

Report No.: EED32O81503006 Page 1 of 57

TEST REPORT

Product : New Energy Vehicle Integrated

Detection Tool

: SmartSafe Trade mark

: iSmartEV P03 Model/Type reference

: N/A **Serial Number**

Report Number : EED32O81503006

FCC ID : 2AYANEVP03 **Date of Issue** : Nov. 16, 2022

47 CFR Part 15 Subpart E **Test Standards**

Test result **PASS**

Prepared for:

SHENZHEN SMARTSAFE TECH CO., LTD. 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark. che

Reviewed by:

Date:

Tom Chen

Nov. 16, 2022

Aaron Ma

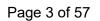
Mark Chen

avon Ma

Check No.: 2418220922

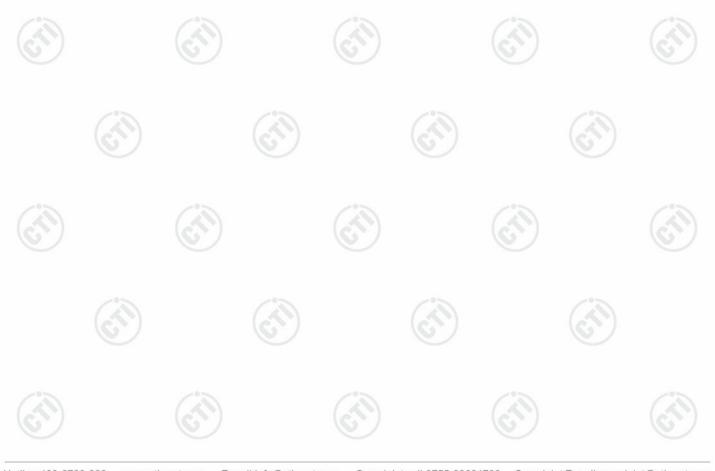
2 Content

1 COVER PAGE	•••••	•••••	
2 CONTENT			,
3 VERSION			3
4 TEST SUMMARY			4
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION	TOMER		
6 EQUIPMENT LIST			
7 RADIO TECHNICAL REQUIREMENTS SPECIFI	CATION		12
7.1 ANTENNA REQUIREMENT	ED BANDWIDTH		
8 APPENDIX A			5
PHOTOGRAPHS OF TEST SETUP			54
PHOTOGRAPHS OF EUT CONSTRUCTIONAL D	ETAILS		5′



3 Version

Version No.	Date	Description		
00	00 Nov. 16, 2022		2 Original	
(,		(4)		(31)


Report No. : EED32O81503006 Page 4 of 57

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 233		/ /3/

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Applicant:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Manufacturer:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Factory :	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Factory :	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

5.2 General Description of EUT

Product Name:	New Energy Vehicle Integrated Detection Tool				
Model No.:	iSmartEV P03				
Trade mark:	SmartSafe				
Product Type:	Fix Location				
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)				
Operating Frequency	U-NII-1:5150-5250MHz U-NII-3:5745-5825MHz				
Antenna Type:	FPC antenr	na			
Antenna Gain:	3.18dBi				
Power Supply:	Adapter:	model: CGSW65-120-5000II input: 100-240V~50/60Hz,1.5A output: 12.0V—5.0A 60.0W			
Test voltage:	AC 120V				
Sample Received Date:	Sep. 23, 2022				
Sample tested Date:	Sep. 23, 20	22 to Oct. 21, 2022			

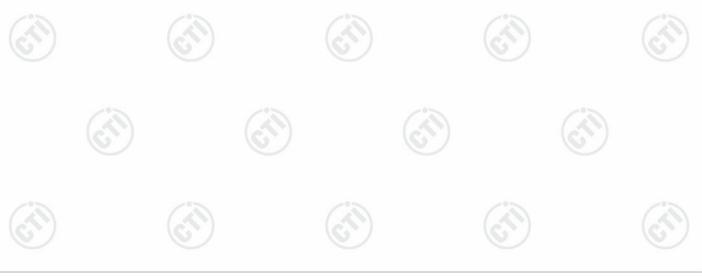
Page 6 of 57

Operation Frequency each of channel:

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1	·	U-NII-3
Channel Frequency(MHz)		Channel	Frequency(MHz)
36	36 5180		5745
40 5200		153	5765
44 5220		157	5785
48 5240		161	5805
. 60		165	5825

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


U-NII-1		U-NII-3		
Channel Frequency(MHz)		Channel	annel Frequency(MHz	
38 5190		151	5755	
46 5230		159	5795	

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3	
Channel Frequency(MHz)		Channel Frequency(MHz		
42	5210	155	5775	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32O81503006 Page 7 of 57

5.3 Test Configuration

EUT Test Software Settings	:	
Software:	SecureCRT	
EUT Power Grade:	Class2 (Power level is selected)	built-in set parameters and cannot be changed and
Use test software to set the lot transmitting of the EUT.	west frequency, the middle	e frequency and the highest frequency keep
Test Mode:		
the EUT in transmitting opera	tion, which was shown in t	operation. All the test modes were carried out with his test report and defined as follows: found the follow list which it
Mode		Data rate
802.11	a	6 Mbps
802.11n(H	T20)	MCS0
802.11n(H	T40)	MCS0
802.11ac(V	HT20)	MCS0
802.11ac(V	HT40)	MCS0
802.11ac(V	HT80)	MCS0
802.11ac(VI	HT160)	MCS0

5.4 Test Environment

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	-0-		105	
Conducted Emissions:					
Temperature:	22~25.0 °C			6	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Humidity:	50~55 % RH		(6,2)		(6,)
Atmospheric Pressure:	1010mbar				
	NT (Normal Temperature)		22~25.0 °C		
Temperature:	LT (Low Temperature)	/°	-10 °C	/°>	
	HT (High Temperature)	(6.72)	50.0 °C	(6.5)	
	NV (Normal Voltage)		AC 120V		
Working Voltage of the EUT:	LV (Low Voltage)		AC 100V		
	HV (High Voltage)		AC 240V		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32O81503006 Page 8 of 57

