			

27.74

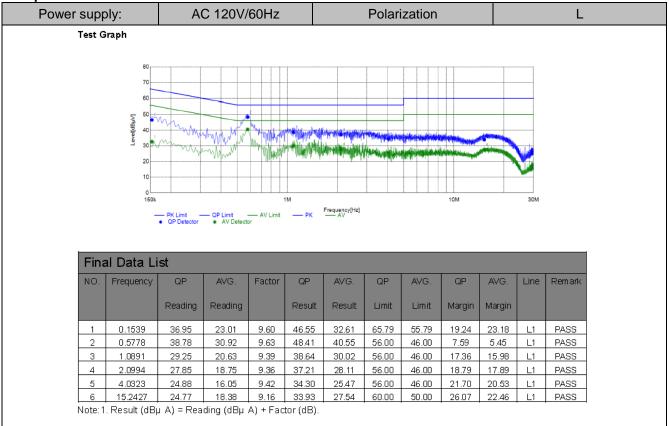
60.00

50.00

26.05

22.26

PASS


Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	⊔mit	Limit	Margin	Margin		
1	0.1506	35.35	24.06	9.61	44.96	33.67	65.97	55.97	21.01	22.30	N	PASS
2	0.5801	44.17	34.34	9.40	53.57	43.74	56.00	46.00	2.43	2.26	N	PASS
3	1.1182	36.35	26.67	9.37	45.72	36.04	56.00	46.00	10.28	9.96	N	PASS
4	1.6163	35.45	25.40	9.36	44.81	34.76	56.00	46.00	11.19	11.24	N	PASS
5	3.1252	33.73	23.61	9.33	43.06	32.94	56.00	46.00	12.94	13.06	N	PASS
6	20.2801	25.49	19.30	9.23	34.72	28.53	60.00	50.00	25.28	21.47	N	PASS

Note: 1. Result (dB μ A) = Reading (dB μ A) + Factor (dB).

Report No.: GTS20230704026-1-21 Page 17 of 47

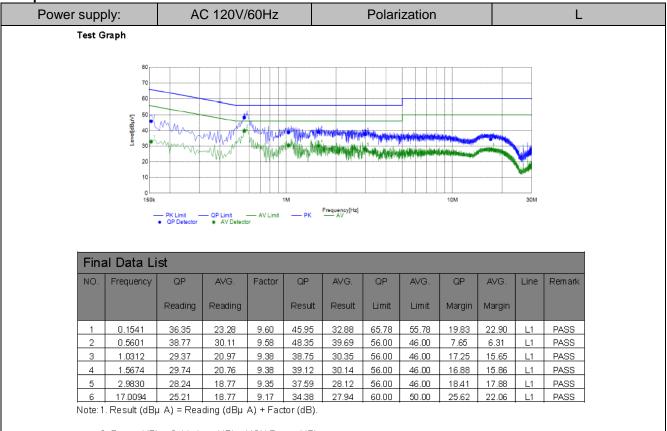
Version B:


Adapter: CYSE65-240250

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply:	AC 120V/60Hz	Polarization	l N

Test Graph



Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1633	34.65	25.41	9.60	44.25	35.01	65.29	55.29	21.04	20.28	N	PASS
2	0.5719	44.15	34.41	9.40	53.55	43.81	56.00	46.00	2.45	2.19	N	PASS
3	1.0902	36.03	26.99	9.37	45.40	36.36	56.00	46.00	10.60	9.64	N	PASS
4	1.5977	35.10	24.23	9.36	44.46	33.59	56.00	46.00	11.54	12.41	N	PASS
5	2.1390	34.88	25.63	9.35	44.23	34.98	56.00	46.00	11.77	11.02	N	PASS
6	20.6262	25.44	19.03	9.23	34.67	28.26	60.00	50.00	25.33	21.74	N	PASS

Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

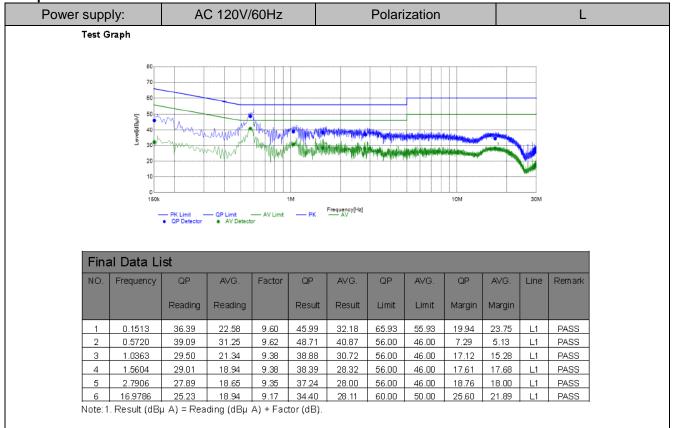
Report No.: GTS20230704026-1-21 Page 18 of 47

Adapter: SOY-2400250-332-A

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
80 70			
60			
¥ 50	N W W		
M19Plana			
30		Charles of the state of the sta	
20			V.

Frequency[Hz]


Final Data List QP Frequency AVG. Factor OP AVG. OP AVG. OP AVG. Remark Reading Result Reading Result Limit Limit Margin Margin 0.1544 35.22 25.27 9.61 44.83 34.88 20.93 20.88 PASS 65.76 55.76 N 0.5719 44.24 34.36 9.40 53.64 43.76 56.00 46.00 2.36 2.24 PASS 1.0590 35.49 27.14 9.37 44.86 36.51 56.00 46.00 11.14 9.49 PASS 1.5916 36.08 26.09 9.36 45.44 10.56 10.55 PASS 4 35.45 56.00 46.00 Ν 3.0337 34.24 24.48 9.33 43.57 33.81 56.00 46.00 12.43 12.19 PASS 20.0478 19.13 9.22 28.35 60.00 21.65 PASS 6 25.45 34.67 50.00 25.33 Ν

Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

- QP Limit — AV Limit ★ AV Detector Report No.: GTS20230704026-1-21 Page 19 of 47

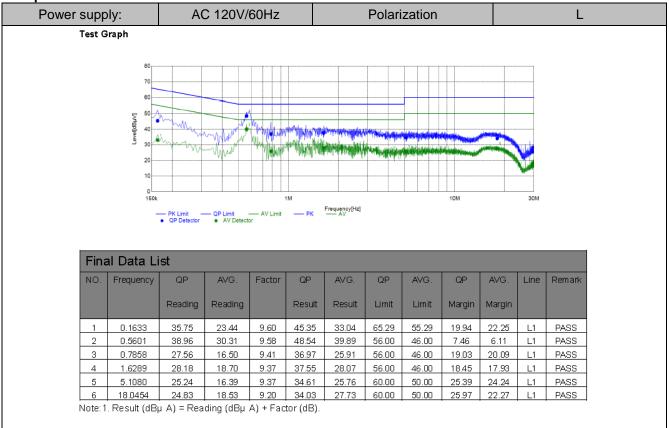
Adapter: AD65CM249250A

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB)

