

Report No.: EED32P81719302 Page 1 of 42

TEST REPORT

Product Wireless Voltage Monitor

Trade mark SmartSafe

VM13 Model/Type reference **Serial Number** N/A

Report Number EED32P81719302

FCC ID : 2AYANVM13 Date of Issue : Nov. 30, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

SHENZHEN SMARTSAFE TECH CO., LTD 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark. chen

Mark Chen

Aaron Ma

Reviewed by:

Tom Chen

Date:

Nov. 30, 2023

Check No.: 4129261023

Page 2 of 42 Report No.: EED32P81719302

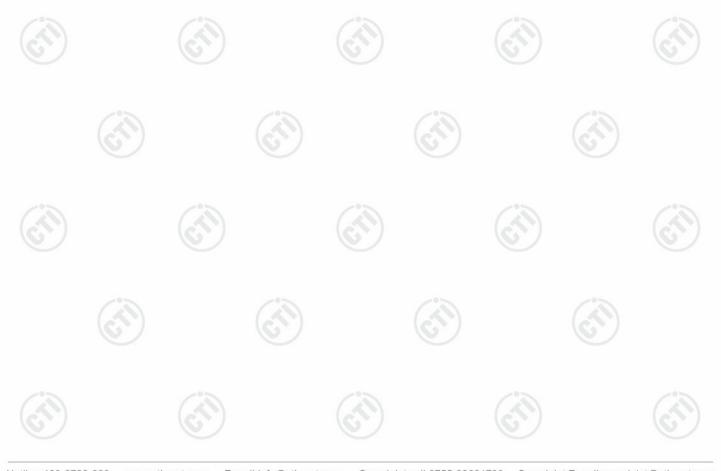
Content

1 COVER PAGE	•••••	•••••	1
2 CONTENT			
3 VERSION			3
4 TEST SUMMARY		•••••	
5 GENERAL INFORMATION			5
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS	S, K=2)		5 77 7 7
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREMENT DATA			12
7.1 ANTENNA REQUIREMENT 7.2AC POWER LINE CONDUCTED EMISSIONS 7.2 MAXIMUM CONDUCTED OUTPUT POWER 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENSITY 7.5 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOU 7.6 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	IS EMISSION		
8 APPENDIX 2.4G WIFI			39
9 PHOTOGRAPHS OF TEST SETUP			
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAIL	.s		42

Report No.: EED32P81719302

3 Version

Version No.	Date	6	Description	
00	Nov. 30, 2023		Original	
		10	0	/ 5
-((50)	(92)	(57)	(0,1)


Report No. : EED32P81719302 Page 4 of 42

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band edge measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were Provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

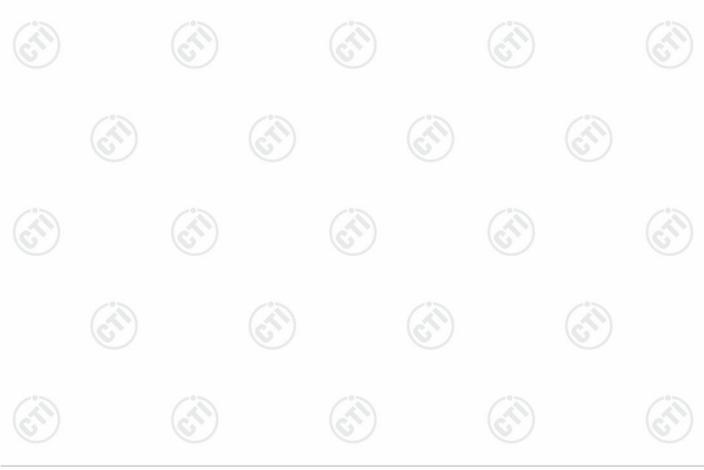
5.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD
Address of Applicant:	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD
Address of Manufacturer:	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Factory:	SHENZHEN SMARTSAFE TECH CO., LTD
Address of Factory:	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

5.2 General Description of EUT

Product Name:	Wireless Voltage Monitor	
Model No.:	VM13	
Trade mark:	SmartSafe	
Product Type:	☐ Mobile ☐ Portable ☒ Fix Location	6
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Modulation Type:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM,QPSK,BPSK)	
Number of Channel:	11 Channels	
Channel Separation:	5MHz	
Antenna Type:	PCB Antenna	122
Antenna Gain:	2.19dBi	
Power Supply:	Battery DC 3.7V	0
Test Voltage:	DC 3.7V	
Sample Received Date:	Oct. 27, 2023	
Sample tested Date:	Oct. 27, 2023 to Nov. 16, 2023	

Page 6 of 42 Report No.: EED32P81719302


113		112					
Operation	Frequency ea	ch of channe	el (802.11b/g/n	HT20)	4)	(6.7)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		(67)

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The highest channel	2462MHz

Report No.: EED32P81719302 Page 7 of 42

5.3 Test Configuration

EUT Test Software Setti	ngs:		
Software:	SSCOM	-0-	
EUT Power Grade:	Default	(20)	(40)
Lise test software to set th	a lowest frequency the middle fre	aguency and the highest frequenc	v keen

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	6.5Mbps	

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(HT20).

