

Report No.: EED32Q80276401 Page 1 of 57

TEST REPORT

Product Wireless Touchless Wheel Aligner

Trade mark SmartSafe

Model/Type reference **WA913**

N/A **Serial Number**

EED32Q80276401 Report Number

FCC ID : 2AYANWA913

Date of Issue Jul. 10, 2024

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

SHENZHEN SMARTSAFE TECH CO., LTD 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Keven Tan

Reviewed by:

Date:

Frazer Li

Jul. 10, 2024

Aaron Ma

Check No.: 1707080324

Report No.: EED32Q80276401

Content

1 COVER PAGE	•••••	•••••	1
2 CONTENT			
3 VERSION			3
4 TEST SUMMARY			4
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION			
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREMENT DATA			13
7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED 5 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED E	Spurious Emission		
8 APPENDIX 2.4G WI-FI			40
9 PHOTOGRAPHS OF TEST SETUP			4 1
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL	DETAILS		43

Report No.: EED32Q80276401

3 Version

Version No.	Date	(6)	Description	9
00	Jul. 10, 2024		Original	
	2	12	Con .	/12
(6	(5)	(92)	(62)	(67)

Report No. : EED32Q80276401 Page 4 of 57

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band edge measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

The EUT has six identical chip modules, all the modules have been tested and the report only records the worst data.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD
Address of Applicant:	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD
Address of Manufacturer:	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Factory:	SHENZHEN SMARTSAFE TECH CO., LTD
Address of Factory:	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

5.2 General Description of EUT

Product Name:	Wireless Touc	hless Wheel	Aligner			
Model No.:	WA913	(3)				
Trade mark:	SmartSafe	(0,)		(6,2)		(0)
Product Type:	☐ Mobile	☐ Portable	⊠ Fix Locati	on		
Operation Frequency:	IEEE 802.11b	/g/n(HT20): 2	2412MHz to 246	62MHz		
Modulation Type:			CK,DQPSK,DB 4QAM, 16QAM		SK)	
(0,)	IEEE for 802.	11n(HT20): C	FDM (64QAM,	16QAM,QP	SK,BPSK)	
Number of Channel:	IEEE 802.11b	/g, IEEE 802	.11n HT20: 11 (Channels		
Channel Separation:	5MHz					
Antenna Type:	FPC Antenna					
Antenna Gain:	2.88dBi	(67.)	1	(6)		(62)
Power Supply:	Battery:	DC 7.4V				
Test Voltage:	DC 7.4V					
Sample Received Date:	Apr. 02, 2024		(3)		CiO .	
Sample tested Date:	Apr. 09, 2024	to Apr. 30, 2	024		(0,)	

Page 6 of 57 Report No.: EED32Q80276401

Operation	Frequency ea	ch of channe	el (802.11b/g/n	HT20)	0	(2)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		(67)

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20):

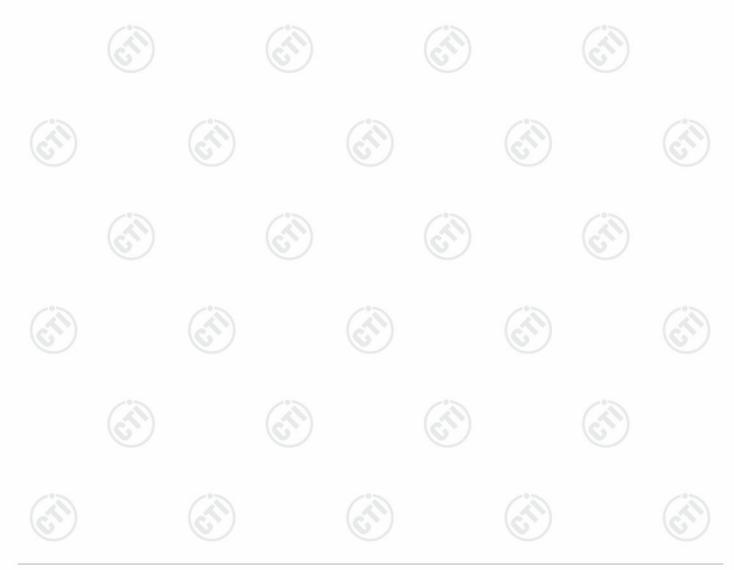
Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The highest channel	2462MHz

Report No.: EED32Q80276401 Page 7 of 57

5.3 Test Configuration

EUT Test Software Setti	ngs:
Software:	MobaXterm_Personal_22.1.exe
EUT Power Grade:	Default
Use test software to set th	ne lowest frequency, the middle frequency and the highest frequency keep

transmitting of the EUT.


Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

	Mode		Data rate	
	802.11b		1Mbps	
2	802.11g	\cdot\(\)	6Mbps	
(2)	802.11n(HT20)	(~~)	6.5Mbps	(25)

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(HT20).