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
80			
70			
60			
₩fgp. 40	Mary and all the same a	Aliberta de production de la company de la c	
10c Feve	Wally was a second of the seco	Milanningmilitikaningulagaguntanang	
20		-	
40			V-

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	⊔mit	Limit	Margin	Margin		
1	0.1503	35.32	24.00	9.61	44.93	33.61	65.98	55.98	21.05	22.37	N	PASS
2	0.5779	43.98	34.12	9.40	53.38	43.52	56.00	46.00	2.62	2.48	N	PASS
3	1.0749	35.21	27.11	9.37	44.58	36.48	56.00	46.00	11.42	9.52	N	PASS
4	2.1324	34.69	25.34	9.35	44.04	34.69	56.00	46.00	11.96	11.31	N	PASS
5	3.5216	32.16	22.62	9.36	41.52	31.98	56.00	46.00	14.48	14.02	N	PASS
6	20.9420	25.16	18.84	9.23	34.39	28.07	60.00	50.00	25.61	21.93	N	PASS

Note: 1. Result (dB μ A) = Reading (dB μ A) + Factor (dB).


2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

PK Limit — QP Limit — AV Limit — PK

• QP Detector * AV Detector

Report No.: GTS20230704026-1-21 Page 20 of 47

Adapter: ADS-65HI-19A-1 24060E

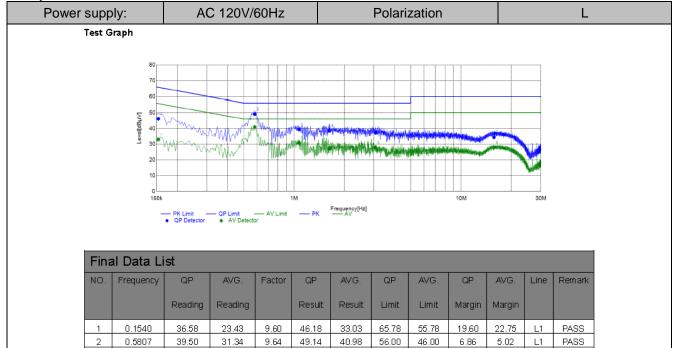
2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
80			
70			
60			
W ⁴ 9D	Vanna mana and a distribution of the same	ALIER AND	
30		All the in the control of the contro	The state of the s
20	TANY HARM		
10			

Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	⊔mit	Limit	Margin	Margin		
1	0.1857	33.11	25.19	9.60	42.71	34.79	64.23	54.23	21.52	19.44	N	PASS
2	0.5707	44.12	34.16	9.40	53.52	43.56	56.00	46.00	2.48	2.44	Ν	PASS
3	1.1178	36.25	26.66	9.37	45.62	36.03	56.00	46.00	10.38	9.97	N	PASS
4	1.6611	34.65	25.42	9.36	44.01	34.78	56.00	46.00	11.99	11.22	N	PASS
5	3.0383	33.82	24.60	9.33	43.15	33.93	56.00	46.00	12.85	12.07	N	PASS
6	20.2483	25.49	19.11	9.22	34.71	28.33	60.00	50.00	25.29	21.67	N	PASS

Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


— PK Limit — QP Limit — AV Limit — PK Frequency[Hz]

• QP Detector • AV Detector

Report No.: GTS20230704026-1-21 Page 21 of 47

Version C:

Adapter: CYSE65-240250

25.24 Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

29.93

29.29

27.92

1.0688

1.6230

3.0648

15.7102

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

21.53

17.82

18.62

18.74

9.39

9.37

9.35

9.16

39.32

38.66

37.27

34.40

Power supply:	AC 120V/60Hz	Polarization	N
---------------	--------------	--------------	---

30.92

27.19

27.97

27.90

56.00

56.00

56.00

60.00

46.00

46.00

46.00

50.00

PASS

PASS

PASS

PASS

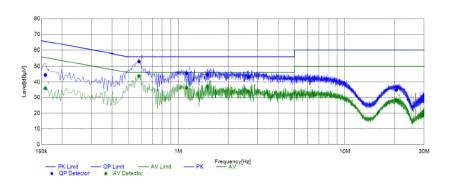
15.08

18.81

18.03

22.10

16.68

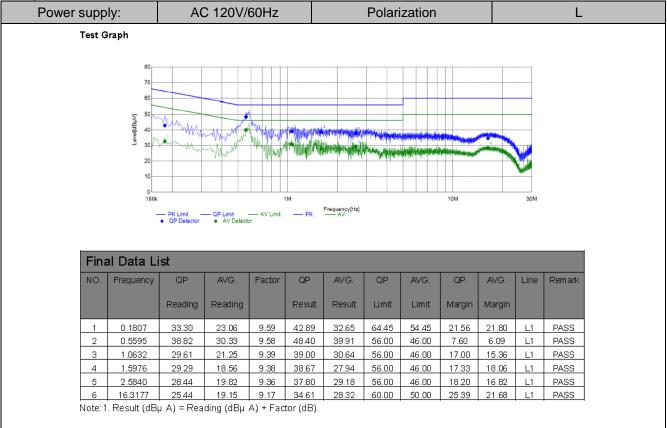

17.34

18.73

25.60

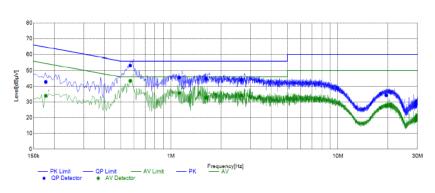
Test Graph

4



Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	∟imit	Limit	Margin	Margin		
1	0.1589	34.74	26.20	9.60	44.34	35.80	65.52	55.52	21.18	19.72	N	PASS
2	0.5801	43.64	34.30	9.40	53.04	43.70	56.00	46.00	2.96	2.30	Ν	PASS
3	1.1205	36.12	26.92	9.37	45.49	36.29	56.00	46.00	10.51	9.71	N	PASS
4	1.4963	35.36	27.68	9.36	44.72	37.04	56.00	46.00	11.28	8.96	N	PASS
5	2.6478	33.93	24.49	9.34	43.27	33.83	56.00	46.00	12.73	12.17	N	PASS
6	20.3502	25.53	19.15	9.23	34.76	28.38	60.00	50.00	25.24	21.62	N	PASS

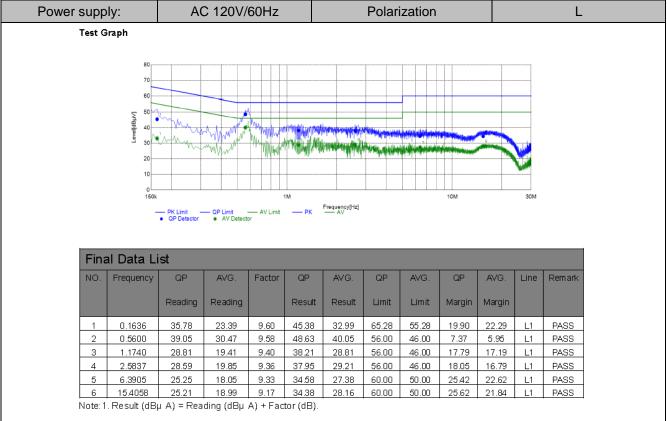
Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).