5.4 Test Environment

	Operating Environment:						
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C					122
10	Humidity:	50~55 % RH	10%				(41)
7	Atmospheric Pressure:	1010mbar	6.		(0,)		(0.)
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		(3)		(3)	
	Atmospheric Pressure:	1010mbar		(6)		(67)	
	RF Conducted:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH	-°>		· · ·		_0>
(1)	Atmospheric Pressure:	1010mbar	-47)				(47)
	10.0		0.70				

5.5 Description of Support Units

The EUT has been tested with associated equipment below. support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

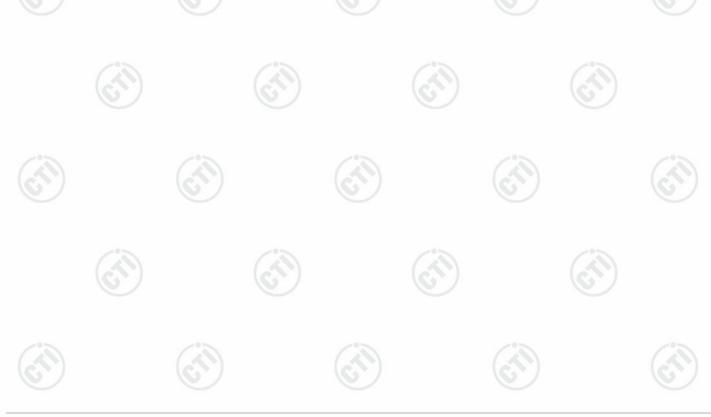
No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
©1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE power conducted	0.46dB (30MHz-1GHz)	
	2 RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
3	Padiated Spurious emission test	7.9 x 10 ⁻⁸ 0.46dB (30MHz-1GHz) 0.55dB (1GHz-40GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
•	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32P81719302 Page 9 of 42

6 Equipment List


RF test system								
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023			
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023			
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023			
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023			
Wi-Fi 7GHz Band Extendder JS Tonscend		TS-WF7U2	2206200002	06-09-2023	06-08-2024			
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023			
Communication test set	R&S	CMW500	120765	12-23-2022	12-22-2023			
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	(9			

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024			
Temperature/ Humidity Indicator	Defu	TH128		(<u> </u>			
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024			
Barometer	changchun	DYM3	1188	(;) -	(3)			
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(C)	(67			

Report No.: EED32P81719302 Page 10 of 42

3M Semi-anechoic Chamber (2)- Radiated disturbance Test								
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date			
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025			
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024			
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023			
Multi device Controller	maturo	NCD/070/10711112		<u>(C.)</u>				
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024			
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024			
Test software	Fara	EZ-EMC	EMEC-3A1-Pre					

Report No. : EED32P81719302 Page 11 of 42

				/	100
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		6
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(3)
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(2
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	6
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(<i></i>
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(D
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(A)	- (2

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is Prohibited.

15.247(b) (4) requirement:

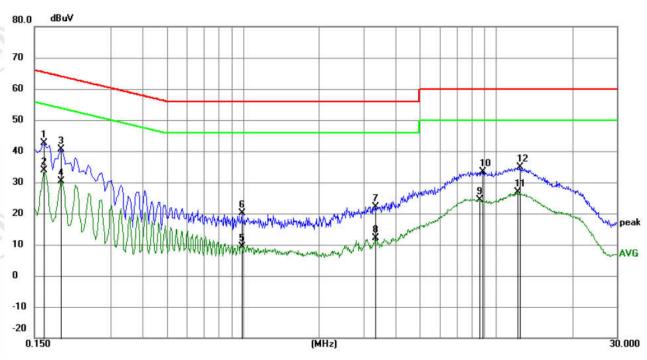
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as apPropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 2.19dBi.