5.4 Test Environment

	Operating Environment	::					
	Radiated Spurious Emi	ssions:					
193	Temperature:	22~25.0 °C	(40)		(41)		(41)
	Humidity:	50~55 % RH	0		(0)		(0)
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(2)		(20)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(1)		
(~)	Humidity:	50~55 % RH	(6,72)		(6,7)		(6.2)
	Atmospheric Pressure:	1010mbar					

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/

5.6 Test Location

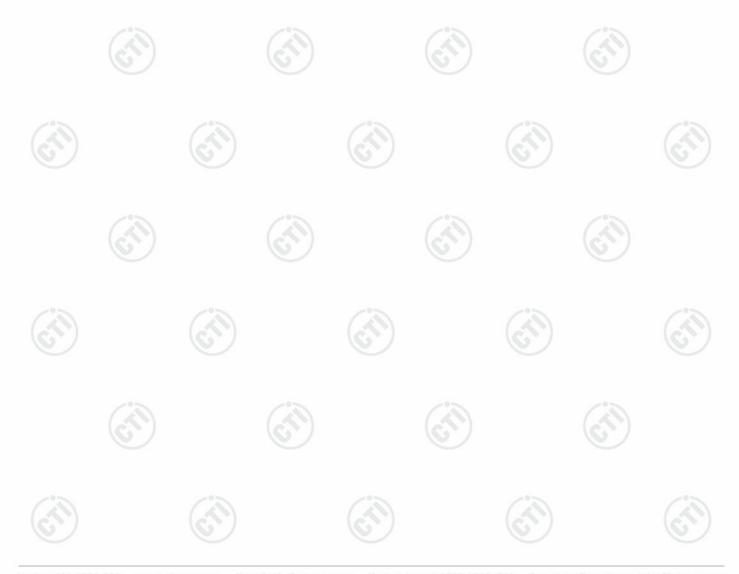
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

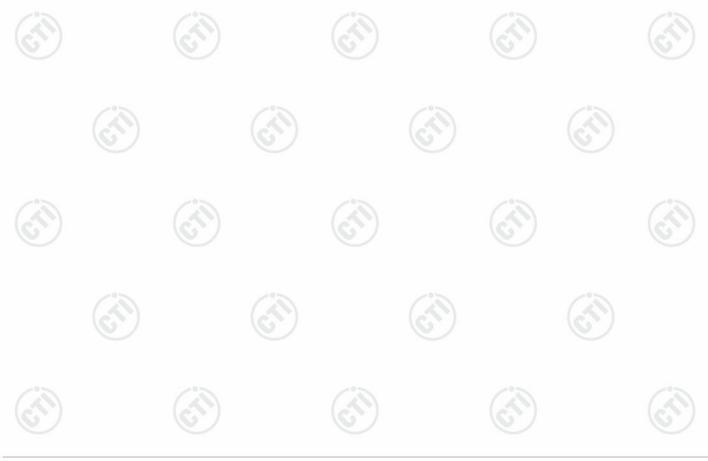
No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	6	3.3dB (9kHz-30MHz)	
3	D. I. t. 10 and an artist of the	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
(P)		3.4dB (18GHz-40GHz)	
	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	voltages 0.026%	

Report No.: EED32Q80276401 Page 10 of 57

6 Equipment List

	RF test system								
Equipment	Manufacturer	Model No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024				
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024				
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024				
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024				
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024				
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024				
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(cf)	- 6				

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date			
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024			
Temperature/ Humidity Indicator	Defu	TH128	/	05-04-2023	05-03-2024			
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024			
Barometer	changchun	DYM3	1188	/				
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(<u>ت</u> (ت			



Page 11 of 57 Report No.: EED32Q80276401

3M Semi-anechoic Chamber (2)- Radiated disturbance Test						
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021 04/16/2024	04/16/2024 04/15/2025	
Multi device Controller	maturo	NCD/070/10711112		(ii)	- 6	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/17/2021 04/16/2024	04/16/2024 04/15/2025	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre			

Report No. : EED32Q80276401 Page 12 of 57

		3M full-anechoi	c Chamber			
Equipment	Equipment Manufacturer		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 0	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-17-2021 04-16-2024	04-16-2024 04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023 04-12-2024	04-12-2024 04-11-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023 04-07-2024	04-10-2024 04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		/0	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(6	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(6	3)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		/3	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(C))	(6)	

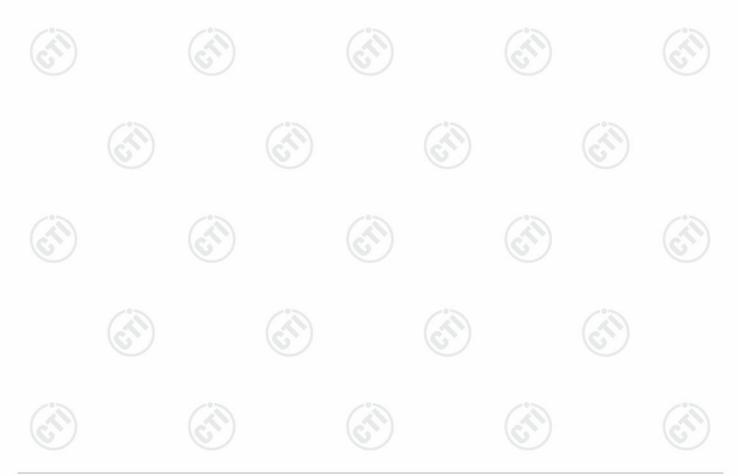
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

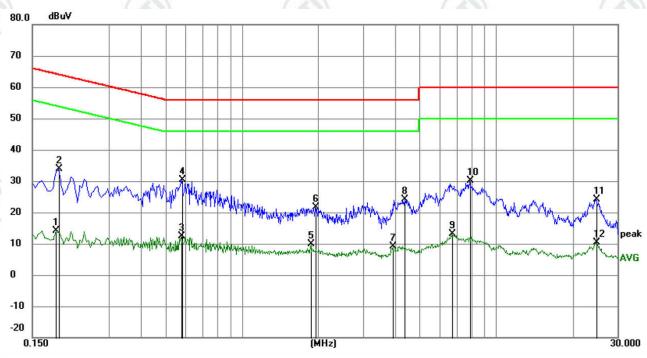
EUT Antenna: Please see Internal photos

The antenna is Monopole antenna. The best case gain of the antenna is 2.88dBi.