Report No.: GTS20230704026-1-21 Page 22 of 47

Adapter: SOY-2400250-332-A

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

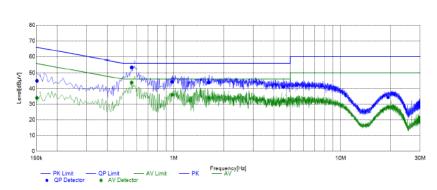
Test Graph



Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1778	33.23	24.35	9.59	42.82	33.94	64.59	54.59	21.77	20.65	N	PASS
2	0.5707	43.84	34.10	9.40	53.24	43.50	56.00	46.00	2.76	2.50	N	PASS
3	1.1198	36.19	26.42	9.37	45.56	35.79	56.00	46.00	10.44	10.21	N	PASS
4	1.6244	35.43	23.41	9.36	44.79	32.77	56.00	46.00	11.21	13.23	N	PASS
5	2.6451	34.76	24.90	9.34	44.10	34.24	56.00	46.00	11.90	11.76	N	PASS
6	19.4910	25.02	18.28	9.22	34.24	27.50	60.00	50.00	25.76	22.50	N	PASS

Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).

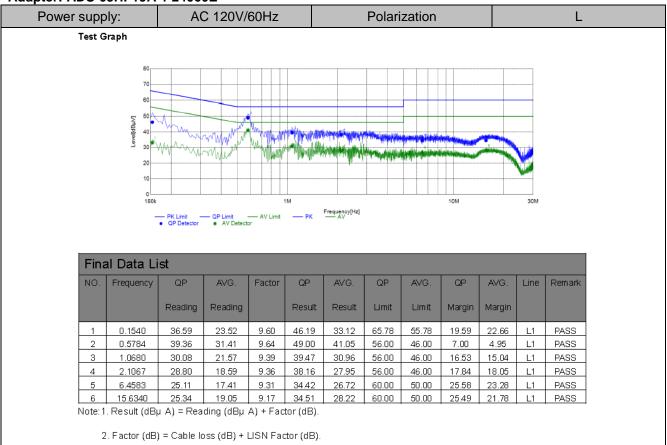
Report No.: GTS20230704026-1-21 Page 23 of 47


Adapter: AD65CM249250A

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB)

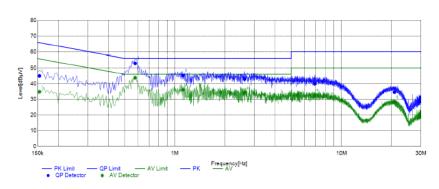
Power cupply:	^C 120\//60∐ -	Polarization	NI

Test Graph



Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1515	35.26	24.37	9.61	44.87	33.98	65.92	55.92	21.05	21.94	N	PASS
2	0.5597	44.11	34.39	9.40	53.51	43.79	56.00	46.00	2.49	2.21	N	PASS
3	0.9802	34.92	26.60	9.36	44.28	35.96	56.00	46.00	11.72	10.04	N	PASS
4	1.6286	34.55	24.74	9.36	43.91	34.10	56.00	46.00	12.09	11.90	N	PASS
5	4.5470	31.56	23.06	9.37	40.93	32.43	56.00	46.00	15.07	13.57	N	PASS
6	19.3006	25.19	18.99	9.21	34.40	28.20	60.00	50.00	25.60	21.80	N	PASS

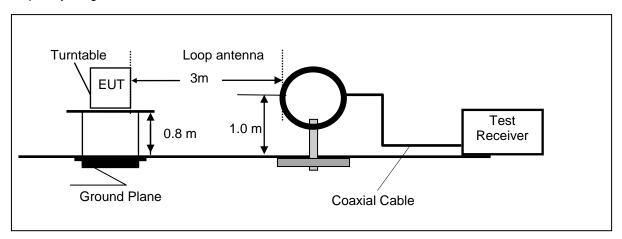
Note: 1. Result (dBµ A) = Reading (dBµ A) + Factor (dB).


Report No.: GTS20230704026-1-21 Page 24 of 47

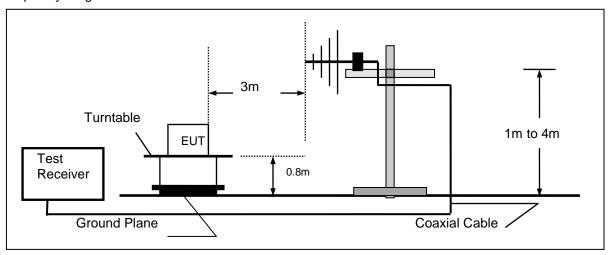
Adapter: ADS-65HI-19A-1 24060E

Power supply:	AC 120V/60Hz	Polarization	N

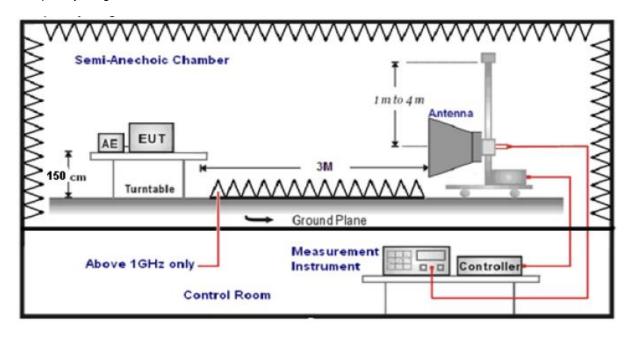
Test Graph


Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1539	35.34	25.22	9.61	44.95	34.83	65.79	55.79	20.84	20.96	N	PASS
2	0.5777	43.52	34.38	9.40	52.92	43.78	56.00	46.00	3.08	2.22	N	PASS
3	1.1173	35.84	26.74	9.37	45.21	36.11	56.00	46.00	10.79	9.89	N	PASS
4	2.6158	33.74	24.85	9.34	43.08	34.19	56.00	46.00	12.92	11.81	N	PASS
5	6.9099	30.68	23.28	9.31	39.99	32.59	60.00	50.00	20.01	17.41	N	PASS
6	20.8086	25.32	19.09	9.23	34.55	28.32	60.00	50.00	25.45	21.68	N	PASS

Note: 1. Result (dB μ A) = Reading (dB μ A) + Factor (dB).