Report No. : EED32P81719302 Page 13 of 42

7.2AC Power Line Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.	207							
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	150kHz to 30MHz								
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto								
Limit:	(62)	Limit (d	dBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	56 to 46*							
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithr	n of the frequency.							
	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver						
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which Provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN Provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment 								
Test Mode:	ANSI C63.10: 2013 on cor	ne worst case lowest c							
	802.11b was recorded in the	report.							
Test Results:	Pass								

Report No. : EED32P81719302 Page 14 of 42

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1635	32.83	9.87	42.70	65.28	-22.58	QP	
2	*	0.1635	24.01	9.87	33.88	55.28	-21.40	AVG	
3		0.1905	30.65	9.87	40.52	64.01	-23.49	QP	
4		0.1905	20.56	9.87	30.43	54.01	-23.58	AVG	
5		0.9914	-0.34	9.83	9.49	46.00	-36.51	AVG	
6		0.9915	10.37	9.83	20.20	56.00	-35.80	QP	
7		3.3315	12.41	9.79	22.20	56.00	-33.80	QP	
8		3.3315	2.34	9.79	12.13	46.00	-33.87	AVG	
9		8.5785	14.57	9.78	24.35	50.00	-25.65	AVG	
10		8.8305	23.68	9.78	33.46	60.00	-26.54	QP	
11		12.1875	17.12	9.85	26.97	50.00	-23.03	AVG	
12		12.4125	24.98	9.85	34.83	60.00	-25.17	QP	

Remark

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		,
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1635	33.96	9.87	43.83	65.28	-21.45	QP	
2	*	0.1635	24.84	9.87	34.71	55.28	-20.57	AVG	
3		0.1905	31.88	9.87	41.75	64.01	-22.26	QP	
4		0.1905	21.26	9.87	31.13	54.01	-22.88	AVG	2
5		0.2175	28.58	9.90	38.48	62.91	-24.43	QP	н
6		0.2175	19.77	9.90	29.67	52.91	-23.24	AVG	
7		0.8205	11.09	9.85	20.94	56.00	-35.06	QP	
8		0.8205	4.27	9.85	14.12	46.00	-31.88	AVG	*
9		7.7100	22.61	9.79	32.40	60.00	-27.60	QP	
10		7.7910	14.30	9.79	24.09	50.00	-25.91	AVG	
11		12.7230	14.80	9.86	24.66	50.00	-25.34	AVG	
12		12.8220	23.35	9.86	33.21	60.00	-26.79	QP	8

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)	(3)
Test Method:	ANSI C63.10 2013	_0_
Test Setup:		
	Control Composite Composite Composite Composite Control Control Composite Addressing Addressin	RF test System Instrument
	(0-)	(C.)
Test Procedure:	1. PKPM1 Peak power meter measure The maximum peak conducted output broadband peak RF power meter. The bandwidth that is greater than or equuse a fast-responding diode detector 2. Method AVGPM-G Average power Method AVGPM-G is a measurement meter. Alternatively, measurements gated RF power meter Provided that that the power is measured only whe maximum power control level. Becauduring the ON time of the transmitter required.	at power may be measured using a me power meter shall have a video and to the DTS bandwidth and shall or measurement at using a gated RF average power may be performed using a wideband of the gate parameters are adjusted such the EUT is transmitting at its use the measurement is made only
Limit:	30dBm	
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix 2.4G WIFI	

7.3 DTS Bandwidth

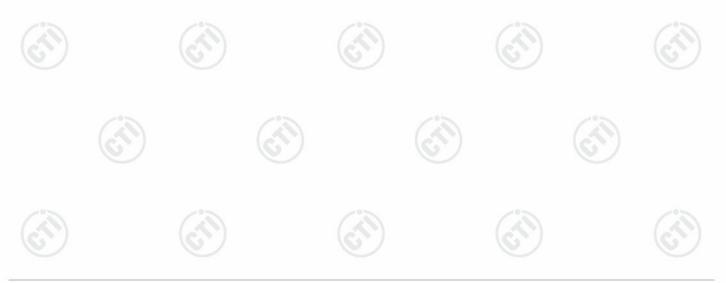
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Power Poor Attenuator Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G WIFI

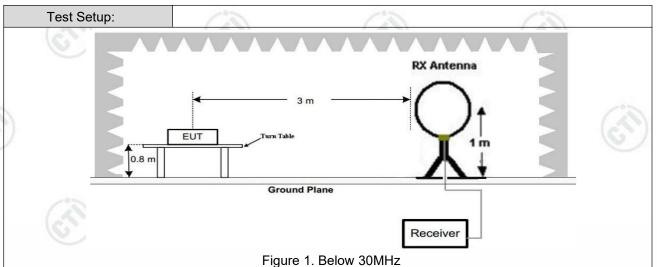
7.4 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)					
Test Method:	ANSI C63.10 2013					
Test Setup:						
	Control Computer Power Poor TEMPERATURE CABNET Table RF t Syst Attenuator Instru	tem				
	Remark: Offset=Cable loss+ attenuation facto	(1)				
Test Procedure:	a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less					
Limit:	≤8.00dBm/3kHz					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix 2.4G WIFI					

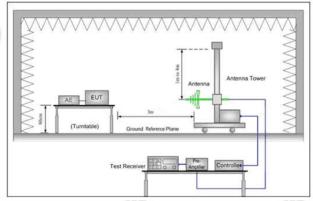
7.5 Band Edge Measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power Power Power Power Table RF test System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW = 100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is Produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G WIFI