Report No.: EED32Q80276401 Page 14 of 57

7.2 AC Power Line Conducted Emissions

	2772.774	47 OFD Dark 150 Section 15	A 4 1	(3)
	st Requirement:	47 CFR Part 15C Section 15.3	207	
	st Method:	ANSI C63.10: 2013		
	st Frequency Range:	150kHz to 30MHz		
8	ceiver setup:	RBW=9 kHz, VBW=30 kHz, S	1 45.71	
Lin	nit:	Frequency range (MHz)	Limit (d	
			Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarithm	n of the frequency.	
l e	st Setup:			
		Shielding Room EUT AC Mains LISN1	AE LISN2 → AC Mai	Test Receiver
_	. D	A. = 1	Ground Reference Plane	
16	st Procedure:	 The mains terminal disturbly room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the realization. 	to AC power source letwork) which provides cables of all other SN 2, which was bonde as the LISN 1 for the was used to connect rating of the LISN was n	through a LISN 1 (Line is a $50\Omega/50\mu\text{H} + 5\Omega$ linear units of the EUT were d to the ground reference unit being measured. A multiple power cables to a not exceeded.
		 3) The tabletop EUT was play ground reference plane. A placed on the horizontal ground the test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LIST 	and for floor-standing and for floor-standing and reference plane. It is a vertical ground reference the vertical grout plane was bonded to a vertical grout and a vertical ground an	erence plane. The rear of nd reference plane. The to the horizontal ground from the boundary of the
		unit under test and bon mounted on top of the grother the closest points of the L and associated equipment 5) In order to find the maximum and all of the interface cal ANSI C63.10: 2013 on cor	und reference plane. The LISN 1 and the EUT. At was at least 0.8 m from the relative must be changed at the relative must be changed at the change at	his distance was between All other units of the EUT in the LISN 2. we positions of equipment
Te	st Mode:	All modes were tested, only the 802.11b was recorded in the re-		hannel of 1Mbps for



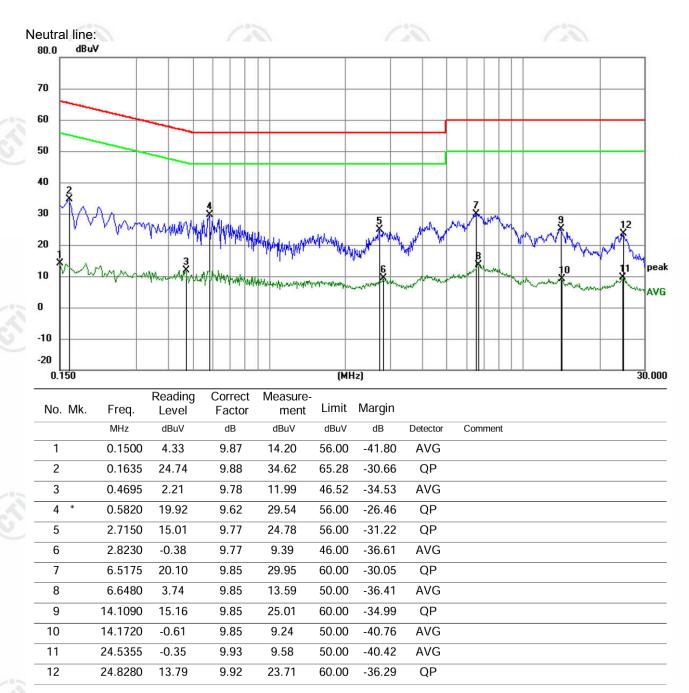
Report No.: EED32Q80276401 Page 15 of 57

Test Results:	Pass		
---------------	------	--	--

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1860	4.29	9.91	14.20	54.21	-40.01	AVG	
2		0.1905	23.87	9.91	33.78	64.01	-30.23	QP	
3		0.5775	2.80	9.63	12.43	46.00	-33.57	AVG	
4	*	0.5820	20.68	9.62	30.30	56.00	-25.70	QP	
5		1.8690	0.05	9.75	9.80	46.00	-36.20	AVG	
6		1.9455	12.00	9.75	21.75	56.00	-34.25	QP	
7		3.9345	-0.66	9.81	9.15	46.00	-36.85	AVG	
8		4.3800	14.38	9.82	24.20	56.00	-31.80	QP	
9		6.7245	3.29	9.85	13.14	50.00	-36.86	AVG	
10		7.8765	20.39	9.84	30.23	60.00	-29.77	QP	
11		24.7334	14.09	9.92	24.01	60.00	-35.99	QP	
12		24.7334	0.42	9.92	10.34	50.00	-39.66	AVG	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Remark:

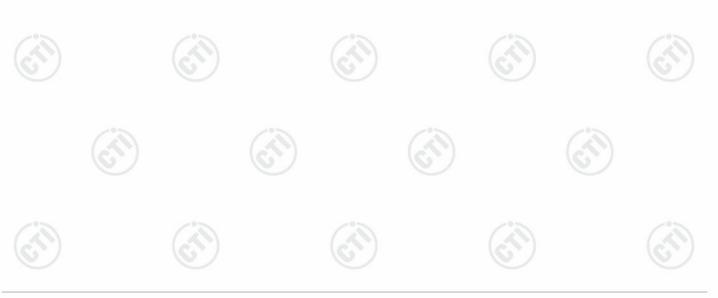
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10 2013					
Test Setup:	ET)					
	Control Computer Control Control Power Pow					
Test Procedure:	 PKPM1 Peak power meter measurement The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector. Method AVGPM-G Average power measurement Method AVGPM-G is a measurement using a gated RF average power meter. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required. 					
Limit:	30dBm					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix 2.4G Wi-Fi					