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

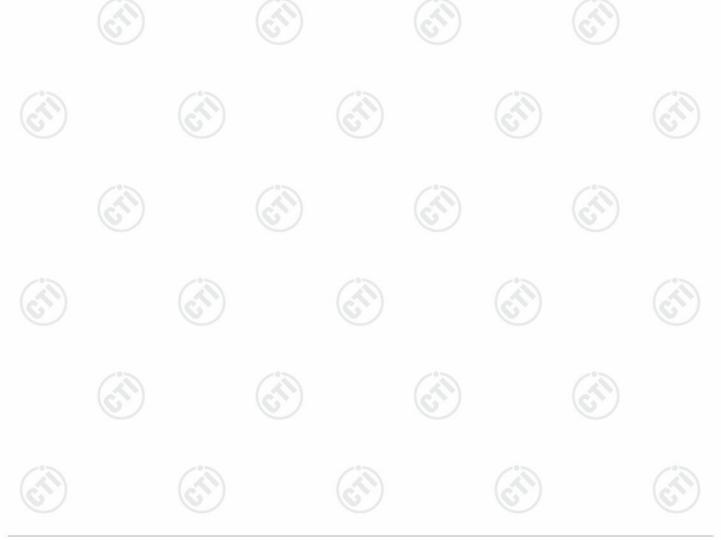
No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
	NF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
2	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Natiated Spurious emission test	4.8dB (1GHz-18GHz)
	(c))	3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32O81503006 Page 9 of 57

6 Equipment List

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022	
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022	
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022	
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022	
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518			

Conducted disturbance Test								
Equipment	Manufacturer	Manufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023			
Temperature/ Humidity Indicator	Defu	TH128	1	(3,7)	(61)			
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023			
Barometer	changchun	DYM3	1188					



3M Semi-anechoic Chamber (2)- Radiated disturbance Test								
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date			
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025			
Receiver	R&S	ESCI7	100938-003	10/14/2021 09/28/2022	10/13/2022 09/27/2023			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023			
Multi device Controller	maturo	NCD/070/10711112	(A)	(3	(a			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024			
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023			

Page 10 of 57

Page 11 of 57

1 221		3/1/	/ ////	12	1.1		
3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		-		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023		
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023		
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024		
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024		
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023		
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023		
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022		
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023		
Fully Anechoic Chamber	TDK	FAC-3	(C.)	01-09-2021	01-08-2024		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001				
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	<u></u>	760		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	<u>(6)</u>		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001				
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	<i></i>		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	_ @	/		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001				
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		760		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>			

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna is 3.18dBi

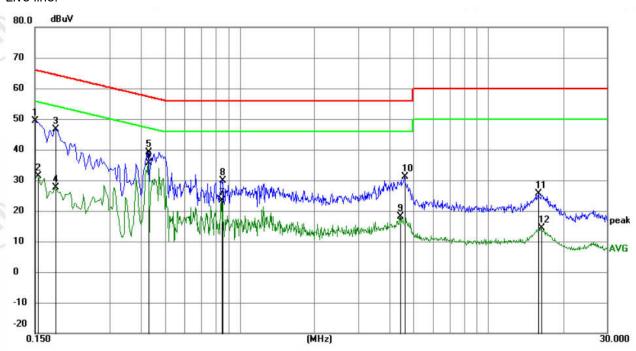
Report No. : EED32O81503006 Page 13 of 57

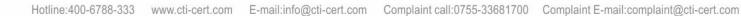
7.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Rang	ge: 150kHz to 30MHz	150kHz to 30MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	Fraguesia van de (MIII-)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarith	m of the frequency.	<u>'</u>				
Test Setup:	Shielding Room EUT AC Mains LISN1 1) The mains terminal disture	Ground Reference Plane					
rest Procedure:	impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the 3) The tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference we the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bor mounted on top of the ground regreence plane.	It to AC power source Network) which provide cables of all other SN 2, which was bonders the LISN 1 for the was used to connect rating of the LISN was aced upon a non-metal and for floor-standing a ground reference plane ith a vertical ground reference plane was bonded N 1 was placed 0.8 m and to a ground reference plane. It LISN 1 and the EUT. It was at least 0.8 m froum emission, the relations to the source plane was bonded to a ground reference plane. It was at least 0.8 m froum emission, the relations	e through a LISN 1 (Line es a 50Ω/50μH + 5Ω linear units of the EUT were ed to the ground reference e unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the arrangement, the EUT was ference plane. The rear of und reference plane. The to the horizontal ground a from the boundary of the eference plane for LISNs This distance was between All other units of the EUT om the LISN 2. Eive positions of equipment				

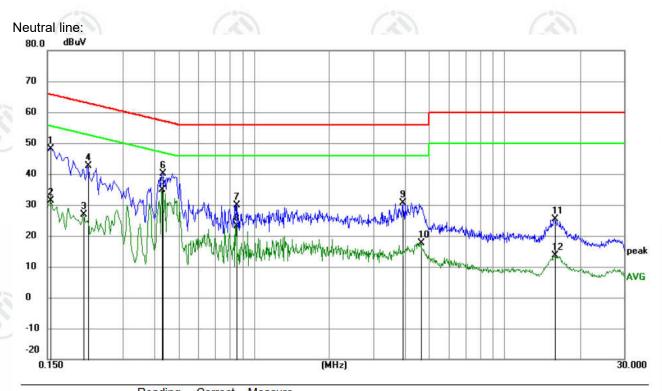
Report No. : EED32O81503006 Page 14 of 57

	ANSI C63.10: 2013 on conducted measurement.
Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass




Measurement Data

Live line:


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

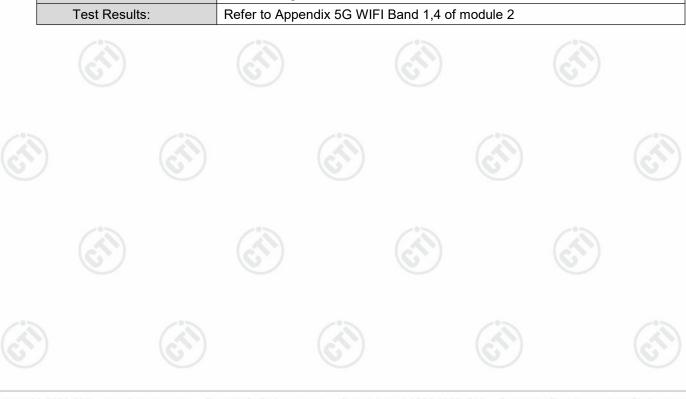
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1545	38.32	9.87	48.19	65.75	-17.56	QP		
2		0.1545	21.48	9.87	31.35	55.75	-24.40	AVG		
3		0.2085	17.07	9.89	26.96	53.26	-26.30	AVG		
4		0.2175	32.85	9.90	42.75	62.91	-20.16	QP		
5	*	0.4290	24.98	9.96	34.94	47.27	-12.33	AVG		
6		0.4335	30.13	9.96	40.09	57.19	-17.10	QP		
7		0.8520	20.15	9.85	30.00	56.00	-26.00	QP		
8		0.8520	13.37	9.85	23.22	46.00	-22.78	AVG		
9		3.9300	20.87	9.78	30.65	56.00	-25.35	QP		
10		4.6410	7.88	9.78	17.66	46.00	-28.34	AVG		
11		15.8415	15.52	9.94	25.46	60.00	-34.54	QP		
12		15.9495	3.79	9.94	13.73	50.00	-36.27	AVG		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