7.6 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section	on 15	5.209 and 15	.205	6				
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013							
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
			Peak	1MHz	10kHz	Average			
Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz 2		00/F(kHz)	-	-/0>	300			
	0.490MHz-1.705MHz 24		000/F(kHz)	-	(A)	30			
	1.705MHz-30MHz		30	-	-6	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz	6	200	46.0	Quasi-peak	3			
	960MHz-1GHz	/	500	54.0	Quasi-peak	3			
	Above 1GHz	Above 1GHz 500		54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20dE quipn	B above the ment under to	maximum est. This p	permitted ave	erage emission			



Tigure 1. Below 30Wi12

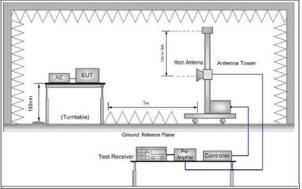


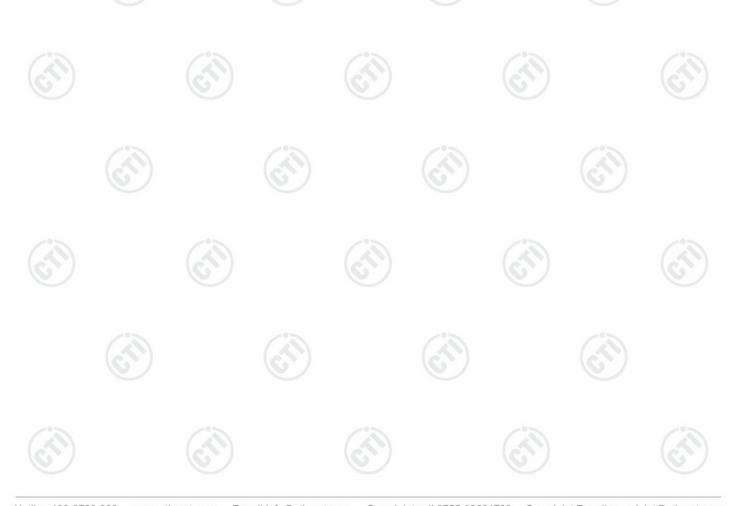
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

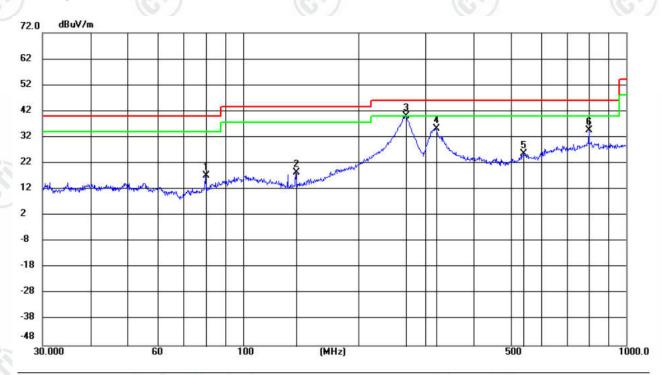
Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32P81719302 Page 22 of 42

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above Procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



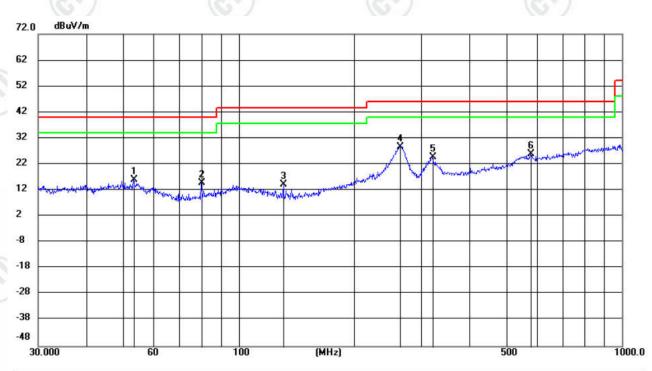
Page 23 of 42 Report No.: EED32P81719302