7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	(cří)
	Control Control Control Power Supply Power Supply Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi

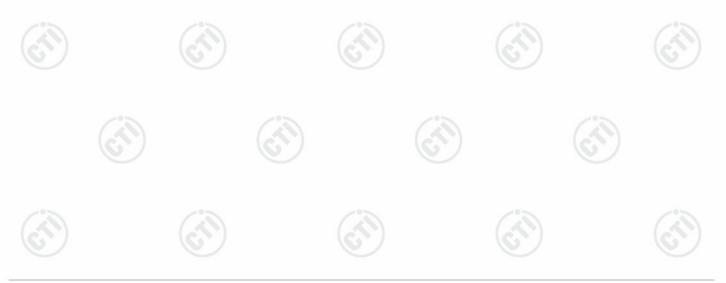


7.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
	Test Method:	ANSI C63.10 2013	
	Test Setup:		(cri)
		Control Control Control port(b) Power port Table RF test System Instrument Instrument	
io A		Remark: Offset=Cable loss+ attenuation factor.	
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum within the RBW. j) If measured value exceeds requirement, then reduce RE than 3 kHz) and repeat. 	amplitude level
	Limit:	≤8.00dBm/3kHz	
	Test Mode:	Refer to clause 5.3	
	Test Results:	Refer to Appendix 2.4G Wi-Fi	

7.6 Band Edge Measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Power Power Pool Pool Power Pool Power Pool Power Pool Pool Pool Pool Pool Pool Pool Poo
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW = 100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi



7.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6				
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	1	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak			
	Above 4011		Peak	1MHz	3MHz	Peak			
	Above 1GHz		Peak	1MHz	10kHz	Average			
Limit:	Frequency	Field strength (microvolt/mete		Limit (dBuV/m)	Remark	Measuremer distance (m			
	0.009MHz-0.490MHz		400/F(kHz)	-	-/%	300			
	0.490MHz-1.705MHz 24		000/F(kHz)	-	(()	30			
	1.705MHz-30MHz		30	-	-6	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz	9	200	46.0	Quasi-peak	3			
	960MHz-1GHz	1	500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rad	20d quip	B above the i	maximum est. This p	permitted ave	erage emission			

Report No. : EED32Q80276401 Page 22 of 57

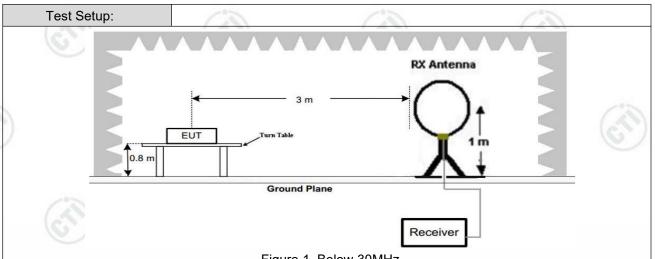
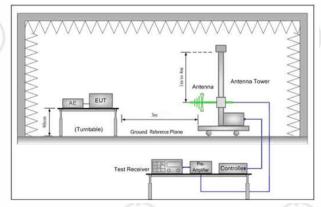



Figure 1. Below 30MHz

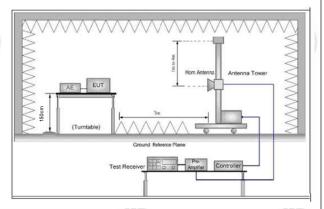


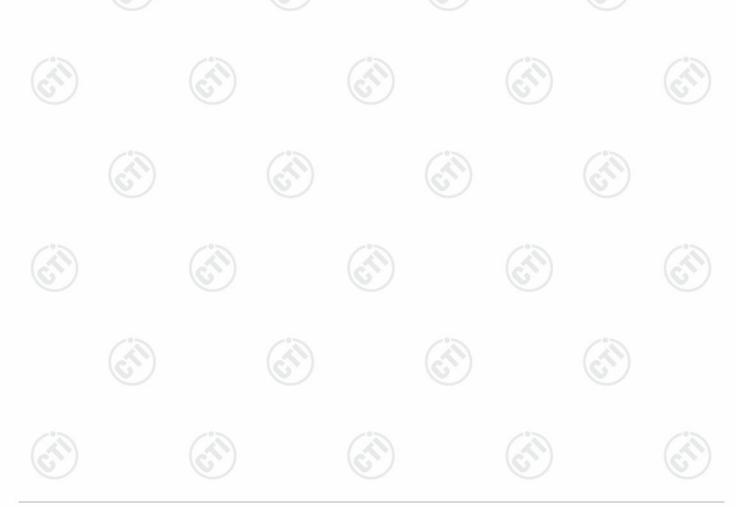
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