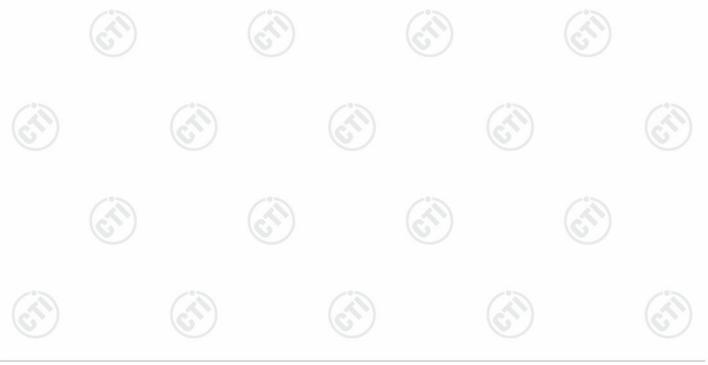
7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C S	ection 15.407 (a)		
Test Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Rules	v02r01 Section
Test Setup:	6			6
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test System Instrument	
Test Procedure:	General UNII Test 2. The RF output of attenuator. The part	Procedures New FEUT was conne	ent Procedure of KDB78 Rules v02r01 Section E, cted to the power meter ensated to the results fo	3, a by RF cable and
	continuously.		g and enable the EUT tra	ansmit
Limit:	Set to the maxim continuously. Measure the continuously.		g and enable the EUT tra	ansmit
Limit:	Set to the maxim continuously. Measure the continuously.		g and enable the EUT tra	ansmit
Limit:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band	ducted output po	g and enable the EUT tra	ansmit
Limit:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band (MHz)	ducted output po	g and enable the EUT tra	ansmit
Limit:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band (MHz)	Limit ≤1W(30dBm) fo ≤250mW(24dB	g and enable the EUT tra	ansmit Its in the test
Limit:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band (MHz) 5150-5250	Limit ≤1W(30dBm) fo ≤250mW(24dBd) ≤250mW(24dBd)	g and enable the EUT tra wer and record the resul or master device m) for client device	ansmit Its in the test dBm+10logB*
Limit:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band (MHz) 5150-5250 5250-5350	Limit ≤1W(30dBm) fo ≤250mW(24dBd) ≤250mW(24dBd)	g and enable the EUT tra wer and record the resul or master device m) for client device or 11	ansmit Its in the test dBm+10logB*
Limit:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band (MHz) 5150-5250 5250-5350 5470-5725	Limit ≤1W(30dBm) fo ≤250mW(24dBo ≤250mW(24dBo ≤250mW(24dBo ≤1W(30dBm) * Where B is the The maximum of measured over	g and enable the EUT transver and record the result or master device m) for client device or 11 m) for client device or 11 e 26dB emission bandwit conducted output power any interval of continuountation calibrated in terms	dBm+10logB* dBm+10logB* dth in MHz must be us transmission
Limit: Test Mode:	3. Set to the maxim continuously. 4. Measure the conreport. Frequency band (MHz) 5150-5250 5250-5350 5470-5725 5725-5850	Limit ≤1W(30dBm) for ≤250mW(24dBooks) ≤250mW(24dBooks) ≤250mW(24dBooks) ≤1W(30dBm) * Where B is the the maximum of measured over using instrumer equivalent voltage.	g and enable the EUT transver and record the result or master device m) for client device or 11 m) for client device or 11 e 26dB emission bandwit conducted output power any interval of continuountation calibrated in terms	dBm+10logB* dBm+10logB* dth in MHz must be us transmission



7.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Computer Power Pools System Power Pool TEMPERATURE CASNET EUT Control Control Power Pool Attenuator TEMPERATURE CASNET RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 2



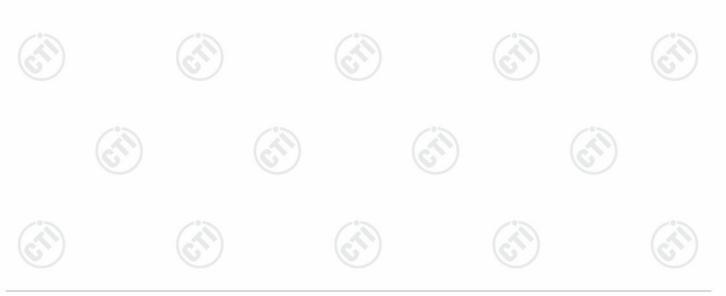
7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	
	RF test System Flower Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 2



7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)			
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules	v02r01 Section F		
Test Setup:	(é	(520)	(64)			
	Control Computer Power Supply TEMPERATURE CABI	Attenuator	RF test - System Instrument			
	1	J				
	Remark: Offset=Ca					
Test Procedure: Limit:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweeps	RBW = 510 kHz/1 MS. s to continue unti	receiver span to view th MHz, VBW ≥ 3*RBW, S I the trace stabilizes. determine the maximum a	weep time =		
Cirriit.	Frequency band Limit (MHz)					
	5150-5250	≤17dBm in 1MHz for master device				
	(6)	≤11dBm in 1Ml	Hz for client device	(67)		
	5250-5350	≤11dBm in 1Ml	Iz for client device			
	5470-5725	≤11dBm in 1Ml	Hz for client device			
	5725-5850	≤30dBm in 500	kHz			
	Remark: The maximum power spectral density is measured a conducted emission by direct connection of a calibrated test instrument to the equipment under					
Test Mode:	Transmitting mode with modulation					
rest wode:	Transmitting mode	With modulation				