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

Horizontal:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	80.0104	7.78	9.55	17.33	40.00	-22.67	peak	199	142	
	137.4924	8.83	9.64	18.47	43.50	-25.03	peak	100	152	
*	265.9553	24.77	15.29	40.06	46.00	-5.94	peak	100	141	
	319.7126	18.32	16.95	35.27	46.00	-10.73	peak	100	141	
	539.9506	3.85	21.83	25.68	46.00	-20.32	peak	199	58	
	799.9608	8.81	25.82	34.63	46.00	-11.37	peak	100	89	
		MHz 80.0104 137.4924 * 265.9553 319.7126 539.9506	Mk. Freq. Level MHz dBuV 80.0104 7.78 137.4924 8.83 * 265.9553 24.77 319.7126 18.32 539.9506 3.85	Mk. Freq. Level Factor MHz dBuV dB 80.0104 7.78 9.55 137.4924 8.83 9.64 * 265.9553 24.77 15.29 319.7126 18.32 16.95 539.9506 3.85 21.83	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 80.0104 7.78 9.55 17.33 137.4924 8.83 9.64 18.47 * 265.9553 24.77 15.29 40.06 319.7126 18.32 16.95 35.27 539.9506 3.85 21.83 25.68	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 80.0104 7.78 9.55 17.33 40.00 137.4924 8.83 9.64 18.47 43.50 * 265.9553 24.77 15.29 40.06 46.00 319.7126 18.32 16.95 35.27 46.00 539.9506 3.85 21.83 25.68 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 80.0104 7.78 9.55 17.33 40.00 -22.67 137.4924 8.83 9.64 18.47 43.50 -25.03 * 265.9553 24.77 15.29 40.06 46.00 -5.94 319.7126 18.32 16.95 35.27 46.00 -10.73 539.9506 3.85 21.83 25.68 46.00 -20.32	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 80.0104 7.78 9.55 17.33 40.00 -22.67 peak 137.4924 8.83 9.64 18.47 43.50 -25.03 peak * 265.9553 24.77 15.29 40.06 46.00 -5.94 peak 319.7126 18.32 16.95 35.27 46.00 -10.73 peak 539.9506 3.85 21.83 25.68 46.00 -20.32 peak	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 80.0104 7.78 9.55 17.33 40.00 -22.67 peak 199 137.4924 8.83 9.64 18.47 43.50 -25.03 peak 100 * 265.9553 24.77 15.29 40.06 46.00 -5.94 peak 100 319.7126 18.32 16.95 35.27 46.00 -10.73 peak 100 539.9506 3.85 21.83 25.68 46.00 -20.32 peak 199	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 80.0104 7.78 9.55 17.33 40.00 -22.67 peak 199 142 137.4924 8.83 9.64 18.47 43.50 -25.03 peak 100 152 * 265.9553 24.77 15.29 40.06 46.00 -5.94 peak 100 141 319.7126 18.32 16.95 35.27 46.00 -10.73 peak 100 141 539.9506 3.85 21.83 25.68 46.00 -20.32 peak 199 58



Report No.: EED32P81719302 Page 24 of 42

Vertical: **Test Graph**

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		53.3179	2.21	13.87	16.08	40.00	-23.92	peak	100	154	
2		80.0245	5.39	9.55	14.94	40.00	-25.06	peak	200	326	
3		131.2505	4.40	9.76	14.16	43.50	-29.34	peak	200	161	
4	*	264.3283	13.56	15.22	28.78	46.00	-17.22	peak	100	196	
5		319.9370	7.91	16.95	24.86	46.00	-21.14	peak	100	206	
6		577.8588	3.15	22.90	26.05	46.00	-19.95	peak	100	196	

Page 25 of 42 Report No.: EED32P81719302

Radiated Spurious Emission above 1GHz:

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 b mode was the worst case, only the worst case was recorded in the report.

			10.0			V	10.0			
	Mode):		802.11 b	Transmittir	ng		Channel:		2412 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ſ	1	1423.8424	1.41	38.12	39.53	74.00	34.47	Pass	Н	PK
	2	2123.3123	4.62	38.09	42.71	74.00	31.29	Pass	Н	PK
	3	4824.1216	-16.22	59.00	42.78	74.00	31.22	Pass	Н	PK
	4	7207.2805	-11.83	48.75	36.92	74.00	37.08	Pass	Н	PK
	5	10243.4829	-6.84	46.90	40.06	74.00	33.94	Pass	Н	PK
	6	16416.8945	-0.10	46.64	46.54	74.00	27.46	Pass	Н	PK
	7	1608.0608	2.34	38.72	41.06	74.00	32.94	Pass	V	PK
	8	2100.11	4.88	37.33	42.21	74.00	31.79	Pass	V	PK
	9	4824.1216	-16.22	58.86	42.64	74.00	31.36	Pass	V	PK
	10	5985.199	-13.05	56.36	43.31	74.00	30.69	Pass	V	PK
	11	12020.6014	-5.38	48.74	43.36	74.00	30.64	Pass	V	PK
	12	16272.8849	1.50	46.02	47.52	74.00	26.48	Pass	V	PK