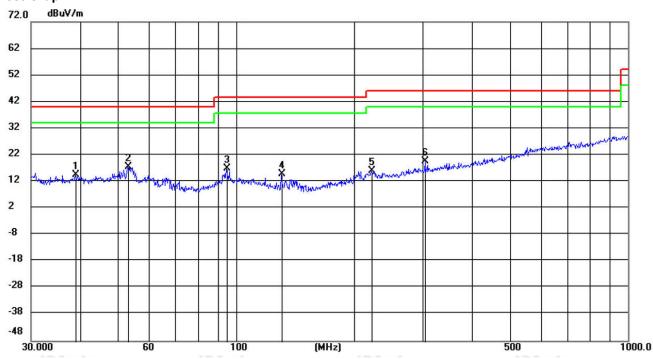
Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

Report No.: EED32Q80276401 Page 24 of 57

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

Horizontal: **Test Graph** 72.0 62 52 42 32 22 12 2 -8 -18 -28 -38 48 30.000 60 100 (MHz) 500 1000.0 Reading Correct Measure-Antenna Table No. Mk. Freq. Limit Margin Height Level Factor ment Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 40.3393 0.49 13.99 14.48 40.00 -25.52 QP 199 328 2 54.4134 40.00 199 0.61 13.77 14.38 -25.62 QP 235 3 101.1642 5.60 13.49 19.09 43.50 -24.41 QP 199 7 137.5166 5.27 9.71 14.98 43.50 249 4 -28.52 ΟP 100 5 234.1272 2.91 14.07 16.98 46.00 -29.02 QP 100 95 304.2363 16.75 22.91 QP 100 6 6.16 46.00 -23.09 311



Vertical:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		38.9971	0.60	13.86	14.46	40.00	-25.54	QP	100	28	
	2	*	52.9732	3.62	13.90	17.52	40.00	-22.48	QP	100	164	
	3		94.7435	4.31	12.76	17.07	43.50	-26.43	QP	100	7	
	4		130.7452	4.69	10.04	14.73	43.50	-28.77	QP	100	226	
_	5		221.5863	2.44	13.56	16.00	46.00	-30.00	QP	100	7	
	6		304.1830	2.78	16.75	19.53	46.00	-26.47	QP	100	7	
-												

Report No.: EED32Q80276401 Page 26 of 57

Radiated Spurious Emission above 1GHz:

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 b mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case of was recorded in the report.

-												
	Mode:			802	2.11 b Tran	smitting		Channe	el:	2412MH	Z	
	NO	Freq. [MHz]	Facto [dB]	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1253.6254	7.85		20.21	28.06	74.00	45.94	PASS	Н	PK	
	2	1743.8744	8.49		20.70	29.19	74.00	44.81	PASS	Н	PK	
	3	3616.0411	-17.66	6	65.50	47.84	74.00	26.16	PASS	Н	PK	
3	4	4824.1216	-13.45	5	64.09	50.64	74.00	23.36	PASS	Н	PK	
6	5	7848.3232	-3.98		46.51	42.53	74.00	31.47	PASS	Н	PK	
-	6	13675.7117	5.38		43.94	49.32	74.00	24.68	PASS	Н	PK	
	7	1235.4235	7.90		19.71	27.61	74.00	46.39	PASS	V	PK	
	8	1572.6573	7.96		21.62	29.58	74.00	44.42	PASS	V	PK	
	9	3618.0412	-17.66	3	59.53	41.87	74.00	32.13	PASS	V	PK	
ĺ	10	4824.1216	-13.45	5	59.81	46.36	74.00	27.64	PASS	V	PK	
Ī	11	5975.1983	-11.00)	55.72	44.72	74.00	29.28	PASS	V	PK	
	12	13674.7116	5.38		43.43	48.81	74.00	25.19	PASS	V	PK	

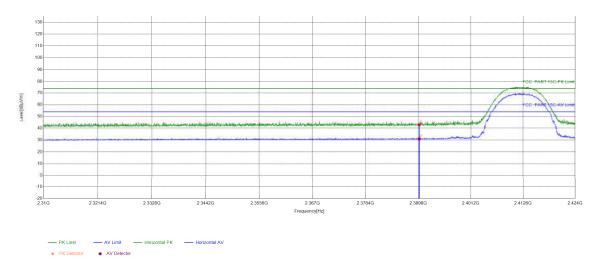
Mod	e:		802.11 b Tran	smitting	Channel:		2437MHz		
NO	Freq. [MHz]	Factor		Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1105.8106	6.98	21.41	28.39	74.00	45.61	PASS	Н	PK
2	1724.0724	8.50	22.47	30.97	74.00	43.03	PASS	Н	PK
3	3655.0437	-17.63	64.90	47.27	74.00	26.73	PASS	Н	PK
4	4874.1249	-13.46	65.46	52.00	74.00	22.00	PASS	Н	PK
5	8080.3387	-3.05	45.43	42.38	74.00	31.62	PASS	Н	PK
6	13670.7114	5.44	43.24	48.68	74.00	25.32	PASS	Н	PK
7	1152.2152	7.49	21.48	28.97	74.00	45.03	PASS	V	PK
8	1769.877	8.47	22.33	30.80	74.00	43.20	PASS	V	PK
9	3656.0437	-17.63	58.08	40.45	74.00	33.55	PASS	V	PK
10	4874.1249	-13.46	58.83	45.37	74.00	28.63	PASS	V	PK
11	5996.1997	-10.95	55.39	44.44	74.00	29.56	PASS	V	PK
12	13668.7112	5.47	43.33	48.80	74.00	25.20	PASS	V	PK