7.7 Frequency Stability

	47.050.0 (1	`					
Test Requirement:	47 CFR Part 15C Section 15.407 (g)					
Test Method:	ANSI C63.10: 2013	- Can	100				
Test Setup:	(5%)	(50)					
	Control Computer Power Supply Power Table	RF test - System Instrument					
	Remark: Offset=Cable loss+ attenua	ation factor					
Test Procedure:	1.The EUT was placed inside the er by nominal AC/DC voltage. 2. Turn the EUT on and couple its o 3. Turn the EUT off and set the char specified. d. Allow sufficient time (ap of the chamber to stabilize. 4. Repeat step 2 and 3 with the tem temperature. 5. The test chamber was allowed to of 30 minutes. The supply voltage w 115% and the frequency record.	nvironmental test chamber utput to a spectrum analyze mber to the highest tempe oproximately 30 min) for the perature chamber set to the stabilize at +20 degree C	zer. erature ne temperature he lowest for a minimum				
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
Test Mode:	Transmitting mode with modulation	(2)					
Test Results:	Refer to Appendix 5G WIFI Band 1,	4 of module 2	7				

Report No. : EED32O81503006 Page 22 of 57

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Secti	ion 1	5.209 and 1	5.407 (b)			
Test Method:	ANSI C63.10 2013			-01			-57
Test Site:	Measurement Distance	e: 3m	n (Semi-Anec	choic Chai	nbe	r)	(41)
Receiver Setup:	Frequency	7	Detector	RBV	٧	VBW	Remark
	0.009MHz-0.090MH	łz	Peak	10kH	lz 30kHz		Peak
	0.009MHz-0.090MH	lz	Average	10kH	Hz 30kHz		Average
	0.090MHz-0.110MH	lz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kH	Ηz	30kHz	Peak
	0.110MHz-0.490MH	łz	Average	10kH	Ηz	30kHz	Average
	0.490MHz -30MHz	<u>-</u>	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
	Above 1GHz		Peak	1MH	łz	3MHz	Peak
	Above 1G112		Peak	1MF	lz	10kHz	Average
Limit:	Frequency		ld strength	Limit (dBuV/m)	F	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	24	.00/F(kHz)	-		- (0)	300
			000/F(kHz)	-	-		30
	1.705MHz-30MHz		30	-		-	30
	30MHz-88MHz	10	100	40.0	Qu	asi-peak	3
	88MHz-216MHz	7	150	43.5	Qu	asi-peak	3
	216MHz-960MHz		200	46.0	Qu	asi-peak	3
	960MHz-1GHz		500	54.0	Qu	asi-peak	3
	Above 1GHz		500	54.0	Α	verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the base of the band edge, and from the band edge edge edge.	5.35 eratii eand ppera 7.725 eratii pe lin nd e and y to rom dBn li yying 0kHz	GHz band ng in the 5.25 shall not excepting in the 5.72 nited to a level of 15 5 MHz above n/MHz at the companies of the shown a CISPR z, 110-490kl	shall not shall not seed an e. 5.47-5.72 shall no 25-5.85 Grel of -27 ing linearlom 25 Million 25 Million 26 dBm/Million en belo band edg in the quasi-peadz and a	z bair.p. z bair	and: All em of -27 dE GHz band: aceed an oand: n/MHz at 7 10 dBm/M above or bat 5 MHz and band e ve table detector ender	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30

where:

• E is the field strength in V/m;

• d is the measurement distance in meters;

• EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

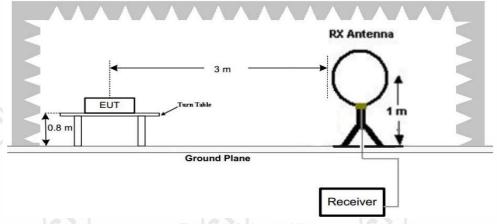


Figure 1. Below 30MHz

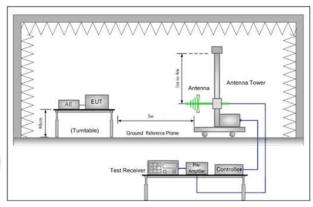


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

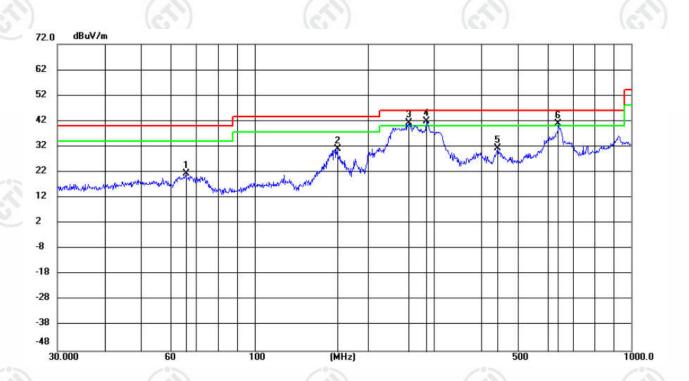
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No. : EED32O81503006 Page 24 of 57

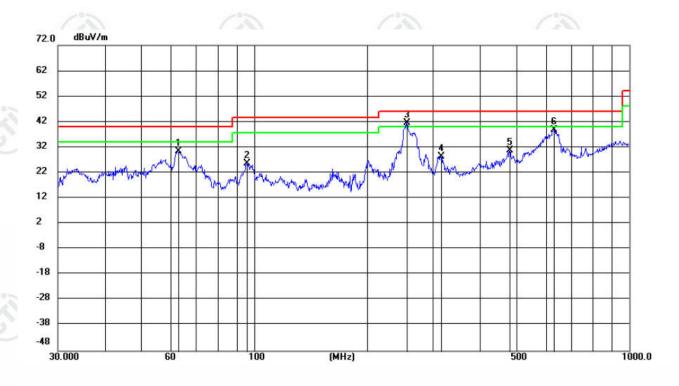
worst case. i. Repeat above procedures until all frequencies measured was complete.
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the
g. Test the EUT in the lowest channel, the middle channel and the highest channel
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		65.8030	8.68	12.73	21.41	40.00	-18.59	peak	100	4	
2		166.0680	20.61	10.48	31.09	43.50	-12.41	peak	100	326	
3	!	257.4221	26.06	15.15	41.21	46.00	-4.79	peak	100	162	
4	*	285.9777	25.55	16.30	41.85	46.00	-4.15	peak	100	182	
5		441.7425	12.02	19.31	31.33	46.00	-14.67	peak	100	316	
6	!	640.6110	18.18	22.84	41.02	46.00	-4.98	peak	100	101	



Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	62.6507	17.28	13.24	30.52	40.00	-9.48	peak	100	300	
	95.4270	13.20	12.60	25.80	43.50	-17.70	peak	100	71	
*	254.7284	26.49	15.06	41.55	46.00	-4.45	peak	100	39	
	314.3765	11.42	17.06	28.48	46.00	-17.52	peak	100	356	
	478.8456	10.60	20.22	30.82	46.00	-15.18	peak	100	196	
	629.4772	15.98	22.78	38.76	46.00	-7.24	peak	100	145	
	*	MHz 62.6507 95.4270	Mk. Freq. Level MHz dBuV 62.6507 17.28 95.4270 13.20 * 254.7284 26.49 314.3765 11.42 478.8456 10.60	Mk. Freq. Level Factor MHz dBuV dB 62.6507 17.28 13.24 95.4270 13.20 12.60 * 254.7284 26.49 15.06 314.3765 11.42 17.06 478.8456 10.60 20.22	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 62.6507 17.28 13.24 30.52 95.4270 13.20 12.60 25.80 * 254.7284 26.49 15.06 41.55 314.3765 11.42 17.06 28.48 478.8456 10.60 20.22 30.82	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 62.6507 17.28 13.24 30.52 40.00 95.4270 13.20 12.60 25.80 43.50 * 254.7284 26.49 15.06 41.55 46.00 314.3765 11.42 17.06 28.48 46.00 478.8456 10.60 20.22 30.82 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dBuV/m dB 62.6507 17.28 13.24 30.52 40.00 -9.48 95.4270 13.20 12.60 25.80 43.50 -17.70 * 254.7284 26.49 15.06 41.55 46.00 -4.45 314.3765 11.42 17.06 28.48 46.00 -17.52 478.8456 10.60 20.22 30.82 46.00 -15.18	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m<	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 62.6507 17.28 13.24 30.52 40.00 -9.48 peak 100 95.4270 13.20 12.60 25.80 43.50 -17.70 peak 100 * 254.7284 26.49 15.06 41.55 46.00 -4.45 peak 100 314.3765 11.42 17.06 28.48 46.00 -17.52 peak 100 478.8456 10.60 20.22 30.82 46.00 -15.18 peak 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 62.6507 17.28 13.24 30.52 40.00 -9.48 peak 100 300 95.4270 13.20 12.60 25.80 43.50 -17.70 peak 100 71 * 254.7284 26.49 15.06 41.55 46.00 -4.45 peak 100 39 314.3765 11.42 17.06 28.48 46.00 -17.52 peak 100 356 478.8456 10.60 20.22 30.82 46.00 -15.18 peak 100 196

Report No.: EED32O81503006 Page 27 of 57

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 n(HT20) mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

Mode	:	80	02.11 n(HT2	0) Transmitti	ing	Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1478.5479	1.55	39.51	41.06	68.20	27.14	PASS	Horizontal	PK
2	2420.7921	4.54	39.09	43.63	68.20	24.57	PASS	Horizontal	PK
3	3229.3729	7.09	37.87	44.96	68.20	23.24	PASS	Horizontal	PK
4	8908.7954	-9.20	52.20	43.00	68.20	25.20	PASS	Horizontal	PK
5	12457.2979	-4.16	51.87	47.71	68.20	20.49	PASS	Horizontal	PK
6	16607.2804	1.37	51.22	52.59	68.20	15.61	PASS	Horizontal	PK
7	1513.2013	1.69	42.57	44.26	68.20	23.94	PASS	Vertical	PK
8	2474.6975	4.98	44.44	49.42	68.20	18.78	PASS	Vertical	PK
9	3419.1419	7.58	37.37	44.95	68.20	23.25	PASS	Vertical	PK
10	6906.5453	-11.97	58.15	46.18	68.20	22.02	PASS	Vertical	PK
11	9190.5595	-7.81	53.30	45.49	68.20	22.71	PASS	Vertical	PK
12	14433.6717	0.15	50.20	50.35	68.20	17.85	PASS	Vertical	PK

Mode	:	80	02.11 n(HT2	0) Transmitti	ng	Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1425.7426	1.48	39.86	41.34	68.20	26.86	PASS	Horizontal	PK
2	2072.0572	4.93	38.69	43.62	68.20	24.58	PASS	Horizontal	PK
3	2810.7811	5.93	38.77	44.70	68.20	23.50	PASS	Horizontal	PK
4	8274.5387	-10.98	52.97	41.99	68.20	26.21	PASS	Horizontal	PK
5	10300.9400	-6.25	51.64	45.39	68.20	22.81	PASS	Horizontal	PK
6	12453.8477	-4.15	51.72	47.57	68.20	20.63	PASS	Horizontal	PK
7	1426.2926	1.48	40.22	41.70	68.20	26.50	PASS	Vertical	PK
8	2425.1925	4.57	38.91	43.48	68.20	24.72	PASS	Vertical	PK
9	3440.5941	7.59	37.26	44.85	68.20	23.35	PASS	Vertical	PK
10	6932.9967	-11.88	58.49	46.61	68.20	21.59	PASS	Vertical	PK
11	11283.0892	-6.43	53.43	47.00	68.20	21.20	PASS	Vertical	PK
12	14433.0967	0.16	50.03	50.19	68.20	18.01	PASS	Vertical	PK

Page 28 of 57

М	lode:		80)2.11 n(HT2	0) Transmitti	na	Channe	el:	5240MHz	
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1497.2497	1.58	44.60	46.18	68.20	22.02	PASS	Horizontal	PK
	2	2425.1925	4.57	42.32	46.89	68.20	21.31	PASS	Horizontal	PK
	3	3287.6788	7.34	38.27	45.61	68.20	22.59	PASS	Horizontal	PK
	4	6986.4743	-11.71	54.61	42.90	68.20	25.30	PASS	Horizontal	PK
	5	9794.9147	-7.19	52.14	44.95	68.20	23.25	PASS	Horizontal	PK
	6	12433.1467	-4.10	52.54	48.44	68.20	19.76	PASS	Horizontal	PK
	7	1274.4774	1.07	40.32	41.39	68.20	26.81	PASS	Vertical	PK
	8	2429.5930	4.61	39.78	44.39	68.20	23.81	PASS	Vertical	PK
	9	3533.0033	7.42	37.53	44.95	68.20	23.25	PASS	Vertical	PK
. 1	10	6986.4743	-11.71	58.36	46.65	68.20	21.55	PASS	Vertical	PK
1	11	11188.2094	-5.80	52.73	46.93	68.20	21.27	PASS	Vertical	PK
1	12	14415.2708	0.42	49.11	49.53	68.20	18.67	PASS	Vertical	PK