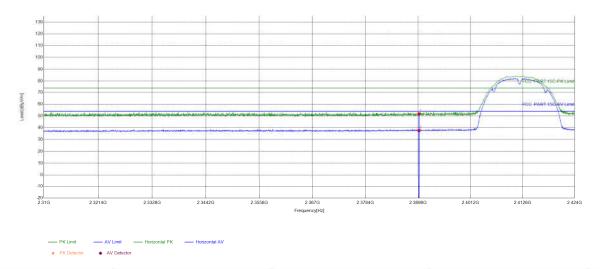
Mode):		802.11 b	Transmittir	ng		Channe	l:	2437 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1428.6429	1.41	38.58	39.99	74.00	34.01	Pass	Н	PK
2	2069.507	4.78	38.08	42.86	74.00	31.14	Pass	Н	PK
3	4874.1249	-16.21	57.82	41.61	74.00	32.39	Pass	Н	PK
4	9226.4151	-7.90	47.16	39.26	74.00	34.74	Pass	Н	PK
5	13735.7157	-1.72	45.56	43.84	74.00	30.16	Pass	Н	PK
6	16266.8845	1.45	45.95	47.40	74.00	26.60	Pass	Н	PK
7	1654.6655	2.64	37.84	40.48	74.00	33.52	Pass	V	PK
8	2103.3103	4.84	37.87	42.71	74.00	31.29	Pass	V	PK
9	3761.0507	-19.50	54.87	35.37	74.00	38.63	Pass	V	PK
10	4874.1249	-16.21	59.29	43.08	74.00	30.92	Pass	V	PK
11	5987.1991	-13.04	59.87	46.83	74.00	27.17	Pass	V	PK
12	14373.7583	0.78	45.01	45.79	74.00	28.21	Pass	V	PK

Report No.: EED32P81719302 Page 26 of 42

Mode	e :		802.11 b 7	Fransmitting			Channe	l:	2462 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2048.7049	4.71	38.27	42.98	74.00	31.02	Pass	Н	PK
2	3890.0593	-19.12	52.23	33.11	74.00	40.89	Pass	Н	PK
3	4924.1283	-16.11	56.55	40.44	74.00	33.56	Pass	Н	PK
4	6818.2546	-12.30	47.87	35.57	74.00	38.43	Pass	Н	PK
5	10289.486	-6.53	47.25	40.72	74.00	33.28	Pass	Н	PK
6	16251.8835	1.32	46.03	47.35	74.00	26.65	Pass	Н	PK
7	1654.4654	2.64	38.30	40.94	74.00	33.06	Pass	V	PK
8	3410.0273	-20.19	56.52	36.33	74.00	37.67	Pass	V	PK
9	4924.1283	-16.11	55.27	39.16	74.00	34.84	Pass	V	PK
10	5991.1994	-13.01	56.84	43.83	74.00	30.17	Pass	V	PK
11	9991.4661	-7.21	48.69	41.48	74.00	32.52	Pass	V	PK
12	14409.7607	1.08	44.04	45.12	74.00	28.88	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the

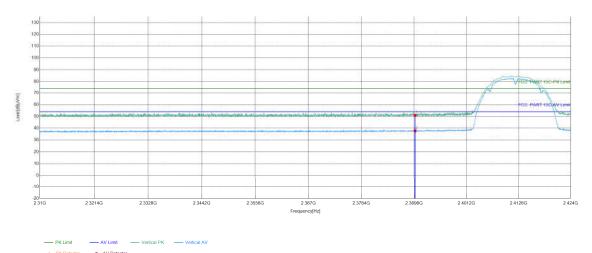


Restricted bands:

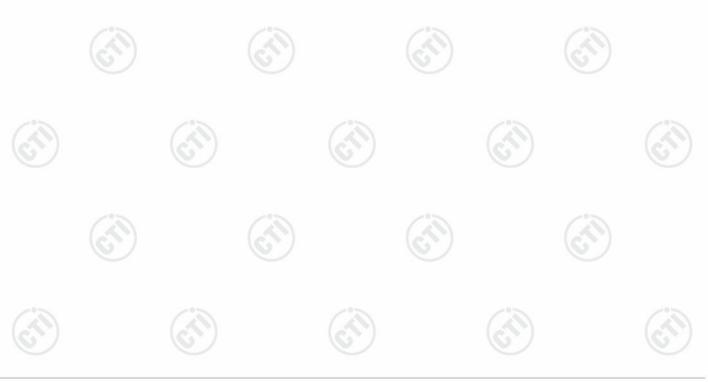
Test plot as follows:

Mode:	802.11 b Transmitting	Channel:	2412MHz
Remark:			

Suspecte	d List			, ASS S					
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	13.75	38.20	51.95	74.00	22.05	PASS	Horizontal	PK
2	2390	13.75	23.84	37.59	54.00	16.41	PASS	Horizontal	AV