Page 27 of 57 Report No.: EED32Q80276401

						/ 1				
	Mode:			802.11 b Tran	smitting		Channe	el:	2462MH	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1204.6205	7.99	22.62	30.61	74.00	43.39	PASS	Н	PK
	2	1645.2645	8.23	22.24	30.47	74.00	43.53	PASS	Н	PK
	3	3693.0462	-17.60	61.43	43.83	74.00	30.17	PASS	Н	PK
	4	4923.1282	-13.42	62.34	48.92	74.00	25.08	PASS	Н	PK
	5	8700.38	-3.30	47.04	43.74	74.00	30.26	PASS	Н	PK
	6	13718.7146	4.89	43.72	48.61	74.00	25.39	PASS	Н	PK
	7	1370.6371	8.08	20.28	28.36	74.00	45.64	PASS	V	PK
	8	1755.4755	8.49	21.60	30.09	74.00	43.91	PASS	V	PK
	9	3693.0462	-17.60	56.99	39.39	74.00	34.61	PASS	V	PK
	10	4924.1283	-13.42	57.80	44.38	74.00	29.62	PASS	V	PK
٩	11	5999.1999	-10.93	54.06	43.13	74.00	30.87	PASS	V	PK
	12	13678.7119	5.33	43.45	48.78	74.00	25.22	PASS	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the

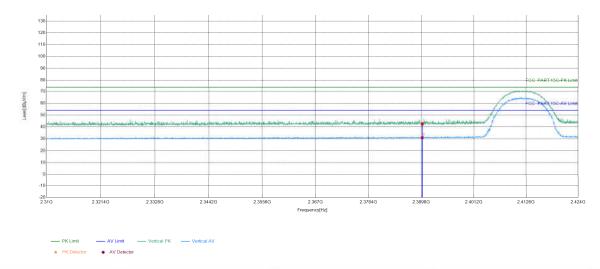


Restricted bands:

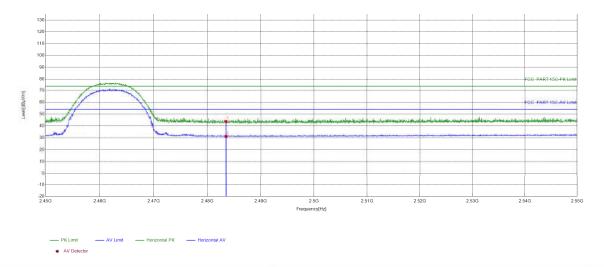
Test plot as follows:

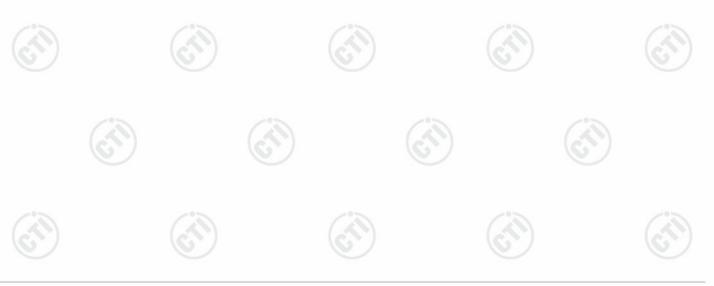
Test_Mode	802.11 b Transmitting	Test_Frequency	2412
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	33.05	43.01	74.00	30.99	PASS	Horizontal	PK
2	2390	9.96	20.96	30.92	74.00	43.08	PASS	Horizontal	AV



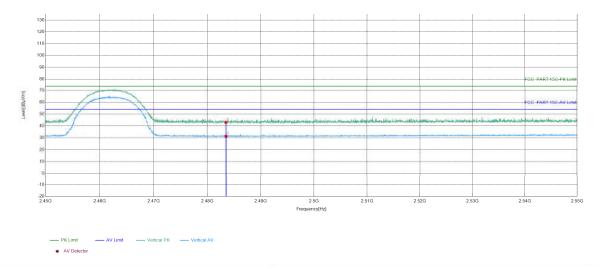
6.5	(62)	(6.4)	(6.7)
Test_Mode	802.11 b Transmitting	Test_Frequency	2412
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		

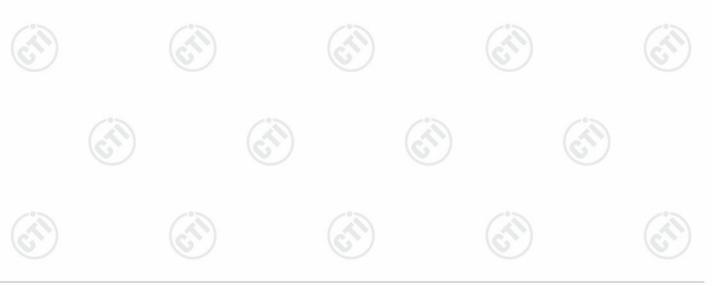

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	32.53	42.49	74.00	31.51	PASS	Vertical	PK
2	2390	9.96	21.00	30.96	74.00	43.04	PASS	Vertical	AV



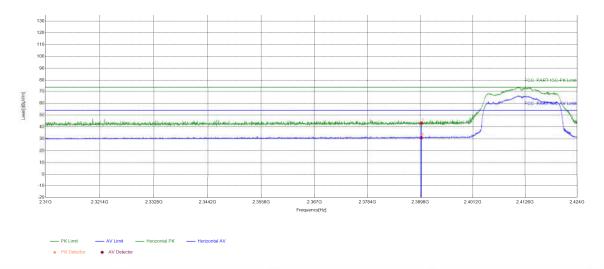
Page 30 of 57 Report No.: EED32Q80276401