	Mode	:	80)2.11 n(HT2	0) Transmitti	ng	Channe	el:	5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1283.8284	1.55	40.31	41.86	68.20	26.34	PASS	Horizontal	PK
	2	2339.9340	4.71	39.01	43.72	68.20	24.48	PASS	Horizontal	PK
٥	3	3794.8295	9.31	36.68	45.99	68.20	22.21	PASS	Horizontal	PK
9	4	7660.0440	-10.93	55.97	45.04	68.20	23.16	PASS	Horizontal	PK
2	5	11490.5660	-5.84	68.51	62.67	68.20	5.53	PASS	Horizontal	PK
	6	11492.8662	-5.83	55.72	49.89	54.00	4.11	PASS	Horizontal	AV
	7	14989.8660	-0.95	51.60	50.65	68.20	17.55	PASS	Horizontal	PK
Ī	8	1427.9428	1.85	40.31	42.16	68.20	26.04	PASS	Vertical	PK
Ī	9	2329.4829	4.68	39.51	44.19	68.20	24.01	PASS	Vertical	PK
Ī	10	3850.3850	9.54	36.84	46.38	68.20	21.82	PASS	Vertical	PK
Ī	11	7660.0440	-10.93	57.31	46.38	68.20	21.82	PASS	Vertical	PK
	12	11495.9331	-5.82	58.06	52.24	68.20	15.96	PASS	Vertical	PK
°	12	15575.6384	0.42	50.08	50.50	68.20	17.70	PASS	Vertical	PK

_		-		
Page	29	O†	5/	

_									100	
	Mode	:	80)2.11 n(HT2	0) Transmitti	ng	Channe	el:	5785MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1655.6656	3.20	39.05	42.25	68.20	25.95	PASS	Horizontal	PK
	2	2959.2959	7.09	38.49	45.58	68.20	22.62	PASS	Horizontal	PK
	3	3989.5490	10.31	36.43	46.74	68.20	21.46	PASS	Horizontal	PK
Ī	4	7713.7142	-11.21	56.24	45.03	68.20	23.17	PASS	Horizontal	PK
Ī	5	11570.3047	-6.28	54.90	48.62	54.00	5.38	PASS	Horizontal	AV
	6	11580.2720	-6.35	65.61	59.26	68.20	8.94	PASS	Horizontal	PK
	7	15912.2275	0.09	51.62	51.71	68.20	16.49	PASS	Horizontal	PK
Ī	8	1979.6480	5.01	38.31	43.32	68.20	24.88	PASS	Vertical	PK
Ī	9	3250.2750	8.07	38.60	46.67	68.20	21.53	PASS	Vertical	PK
	10	4952.6953	13.59	35.89	49.48	68.20	18.72	PASS	Vertical	PK
1	11	7712.9475	-11.21	57.08	45.87	68.20	22.33	PASS	Vertical	PK
9	12	11574.9050	-6.31	55.41	49.10	68.20	19.10	PASS	Vertical	PK
Ī	13	15563.3709	0.43	50.46	50.89	68.20	17.31	PASS	Vertical	PK

	Mode	:	8	02.11 n(HT2	0) Transmitti	ng	Channe	el:	5825MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1372.9373	1.77	39.79	41.56	68.20	26.64	PASS	Horizontal	PK
0	2	2458.1958	5.20	41.28	46.48	68.20	21.72	PASS	Horizontal	PK
4	3	4031.9032	10.40	35.98	46.38	68.20	21.82	PASS	Horizontal	PK
2	4	7766.6178	-11.29	55.62	44.33	68.20	23.87	PASS	Horizontal	PK
	5	11648.5099	-6.14	68.47	62.33	68.20	5.87	PASS	Horizontal	PK
	6	11651.5768	-6.12	54.71	48.59	54.00	5.41	PASS	Horizontal	AV
	7	14821.9548	-0.31	50.24	49.93	68.20	18.27	PASS	Horizontal	PK
	8	1436.7437	1.86	39.80	41.66	68.20	26.54	PASS	Vertical	PK
	9	2563.2563	5.60	39.01	44.61	68.20	23.59	PASS	Vertical	PK
	10	3524.2024	8.20	37.47	45.67	68.20	22.53	PASS	Vertical	PK
	11	7766.6178	-11.29	56.68	45.39	68.20	22.81	PASS	Vertical	PK
2	12	11647.7432	-6.15	57.77	51.62	68.20	16.58	PASS	Vertical	PK
5	13	15101.0401	0.15	49.18	49.33	68.20	18.87	PASS	Vertical	PK

Page 30 of 57

Mode:)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1392.7393	1.42	40.30	41.72	68.20	26.48	PASS	Horizontal	PK
2	2431.2431	4.62	38.89	43.51	68.20	24.69	PASS	Horizontal	PK
3	3285.4785	7.33	38.23	45.56	68.20	22.64	PASS	Horizontal	PK
4	9226.2113	-7.68	52.05	44.37	68.20	23.83	PASS	Horizontal	PK
5	11960.4730	-5.07	52.75	47.68	68.20	20.52	PASS	Horizontal	PK
6	15550.9525	0.43	49.78	50.21	68.20	17.99	PASS	Horizontal	PK
7	1577.5578	2.25	39.97	42.22	68.20	25.98	PASS	Vertical	PK
8	2564.3564	5.15	39.18	44.33	68.20	23.87	PASS	Vertical	PK
9	4246.4246	10.50	35.69	46.19	68.20	22.01	PASS	Vertical	PK
10	6919.7710	-11.93	59.15	47.22	68.20	20.98	PASS	Vertical	PK
11	10087.6044	-6.85	52.23	45.38	68.20	22.82	PASS	Vertical	PK
12	13771.8136	-2.24	51.02	48.78	68.20	19.42	PASS	Vertical	PK

Mod	e:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	5230MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1568.2068	2.17	39.18	41.35	68.20	26.85	PASS	Horizontal	PK		
2	2050.0550	4.84	38.13	42.97	68.20	25.23	PASS	Horizontal	PK		
3	3204.6205	6.99	38.78	45.77	68.20	22.43	PASS	Horizontal	PK		
4	6973.2487	-11.76	56.39	44.63	68.20	23.57	PASS	Horizontal	PK		
5	9812.7406	-7.15	51.99	44.84	68.20	23.36	PASS	Horizontal	PK		
6	12449.8225	-4.14	53.01	48.87	68.20	19.33	PASS	Horizontal	PK		
7	1513.7514	1.70	41.32	43.02	68.20	25.18	PASS	Vertical	PK		
8	2104.5105	5.00	38.89	43.89	68.20	24.31	PASS	Vertical	PK		
9	3197.4697	6.97	39.23	46.20	68.20	22.00	PASS	Vertical	PK		
10	6973.2487	-11.76	58.83	47.07	68.20	21.13	PASS	Vertical	PK		
11	10090.4795	-6.84	52.15	45.31	68.20	22.89	PASS	Vertical	PK		
12	12501.5751	-4.28	53.67	49.39	68.20	18.81	PASS	Vertical	PK		