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTS20230704026-1-21 Page 26 of 47

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test	Frequency	Test Receiver/Spectrum Setting	Detector	
range				
9KHz-1	50KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz		RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz		RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
		Peak Value: RBW=1MHz/VBW=3MHz,		
1GHz-4	10CU-	Sweep time=Auto	Peak	
1002-4	+υ G ΠΖ	Average Value: RBW=1MHz/VBW=10Hz,	reak	
		Sweep time=Auto		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

Report No.: GTS20230704026-1-21 Page 27 of 47

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at GFSK mode from 9kHz to 25GHz in AC120V and the worst case was recorded.

Temperature	24 ℃	Humidity	58%
Test Engineer	Evan Ouyang	Configurations	BT

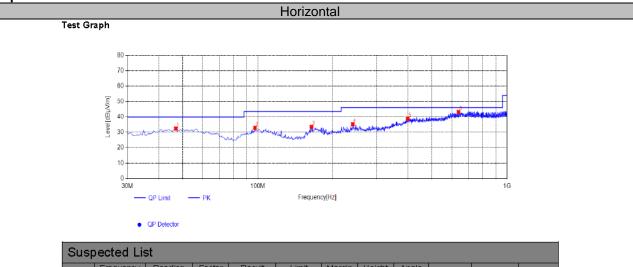
For 9 KHz~30MHz

Freq. (MHz)			Over Limit (dBuV)	Remark	
-	-	-	-	See Note	

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

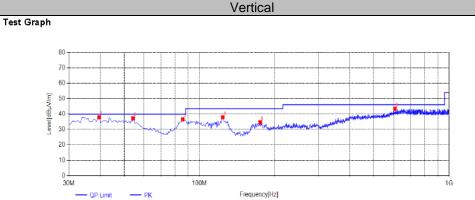
Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: GTS20230704026-1-21 Page 28 of 47

For 30MHz to 1000MHz

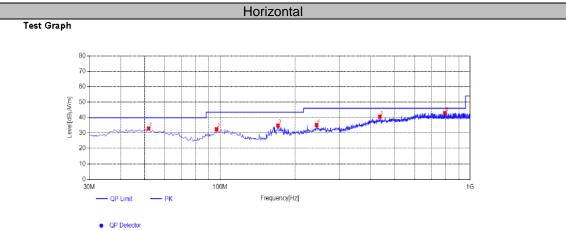
Version A:


Adapter: CYSE65-240250

Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	46.975	43.37	-10.93	32.44	40.00	7.56	100	64	PK	Horizonta	PASS
2	97.415	45.78	-12.94	32.84	43.50	10.66	100	64	PK	Horizonta	PASS
3	164.345	48.34	-14.82	33.52	43.50	9.98	100	275	PK	Horizonta	PASS
4	240.49	46.41	-11.19	35.22	46.00	10.78	100	192	PK	Horizonta	PASS
5	399.57	42.62	-3.90	38.72	46.00	7.28	100	291	PK	Horizonta	PASS
6	638.675	44.26	-1.03	43.23	46.00	2.77	100	93	PK	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

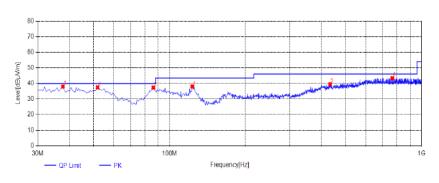


Susp	Suspected List														
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark				
	,,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]							
1	39.7	50.60	-12.66	37.94	40.00	2.06	100	0	PK	Vertical	PASS				
2	54.25	48.70	-11.52	37.18	40.00	2.82	100	21	PK	Vertical	PASS				
3	85.775	51.98	-15.44	36.54	40.00	3.46	100	278	PK	Vertical	PASS				
4	124.09	52.59	-14.67	37.92	43.50	5.58	100	172	PK	Vertical	PASS				
5	175.015	49.02	-14.34	34.68	43.50	8.82	100	272	PK	Vertical	PASS				
6	607.15	44.33	-0.87	43.46	46.00	2.54	100	153	PK	Vertical	PASS				

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

Report No.: GTS20230704026-1-21 Page 29 of 47

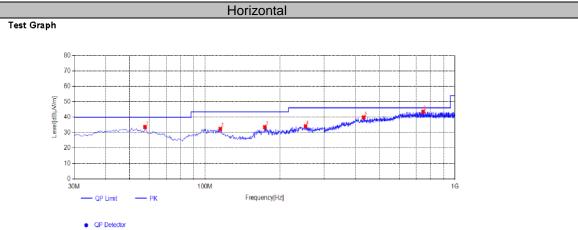
Adapter: SOY-2400250-332-A


Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	51.825	44.24	-11.33	32.91	40.00	7.09	100	2	PK	Horizonta	PASS			
2	96.93	45.58	-13.10	32.48	43.50	11.02	100	29	PK	Horizonta	PASS			
3	170.65	49.61	-14.77	34.84	43.50	8.66	100	283	PK	Horizonta	PASS			
4	243.4	46.31	-11.10	35.21	46.00	10.79	100	220	PK	Horizonta	PASS			
5	435.46	43.64	-2.96	40.68	46.00	5.32	100	290	PK	Horizonta	PASS			
6	793.875	41.45	1.52	42.97	46.00	3.03	100	353	PK	Horizonta	PASS			

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

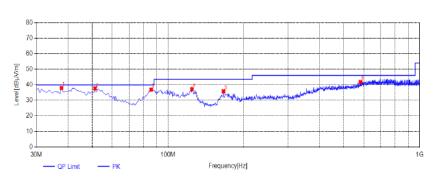

QP Detector

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	37.76	51.69	-13.71	37.98	40.00	2.02	100	2	PK	Vertical	PASS
2	51.825	48.75	-11.33	37.42	40.00	2.58	100	39	PK	Vertical	PASS
3	86.26	52.52	-15.22	37.30	40.00	2.70	100	283	PK	Vertical	PASS
4	123.12	52.38	-14.32	38.06	43.50	5.44	100	59	PK	Vertical	PASS
5	433.52	42.63	-3.10	39.53	46.00	6.47	100	46	PK	Vertical	PASS
6	765.745	42.31	1.01	43.32	46.00	2.68	100	2	PK	Vertical	PASS

Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor(dB)$.