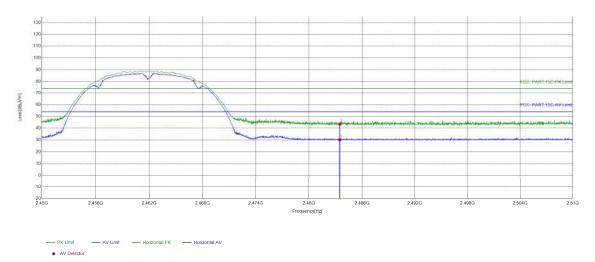
Report No.: EED32P81719302


Page 28 of 42

Mode:	802.11 b Transmitting	Channel:	2412MHz
Remark:			

Test Graph

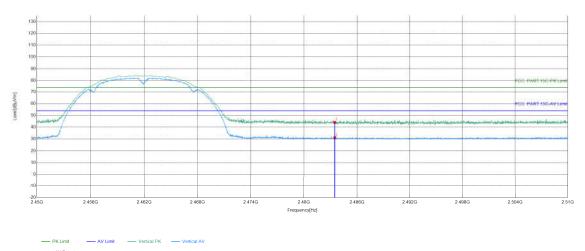
Suspected List Factor Limit Freq. Reading Level Margin [dB] NO Result **Polarity** Remark [MHz] [dBµV] $[dB\mu V/m]$ [dBµV/m] [dB] 2390 13.75 37.25 51.00 74.00 23.00 **PASS** Vertical PΚ 1 2 2390 13.75 24.05 37.80 54.00 16.20 **PASS** Vertical ΑV



Page 29 of 42

Mode:	802.11 b Transmitting	Channel:	2462MHz
Remark:			

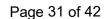
	Suspected List												
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	2483.5	6.57	36.91	43.48	74.00	30.52	PASS	Horizontal	PK			
	2	2483.5	6.57	23.57	30.14	54.00	23.86	PASS	Horizontal	AV			



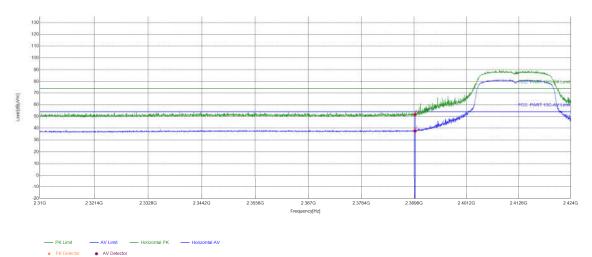
Report No.: EED32P81719302

Page	30	of a	42
rage	JU	OI 4	+2

Mode:	802.11 b Transmitting	Channel:	2462MHz
Remark:			

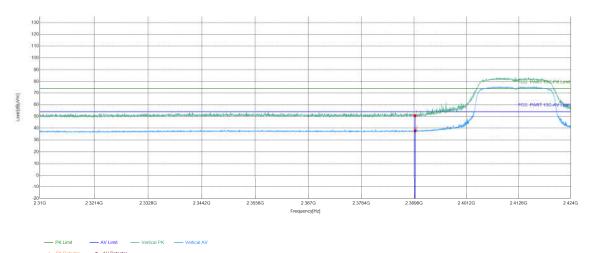


	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
9	1	2483.5	6.57	37.52	44.09	74.00	29.91	PASS	Vertical	PK		
	2	2483.5	6.57	24.48	31.05	54.00	22.95	PASS	Vertical	AV		



Mode:	802.11 g Transmitting	Channel:	2412MHz
Remark:	742		

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	13.75	38.01	51.76	74.00	22.24	PASS	Horizontal	PK
	2	2390	13.75	24.00	37.75	54.00	16.25	PASS	Horizontal	AV



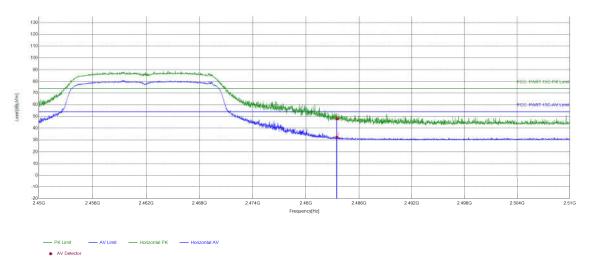
Report No.: EED32P81719302

Page 32 of 42

Mode:	802.11 g Transmitting	Channel:	2412MHz
Remark:			

Test Graph

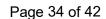
Suspected List Factor Limit Freq. Reading Level Margin [dB] NO Result **Polarity** Remark [MHz] [dBµV] $[dB\mu V/m]$ [dBµV/m] [dB] 2390 13.75 36.91 50.66 74.00 23.34 **PASS** Vertical PΚ 1 2 2390 13.75 24.08 37.83 54.00 16.17 **PASS** Vertical ΑV