Report No. : EED32O81503006 Page 31 of 57

	20 / 62/						- 1			
Mode	e:	80	2.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1228.2728	1.24	40.88	42.12	68.20	26.08	PASS	Horizontal	PK	
2	2040.7041	5.30	38.56	43.86	68.20	24.34	PASS	Horizontal	PK	
3	3810.2310	9.40	37.35	46.75	68.20	21.45	PASS	Horizontal	PK	
4	7673.0782	-11.01	55.30	44.29	68.20	23.91	PASS	Horizontal	PK	
5	11505.1337	-5.83	64.05	58.22	68.20	9.98	PASS	Horizontal	PK	
6	11505.1337	-5.83	52.35	46.52	54.00	7.48	PASS	Horizontal	AV	
7	14387.9925	0.51	49.79	50.30	68.20	17.90	PASS	Horizontal	PK	
8	1611.6612	2.80	39.97	42.77	68.20	25.43	PASS	Vertical	PK	
9	2588.5589	5.67	39.58	45.25	68.20	22.95	PASS	Vertical	PK	
10	3951.0451	10.05	36.49	46.54	68.20	21.66	PASS	Vertical	PK	
11	7673.0782	-11.01	57.88	46.87	68.20	21.33	PASS	Vertical	PK	
12	11508.9673	-5.86	53.57	47.71	68.20	20.49	PASS	Vertical	PK	
13	14427.8619	0.23	49.68	49.91	68.20	18.29	PASS	Vertical	PK	

М	Mode:			2.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz		
Ν	0	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1448.2948	1.87	40.05	41.92	68.20	26.28	PASS	Horizontal	PK	
2	2	2419.6920	4.97	39.43	44.40	68.20	23.80	PASS	Horizontal	PK	
;	3	3343.2343	8.25	37.92	46.17	68.20	22.03	PASS	Horizontal	PK	
4	4	7726.7485	-11.23	55.93	44.70	68.20	23.50	PASS	Horizontal	PK	
	5	11586.4058	-6.39	66.43	60.04	68.20	8.16	PASS	Horizontal	PK	
(6	11592.5395	-6.43	53.74	47.31	54.00	6.69	PASS	Horizontal	AV	
	7	16504.9003	0.45	52.00	52.45	68.20	15.75	PASS	Horizontal	PK	
8	8	1085.8086	1.12	41.88	43.00	68.20	25.20	PASS	Vertical	PK	
(9	2941.1441	7.08	38.76	45.84	68.20	22.36	PASS	Vertical	PK	
1	0	4405.9406	12.32	35.79	48.11	68.20	20.09	PASS	Vertical	PK	
1	1	7726.7485	-11.23	57.26	46.03	68.20	22.17	PASS	Vertical	PK	
1	2	11591.0061	-6.42	55.68	49.26	68.20	18.94	PASS	Vertical	PK	
1	3	15508.1672	0.46	50.12	50.58	68.20	17.62	PASS	Vertical	PK	

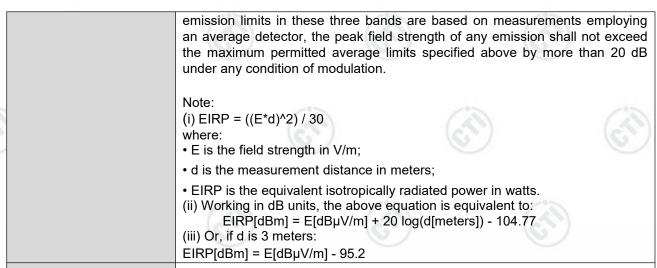
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No. : EED32O81503006 Page 32 of 57

7.9 Radiated Emission which fall in the restricted bands

Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)			
Test Method:	ANSI C63.10 2013	10		13			(1)
Test Site:	Measurement Distance	e: 3m	n (Semi-Aned	choic Char	nbe	r)	(6,7)
Receiver Setup:	Frequency	Detector	RBV	٧	VBW	Remark	
	0.009MHz-0.090MH	Peak	10kH	Ιz	30kHz	Peak	
	0.009MHz-0.090MH	łz	Average	10kH	Ιz	30kHz	Average
	0.090MHz-0.110MH	łz	Quasi-pea	k 10kF	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	łz	Peak	10kF	Ιz	30kHz	Peak
	0.110MHz-0.490MH	łz	Average	10kF	Ιz	30kHz	Average
	0.490MHz -30MHz	<u> </u>	Quasi-pea	k 10k⊦	Ιz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
	Above 1GHz		Peak	1MH	lz	3MHz	Peak
	Above 10112	Peak 1MHz		lz	10kHz	Average	
Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	009MHz-0.490MHz 240		-		-	300
	0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
	1.705MHz-30MHz		30	- /0		-	30
	30MHz-88MHz	("	100	40.0	Qu	asi-peak	3
	88MHz-216MHz		150	43.5	Qu	asi-peak	3
	216MHz-960MHz		200	46.0	Quasi-peak		3
	960MHz-1GHz		500	54.0	Quasi-peak		3
	Above 1GHz		500	54.0	Α	verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the beabove or belo	erational eration of the second of the secon	GHz band ng in the 5.25 shall not excepting in the 5.75 nited to a level of 15 5 MHz above h/MHz at the fimits shown	shall not 5-5.35 GH seed an e.i 5.47-5.72 shall no 25-5.85 Gl rel of -27 d ing linearl om 25 Ml 5.6 dBm/M re or belo band edg- in the a	z ba z ba i.r.p. 5 G t ex Hz b dBm Hz a Hz a W th e.	ceed an and: All em of -27 dB BHZ band: ceed an and: n/MHz at 7 10 dBm/Mabove or bat 5 MHz ane band e	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions e.i.r.p. of -27 hissio
	measurements emplo frequency bands 9-9						

Test Setup:

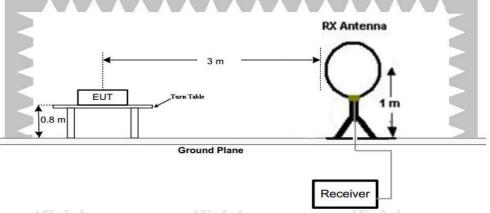
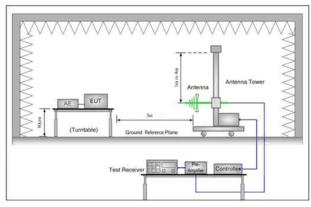