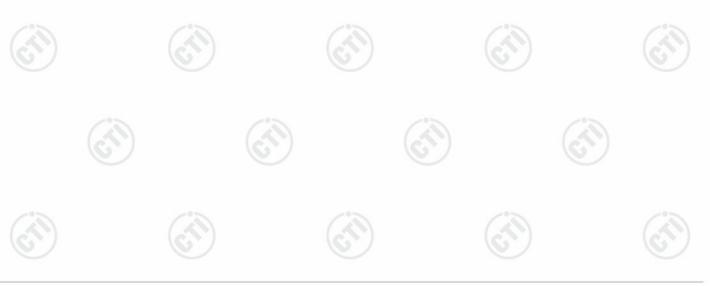
6.5	(6.20)	(6.4)	(6.7)
Test_Mode	802.11 b Transmitting	Test_Frequency	2462
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	33.52	43.90	74.00	30.10	PASS	Horizontal	PK
2	2483.5	10.38	20.84	31.22	74.00	42.78	PASS	Horizontal	AV

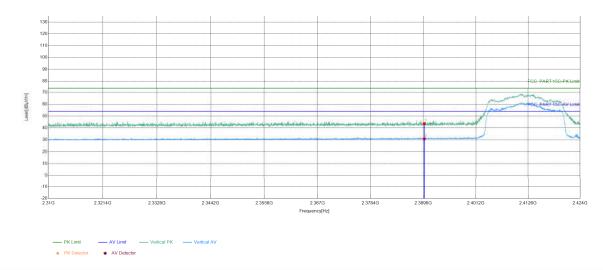


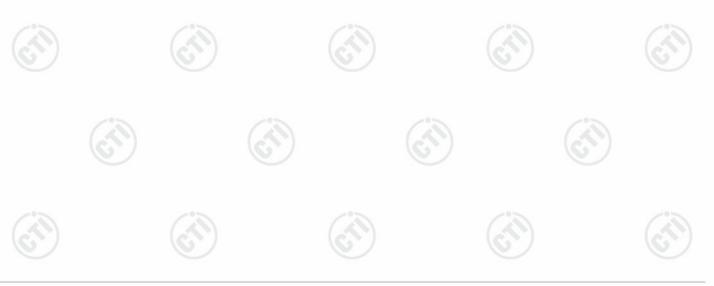
6.5	(6.20)	(6.4)	(6.7)
Test_Mode	802.11 b Transmitting	Test_Frequency	2462
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2483.5	10.38	32.69	43.07	74.00	30.93	PASS	Vertical	PK
	2	2483.5	10.38	20.87	31.25	74.00	42.75	PASS	Vertical	AV

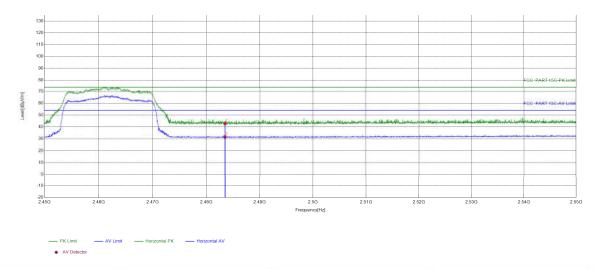


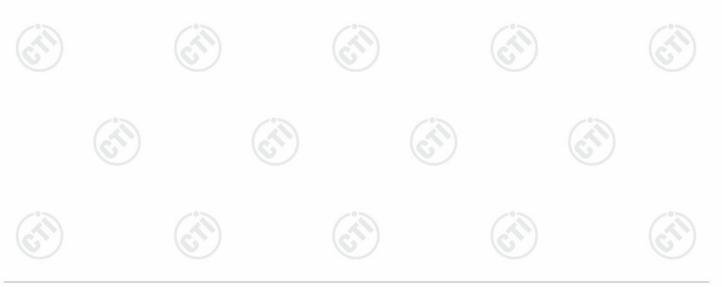
6.0	(0.5)	(C)	16.31
Test_Mode	802.11 g Transmitting	Test_Frequency	2412
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		


	Suspecte	d List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
Ī	1	2390	9.96	33.30	43.26	74.00	30.74	PASS	Horizontal	PK	
	2	2390	9.96	21.00	30.96	74.00	43.04	PASS	Horizontal	AV	

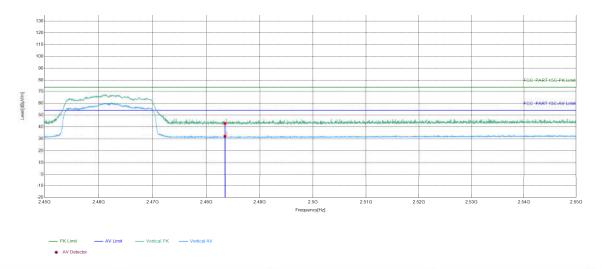


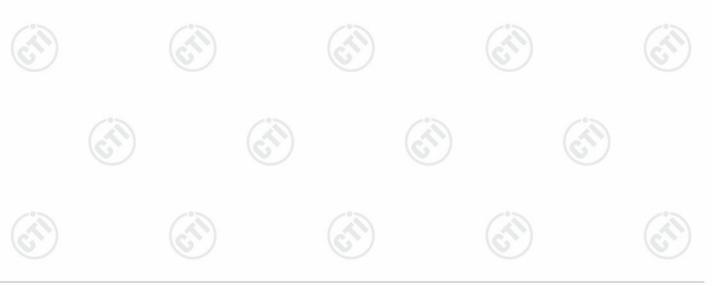
C	10.50	102	162
Test_Mode	802.11 g Transmitting	Test_Frequency	2412
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1	`	