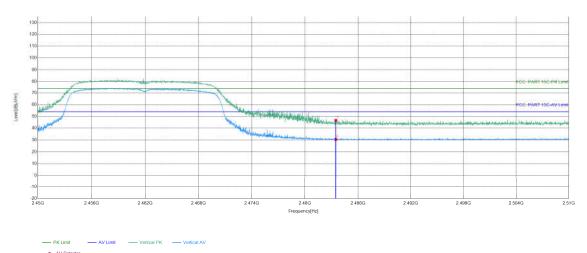
Report No.: EED32P81719302

Page 33 of 42

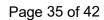
Mode:	802.11 g Transmitting	Channel:	2462MHz
Remark:			



	Suspected List											
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	2483.5	6.57	41.44	48.01	74.00	25.99	PASS	Horizontal	PK		
	2	2483.5	6.57	25.76	32.33	54.00	21.67	PASS	Horizontal	AV		



Mode:	802.11 g Transmitting	Channel:	2462MHz
Remark:			

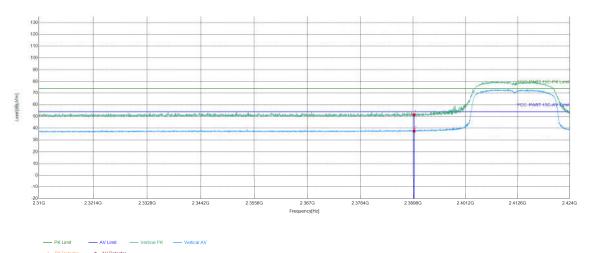


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2483.5	6.57	40.09	46.66	74.00	27.34	PASS	Vertical	PK
	2	2483.5	6.57	23.96	30.53	54.00	23.47	PASS	Vertical	AV



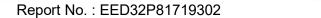
Mode:	802.11 n(HT20) Transmitting	Channel:	2412MHz
Remark:			

	Suspecte	d List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	13.75	37.23	50.98	74.00	23.02	PASS	Horizontal	PK
	2	2390	13.75	24.43	38.18	54.00	15.82	PASS	Horizontal	AV

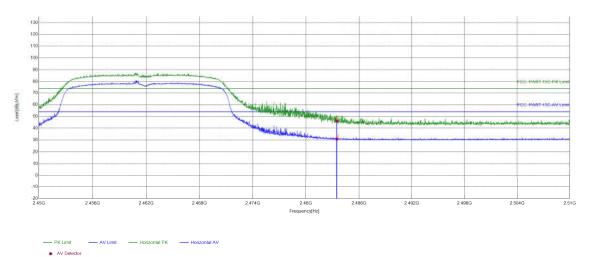


Report No.: EED32P81719302

Page	36	of	42

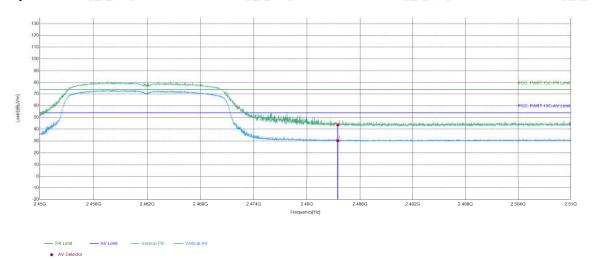

Mode:	802.11 n(HT20) Transmitting	Channel:	2412MHz
Remark:	242		

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	13.75	37.70	51.45	74.00	22.55	PASS	Vertical	PK
	2	2390	13.75	23.85	37.60	54.00	16.40	PASS	Vertical	AV



Mode:	802.11 n(HT20) Transmitting	Channel:	2462MHz
Remark:	745		

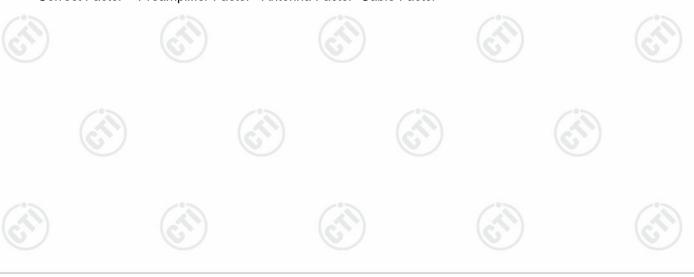
	Suspected List									
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
S	1	2483.5	6.57	39.59	46.16	74.00	27.84	PASS	Horizontal	PK
	2	2483.5	6.57	24.29	30.86	54.00	23.14	PASS	Horizontal	AV



Page 38 of 42 Report No.: EED32P81719302

Mode:	802.11 n(HT20) Transmitting	Channel:	2462MHz
Remark:	540		

Test Graph


	Suspected List									
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	37.18	43.75	74.00	30.25	PASS	Vertical	PK
	2	2483.5	6.57	23.76	30.33	54.00	23.67	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

8 Appendix 2.4G WIFI

Refer to Appendix: 2.4G WIFI of EED32P81719302