Report No.: GTS20230704026-1-21 Page 30 of 47

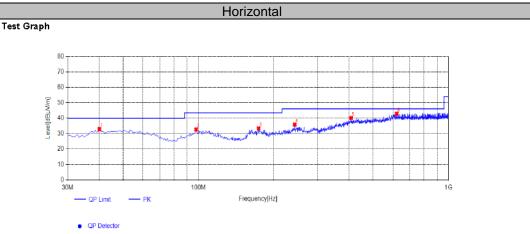
Adapter: AD65CM249250A


Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	57.645	45.53	-11.89	33.64	40.00	6.36	100	120	PK	Horizonta	PASS			
2	115.36	45.74	-13.31	32.43	43.50	11.07	100	262	PK	Horizonta	PASS			
3	173.56	48.25	-14.70	33.55	43.50	9.95	100	258	PK	Horizonta	PASS			
4	252.615	44.89	-10.78	34.11	46.00	11.89	100	311	PK	Horizonta	PASS			
5	431.58	43.13	-3.24	39.89	46.00	6.11	100	133	PK	Horizonta	PASS			
6	746.345	42.67	0.85	43.52	46.00	2.48	100	206	PK	Horizonta	PASS			

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

 $2.\,Factor\,(dB) = Antenna\,Factor\,(dB/m) + Cable\,loss\,(dB) - Pre\,Amplifier\,gain\,(dB).$

Vertical

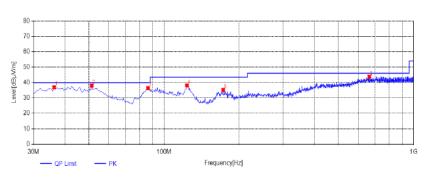

QP Detector

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	37.76	51.58	-13.71	37.87	40.00	2.13	100	31	PK	Vertical	PASS			
2	51.34	48.69	-11.12	37.57	40.00	2.43	100	67	PK	Vertical	PASS			
3	85.775	52.28	-15.44	36.84	40.00	3.16	100	311	PK	Vertical	PASS			
4	124.575	52.12	-14.94	37.18	43.50	6.32	100	189	PK	Vertical	PASS			
5	166.285	50.40	-14.63	35.77	43.50	7.73	100	328	PK	Vertical	PASS			
6	582.9	42.88	-1.10	41.78	46.00	4.22	100	328	PK	Vertical	PASS			

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 31 of 47

Adapter: ADS-65HI-19A-1 24060E

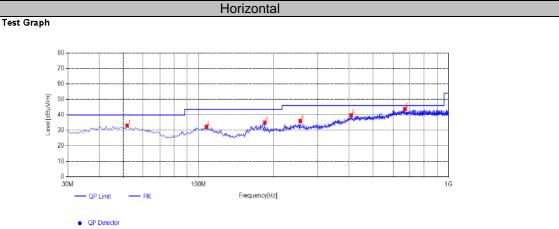

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	40.185	45.45	-12.52	32.93	40.00	7.07	100	59	PK	Horizonta	PASS			
2	97.9	45.43	-12.72	32.71	43.50	10.79	100	35	PK	Horizonta	PASS			
3	174.045	47.95	-14.57	33.38	43.50	10.12	100	296	PK	Horizonta	PASS			
4	242.915	46.98	-11.13	35.85	46.00	10.15	100	280	PK	Horizonta	PASS			
5	408.3	43.50	-3.37	40.13	46.00	5.87	100	72	PK	Horizonta	PASS			
6	620.73	44.15	-1 22	42 93	46 NN	3.07	100	101	PK	Horizonta	PASS			

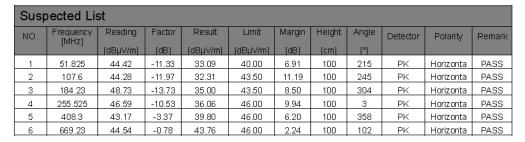
Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

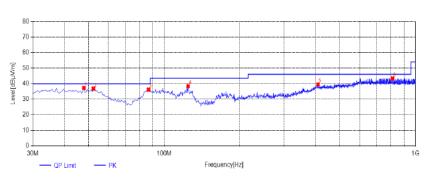

Sus	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	36.305	51.16	-14.28	36.88	40.00	3.12	100	39	PK	Vertical	PASS			
2	51.34	49.08	-11.12	37.96	40.00	2.04	100	16	PK	Vertical	PASS			
3	86.26	51.58	-15.22	36.36	40.00	3.64	100	300	PK	Vertical	PASS			
4	123.605	52.60	-14.47	38.13	43.50	5.37	100	152	PK	Vertical	PASS			
5	172.59	49.93	-14.73	35.20	43.50	8.30	100	300	PK	Vertical	PASS			
6	664.865	44.41	-0.61	43.80	46.00	2.20	100	131	PK	Vertical	PASS			


Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 32 of 47

Version B:

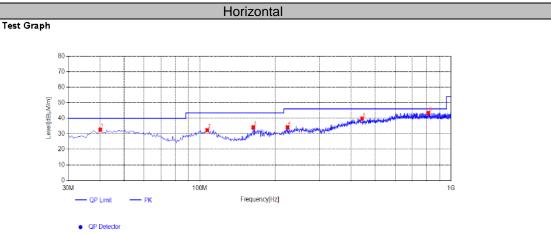
Adapter: CYSE65-240250



Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

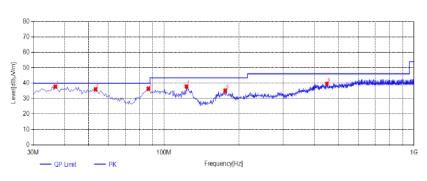

QP Detector

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	47.945	48.58	-11.37	37.21	40.00	2.79	100	18	PK	Vertical	PASS			
2	52.31	48.04	-11.29	36.75	40.00	3.25	100	25	PK	Vertical	PASS			
3	86.745	51.10	-14.99	36.11	40.00	3.89	100	282	PK	Vertical	PASS			
4	124.575	53.39	-14.94	38.45	43.50	5.05	100	124	PK	Vertical	PASS			
5	409.755	42.82	-3.32	39.50	46.00	6.50	100	0	PK	Vertical	PASS			
6	811.335	41.38	1.96	43.34	46.00	2.66	100	259	PK	Vertical	PASS			

Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

Report No.: GTS20230704026-1-21 Page 33 of 47

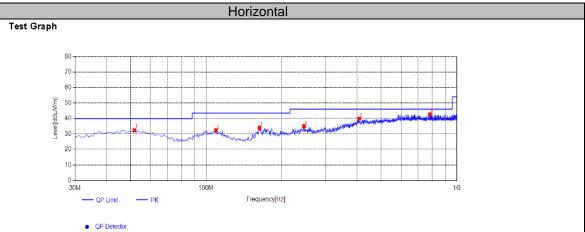
Adapter: SOY-2400250-332-A


	Suspected List													
	NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark		
		, ,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]					
L	1	40.185	45.21	-12.52	32.69	40.00	7.31	100	9	PK	Horizonta	PASS		
L	2	107.115	44.21	-11.80	32.41	43.50	11.09	100	16	PK	Horizonta	PASS		
L	3	163.375	48.84	-14.71	34.13	43.50	9.37	100	270	PK	Horizonta	PASS		
L	4	223.515	46.37	-12.17	34.20	46.00	11.80	100	260	PK	Horizonta	PASS		
L	5	442.735	43.54	-3.77	39.77	46.00	6.23	100	6	PK	Horizonta	PASS		
L	6	813.275	41.62	1.84	43.46	46.00	2.54	100	207	PK	Horizonta	PASS		

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

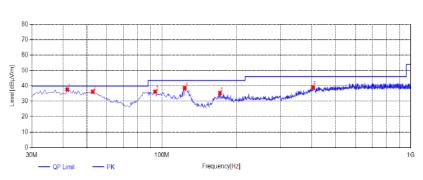

QP Detector

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	36.79	51.85	-14.12	37.73	40.00	2.27	100	42	PK	Vertical	PASS			
2	53.28	47.27	-11.30	35.97	40.00	4.03	100	0	PK	Vertical	PASS			
3	86.745	51.37	-14.99	36.38	40.00	3.62	100	299	PK	Vertical	PASS			
4	123.12	52.19	-14.32	37.87	43.50	5.63	100	173	PK	Vertical	PASS			
5	175.985	49.32	-14.14	35.18	43.50	8.32	100	312	PK	Vertical	PASS			
6	448.555	43.17	-3.45	39.72	46.00	6.28	100	344	PK	Vertical	PASS			

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 34 of 47

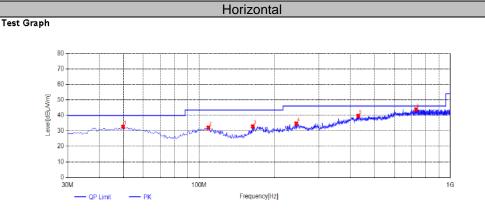
Adapter: AD65CM249250A


Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	51.825	43.72	-11.33	32.39	40.00	7.61	100	63	PK	Horizonta	PASS			
2	109.54	44.79	-12.46	32.33	43.50	11.17	100	358	PK	Horizonta	PASS			
3	163.375	48.65	-14.71	33.94	43.50	9.56	100	265	PK	Horizonta	PASS			
4	245.825	45.94	-11.02	34.92	46.00	11.08	100	288	PK	Horizonta	PASS			
5	408.3	43.21	-3.37	39.84	46.00	6.16	100	40	PK	Horizonta	PASS			
6	780.78	41.27	1.37	42.64	46.00	3.36	100	232	PK	Horizonta	PASS			

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical


QP Detector

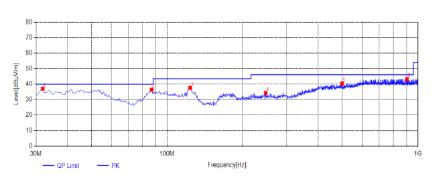
Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	41.64	49.80	-12.13	37.67	40.00	2.33	100	16	PK	Vertical	PASS			
2	52.795	47.38	-11.20	36.18	40.00	3.82	100	55	PK	Vertical	PASS			
3	94.02	49.65	-13.44	36.21	43.50	7.29	100	282	PK	Vertical	PASS			
4	123.605	53.20	-14.47	38.73	43.50	4.77	100	151	PK	Vertical	PASS			
5	171.135	50.08	-14.74	35.34	43.50	8.16	100	279	PK	Vertical	PASS			
6	404.42	42.72	-3.52	39.20	46.00	6.80	100	194	PK	Vertical	PASS			

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

Report No.: GTS20230704026-1-21 Page 35 of 47

Adapter: ADS-65HI-19A-1 24060E

QP Detector

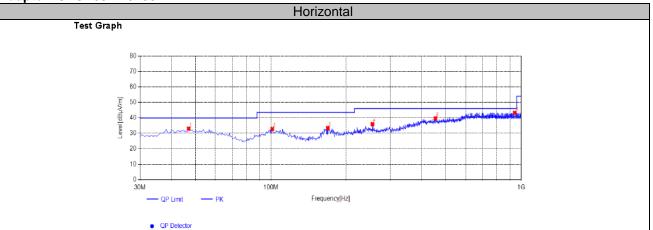

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	49.885	43.83	-11.14	32.69	40.00	7.31	100	349	PK	Horizonta	PASS
2	109.055	44.47	-12.35	32.12	43.50	11.38	100	349	PK	Horizonta	PASS
3	163.86	47.62	-14.73	32.89	43.50	10.61	100	286	PK	Horizonta	PASS
4	243.885	45.82	-11.06	34.76	46.00	11.24	100	326	PK	Horizonta	PASS
5	430.61	43.07	-3.31	39.76	46.00	6.24	100	346	PK	Horizonta	PASS
6	730.825	43.71	0.14	43.85	46.00	2.15	100	135	PK	Horizonta	PASS

Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor(dB)$.

 $2.\,Factor\,(dB) = Antenna\,Factor\,(dB/m) + Cable\,loss\,(dB) - Pre\,Amplifier\,gain\,(dB).$

Vertical

QP Detector

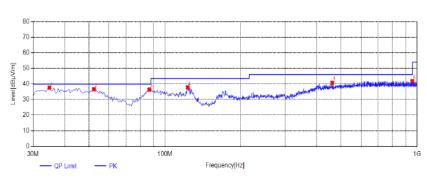

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	31.94	51.90	-14.97	36.93	40.00	3.07	100	2	PK	Vertical	PASS
2	86.745	51.31	-14.99	36.32	40.00	3.68	100	333	PK	Vertical	PASS
3	123.605	52.02	-14.47	37.55	43.50	5.95	100	184	PK	Vertical	PASS
4	247.28	45.39	-11.09	34.30	46.00	11.70	100	204	PK	Vertical	PASS
5	498.51	43.60	-3.20	40.40	46.00	5.60	100	131	PK	Vertical	PASS
6	904.455	39.91	3.26	43.17	46.00	2.83	100	280	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 36 of 47

Version C:

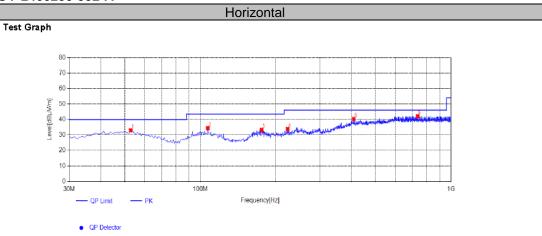
Adapter: CYSE65-240250


Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	46.975	43.97	-10.93	33.04	40.00	6.96	100	246	PK	Horizonta	PASS
2	101.295	45.51	-12.70	32.81	43.50	10.69	100	34	PK	Horizonta	PASS
3	168.71	48.36	-15.01	33.35	43.50	10.15	100	295	PK	Horizonta	PASS
4	254.555	46.48	-10.60	35.88	46.00	10.12	100	262	PK	Horizonta	PASS
5	454.375	43.07	-3.43	39.64	46.00	6.36	100	206	PK	Horizonta	PASS
6	942.77	38.02	5.29	43.31	46.00	2.69	100	90	PK	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

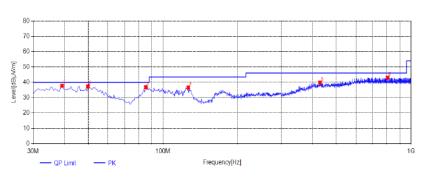

QP Detector

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	34.85	52.33	-14.75	37.58	40.00	2.42	100	8	PK	Vertical	PASS			
2	52.31	47.89	-11.29	36.60	40.00	3.40	100	70	PK	Vertical	PASS			
3	86.745	51.34	-14.99	36.35	40.00	3.65	100	311	PK	Vertical	PASS			
4	123.12	52.11	-14.32	37.79	43.50	5.71	100	146	PK	Vertical	PASS			
5	460.68	43.96	-3.23	40.73	46.00	5.27	100	258	PK	Vertical	PASS			
6	956.35	37.32	4.55	41.87	46.00	4.13	100	87	PK	Vertical	PASS			

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

Report No.: GTS20230704026-1-21 Page 37 of 47

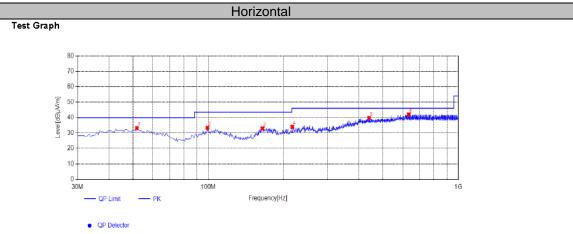
Adapter: SOY-2400250-332-A


Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	52.795	44.21	-11.20	33.01	40.00	6.99	100	69	PK	Horizonta	PASS
2	107.115	46.22	-11.80	34.42	43.50	9.08	100	66	PK	Horizonta	PASS
3	175.5	47.50	-14.24	33.26	43.50	10.24	100	301	PK	Horizonta	PASS
4	223.03	46.06	-12.17	33.89	46.00	12.11	100	241	PK	Horizonta	PASS
5	409.27	43.73	-3.33	40.40	46.00	5.60	100	32	PK	Horizonta	PASS
6	736.16	41.68	0.46	42.14	46.00	3.86	100	177	PK	Horizonta	PASS

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

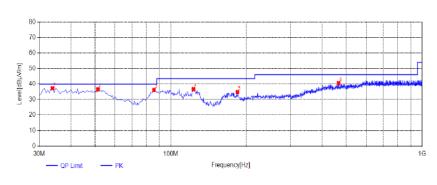

QP Detector

Susp	Suspected List												
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark		
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]					
1	39.215	50.48	-12.79	37.69	40.00	2.31	100	2	PK	Vertical	PASS		
2	49.885	48.37	-11.14	37.23	40.00	2.77	100	6	PK	Vertical	PASS		
3	85.29	52.38	-15.63	36.75	40.00	3.25	100	310	PK	Vertical	PASS		
4	126.515	52.03	-15.42	36.61	43.50	6.89	100	165	PK	Vertical	PASS		
5	429.64	43.19	-3.37	39.82	46.00	6.18	100	360	PK	Vertical	PASS		
6	804.06	41.29	1.76	43.05	46.00	2.95	100	346	PK	Vertical	PASS		

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 38 of 47

Adapter: AD65CM249250A


	Suspected List													
	NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark		
		,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]					
L	1	51.825	44.51	-11.33	33.18	40.00	6.82	100	222	PK	Horizonta	PASS		
L	2	99.355	45.97	-12.55	33.42	43.50	10.08	100	25	PK	Horizonta	PASS		
L	3	164.83	47.94	-14.91	33.03	43.50	10.47	100	259	PK	Horizonta	PASS		
L	4	216.725	46.27	-12.28	33.99	46.00	12.01	100	285	PK	Horizonta	PASS		
L	5	439.825	43.25	-3.51	39.74	46.00	6.26	100	140	PK	Horizonta	PASS		
L	6	633.825	43.12	-1.12	42.00	46.00	4.00	100	190	PK	Horizonta	PASS		

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	33.88	51.93	-14.71	37.22	40.00	2.78	100	25	PK	Vertical	PASS
2	51.34	47.69	-11.12	36.57	40.00	3.43	100	74	PK	Vertical	PASS
3	85.775	51.57	-15.44	36.13	40.00	3.87	100	318	PK	Vertical	PASS
4	123.12	50.99	-14.32	36.67	43.50	6.83	100	107	PK	Vertical	PASS
5	184.23	48.56	-13.73	34.83	43.50	8.67	100	275	PK	Vertical	PASS
6	465.53	44.00	-3.33	40.67	46.00	5.33	100	84	PK	Vertical	PASS

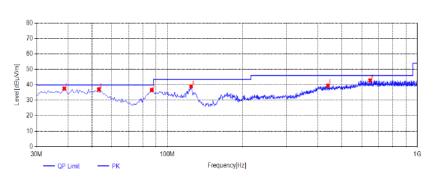
Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 39 of 47

Adapter: ADS-65HI-19A-1 24060E

Test Graph Test Graph One of the control of the c

Susp	Suspected List													
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark			
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]						
1	46.975	44.15	-10.93	33.22	40.00	6.78	100	9	PK	Horizonta	PASS			
2	99.84	45.32	-12.41	32.91	43.50	10.59	100	359	PK	Horizonta	PASS			
3	176.47	47.73	-14.33	33.40	43.50	10.10	100	290	PK	Horizonta	PASS			
4	254.555	45.68	-10.60	35.08	46.00	10.92	100	266	PK	Horizonta	PASS			
5	475.23	44.28	-3.19	41.09	46.00	4.91	100	323	PK	Horizonta	PASS			
6	668.745	44.15	-0.76	43.39	46.00	2.61	100	39	PK	Horizonta	PASS			


Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor(dB)$.