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2390	9.96	33.69	43.65	74.00	30.35	PASS	Vertical	PK
	2	2390	9.96	20.81	30.77	74.00	43.23	PASS	Vertical	AV

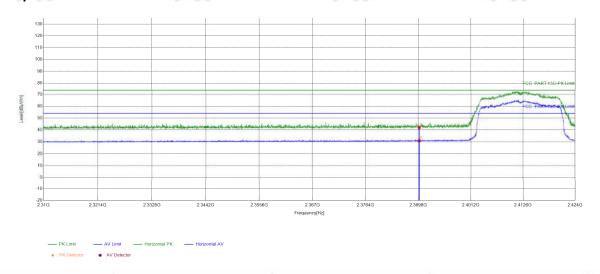


6.7	(0.70)	(6.7	163	
Test_Mode	802.11 g Transmitting	Test_Frequency	2462	
Tset_Engineer	chenjun	Test_Date	2024/04/22	
Remark	1			


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2483.5	10.38	32.48	42.86	74.00	31.14	PASS	2483.5	PK
	2	2483.5	10.38	21.24	31.62	74.00	42.38	PASS	2483.5	AV

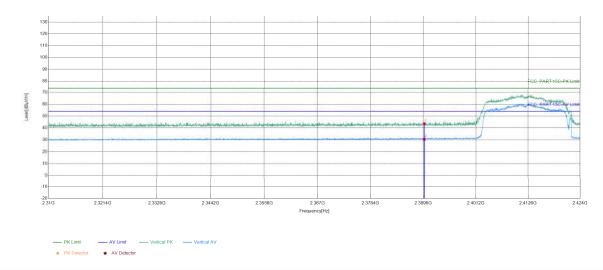


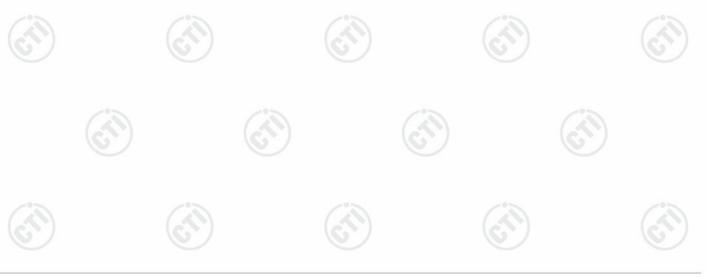
CS /	(6.5)		(C.)	100
Test_Mode	802.11 g Transmitting		Test_Frequency	2462
Tset_Engineer	chenjun	(3	Test_Date	2024/04/22
Remark	\	6	`	


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2483.5	10.38	32.62	43.00	74.00	31.00	PASS	Vertical	PK
	2	2483.5	10.38	21.66	32.04	74.00	41.96	PASS	Vertical	AV

Page 36 of 57 Report No.: EED32Q80276401

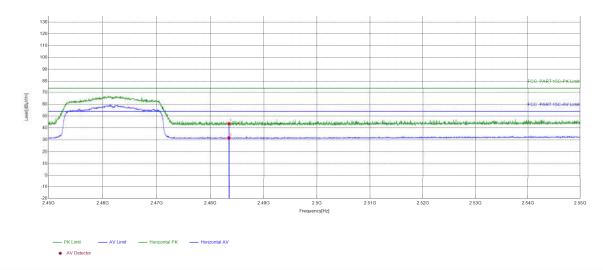
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2412
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2390	9.96	32.15	42.11	74.00	31.89	PASS	Horizontal	PK
	2	2390	9.96	20.84	30.80	74.00	43.20	PASS	Horizontal	AV



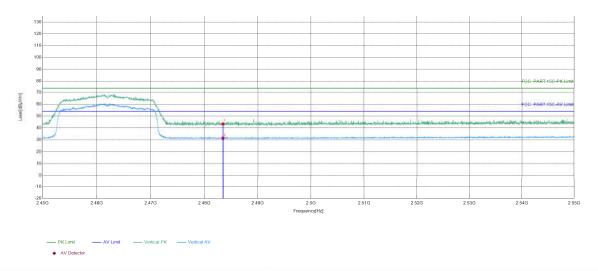
Page 37 of 57 Report No.: EED32Q80276401

6.3	(0.5)	100	16.5
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2412
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		


Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	33.60	43.56	74.00	30.44	PASS	Vertical	PK
2	2390	9.96	20.51	30.47	74.00	43.53	PASS	Vertical	AV

57/	(6)	(6,5)	(6,)
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2462
Tset_Engineer	chenjun	Test_Date	2024/04/22
Remark	1		

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	33.33	43.71	74.00	30.29	PASS	Horizontal	PK
2	2483.5	10.38	21.24	31.62	74.00	42.38	PASS	Horizontal	AV



Report No.: EED32Q80276401 Page 39 of 57

6.3	(0.5)	16.7	16.7		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2462		
Tset_Engineer	chenjun	Test_Date	2024/04/22		
Remark	1				

Test Graph

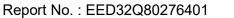
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2483.5	10.38	33.05	43.43	74.00	30.57	PASS	Vertical	PK
	2	2483.5	10.38	21.06	31.44	74.00	42.56	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Page 40 of 57

8 Appendix 2.4G Wi-Fi

Refer to Appendix: 2.4G Wi-Fi of EED32Q80276401