QP Detector

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

S	usp	ected Lis	st									
N	10.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
		, ,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
	1	38.73	50.55	-13.07	37.48	40.00	2.52	100	35	PK	Vertical	PASS
	2	53.28	48.35	-11.30	37.05	40.00	2.95	100	115	PK	Vertical	PASS
	3	86.745	51.61	-14.99	36.62	40.00	3.38	100	276	PK	Vertical	PASS
	4	124.575	53.90	-14.94	38.96	43.50	4.54	100	118	PK	Vertical	PASS
	5	439.34	42.98	-3.43	39.55	46.00	6.45	100	19	PK	Vertical	PASS
	6	647.89	43.74	-0.88	42.86	46.00	3.14	100	42	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20230704026-1-21 Page 40 of 47

For 1GHz to 25GHz

BT LE

Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	51.21	32.44	30.25	7.95	61.35	74.00	-12.65	Peak	Horizontal
4804.00	36.66	32.44	30.25	7.95	46.80	54.00	-7.20	Average	Horizontal
4804.00	53.82	32.44	30.25	7.95	63.96	74.00	-10.04	Peak	Vertical
4804.00	34.62	32.44	30.25	7.95	44.76	54.00	-9.24	Average	Vertical

Channel 19 / 2440 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4880.00	49.53	32.52	30.31	8.12	59.86	74.00	-14.14	Peak	Horizontal
4880.00	37.28	32.52	30.31	8.12	47.61	54.00	-6.39	Average	Horizontal
4880.00	52.14	32.52	30.31	8.12	62.47	74.00	-11.53	Peak	Vertical
4880.00	35.07	32.52	30.31	8.12	45.40	54.00	-8.60	Average	Vertical

Channel 39 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.77	32.68	30.27	7.88	62.06	74.00	-11.94	Peak	Horizontal
4960.00	36.91	32.68	30.27	7.88	47.20	54.00	-6.80	Average	Horizontal
4960.00	50.38	32.68	30.27	7.88	60.67	74.00	-13.33	Peak	Vertical
4960.00	30.96	32.68	30.27	7.88	41.25	54.00	-12.75	Average	Vertical

Notes:

- 1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Measured= Reading- Pre. Fac.+ Ant. Fac.+ Cab. Loss
- 5). Margin = Measured- Limit

NOTE: All the modes have been tested and recorded worst mode in the report(Version A_Adapter: CYSE65-240250).

Report No.: GTS20230704026-1-21 Page 41 of 47

4.3. Maximum Peak Output Power

TEST CONFIGURATION

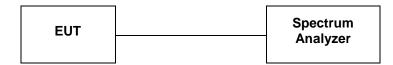
TEST PROCEDURE

According to KDB 558074 D01 15.247 Measurement Guidance v05r02 Section 8.3.1 Maximum peak conducted output power, 8.3.1.3 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS


For reporting purpose only.

Please refer to Appendix B.3.

Report No.: GTS20230704026-1-21 Page 42 of 47

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

- 1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2.Set the RBW =3 kHz.
- 3.Set the VBW =10 KHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5.Detector = peak.
- 6.Sweep time = auto couple.
- 7. Trace mode = \max hold.
- 8. Allow trace to fully stabilize.
- 9.Use the peak marker function to determine the maximum power level.
- 10.If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8 dBm.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.4.

Report No.: GTS20230704026-1-21 Page 43 of 47

4.5. 99% and 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB 558074 D01 DTS Meas Guidance v05r02 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

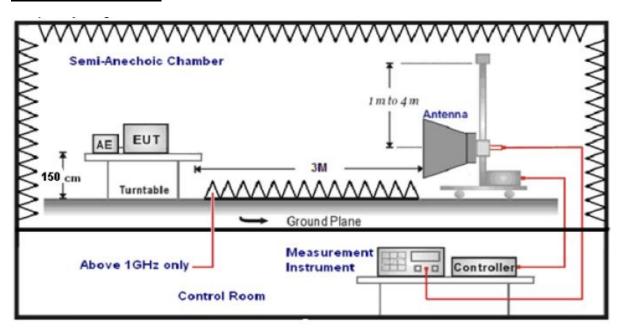
For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.1.

Please refer to Appendix B.2.


Report No.: GTS20230704026-1-21 Page 44 of 47

4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2.Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4.Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Report No.: GTS20230704026-1-21 Page 45 of 47

TEST RESULTS

4.6.1 For Radiated Bandedge Measurement

Temperature	23.8℃	Humidity	53.7%		
Test Engineer	Evan Ouyang	Configurations	BT		

Frequency(MHz):			2402			Polarity:			HORIZONTAL		
Frequency (MHz)	Emiss Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	46.65	PK	74.00	-27.35	1.50	67	51.96	27.49	3.32	36.12	-5.31
2390.00	35.17	AV	54.00	-18.83	1.50	67	40.48	27.49	3.32	36.12	-5.31
Frequenc	Frequency(MHz):		2402		Polarity:			VERTICAL			
Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	49.15	PK	74.00	-24.85	1.50	267	54.46	27.49	3.32	36.12	-5.31
2390.00	30.40	ΑV	54.00	-23.60	1.50	267	35.71	27.49	3.32	36.12	-5.31
Frequenc	Frequency(MHz):		2480			Polarity:			HORIZONTAL		
Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	46.44	PK	74.00	-27.56	1.50	185	52.16	27.45	3.38	36.55	-5.72
2483.50	22.20	^ ^	5400	00 =0						00	5.70
	33.28	AV	54.00	-20.72	1.50	185	39.00	27.45	3.38	36.55	-5.72
Frequency		AV	54.00	-20.72 2480	1.50	185	39.00 Polarity:	27.45	3.38	VERTI	
Frequency (MHz)		ion el	Limit (dBuV/m)		Antenna Height (m)	Table Angle (Degree)		Antenna	Cable		
Frequency	y(MHz): Emissi Leve	ion el	Limit	2480 Margin	Antenna Height	Table Angle	Polarity: Raw Value	Antenna Factor	Cable Factor	VERTI Pre- amplifi	CAL Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

NOTE: All the modes have been tested and recorded worst mode in the report(Version A_Adapter: CYSE65-240250).

4.6.2 For Conducted Bandedge Measurement

For reporting purpose only.

Please refer to Appendix B.5.

4.6.3 For Conducted Spurious Emissions Measurement

For reporting purpose only.

Please refer to Appendix B.6.

Report No.: GTS20230704026-1-21 Page 46 of 47

4.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is Internal Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2.00dBi.

Reference to the Test Report: GTS20230704026-1-20.

Report No.: GTS20230704026-1-21 Page 47 of 47

5. TEST SETUP PHOTOS OF THE EUT

Reference to the Test Report: GTS20230704026-1-20.

6.	EXTERNAL	AND	INTERNAL	PHOTOS	ΟF	THE	EUI
----	----------	-----	----------	---------------	----	-----	-----

Reference to the Test Report: GTS20230704026-1-20.
End of Report