Figure 1. Below 30MHz

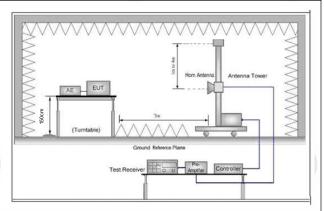


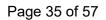
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

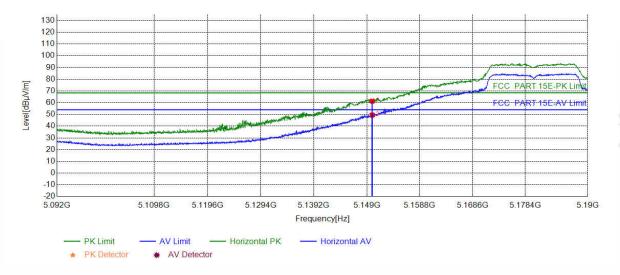
Test Procedure:

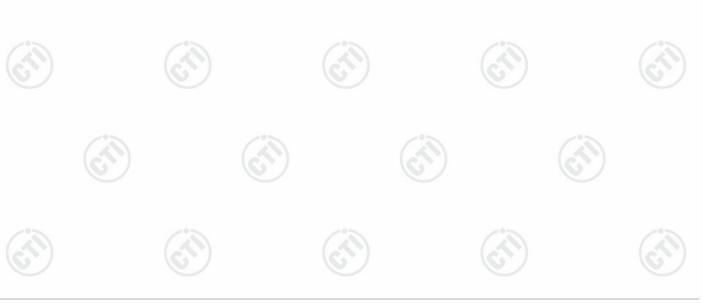
- j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.




Page 34 of 57 Report No.: EED32O81503006

	Note: For the radiated emission test above 1GHz:
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	p. Test the EUT in the lowest channel, the Highest channel
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

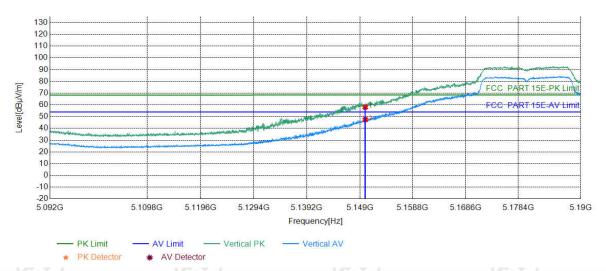



Test Data:

Mode:	802.11 n(HT20) Transmitting	Channel:	5180	
Remark:			(

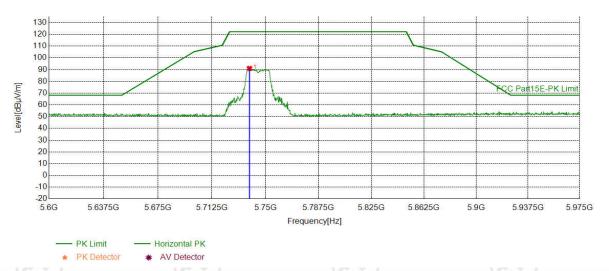
Test Graph

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	-15.08	76.45	61.37	68.44	7.07	PASS	Horizontal	PK
2	5150.0000	-15.08	64.56	49.48	54.00	4.52	PASS	Horizontal	AV



Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:		_0_	

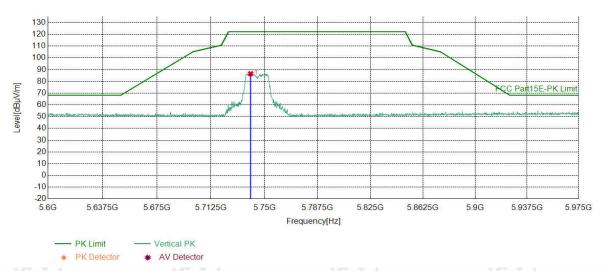
Test Graph


	Suspe	cted List								
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	-15.08	73.12	58.04	68.44	10.40	PASS	Vertical	PK
	2	5150.0000	-15.08	62.58	47.50	54.00	6.50	PASS	Vertical	AV



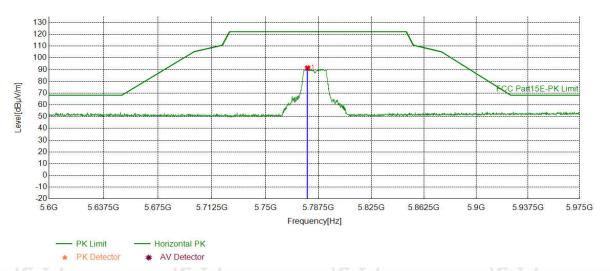
Page 37 of 57

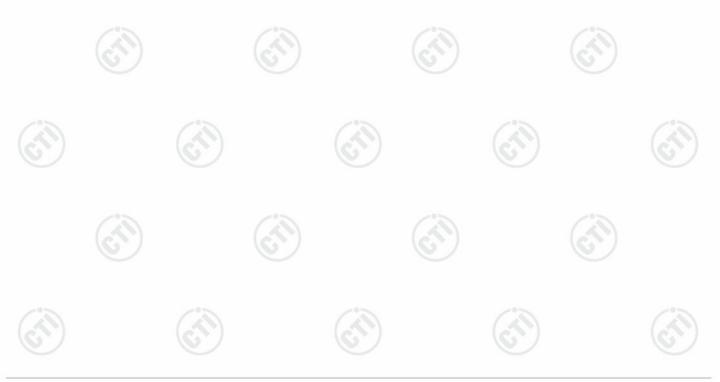
Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:		_0_	


Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5738.8194	13.84	77.19	91.03	122.20	31.17	PASS	Horizontal	PK			

Page 38 of 57

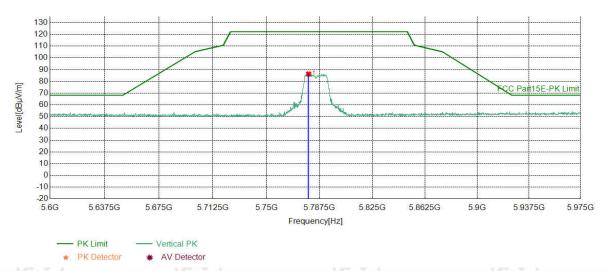
Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:		_0_	

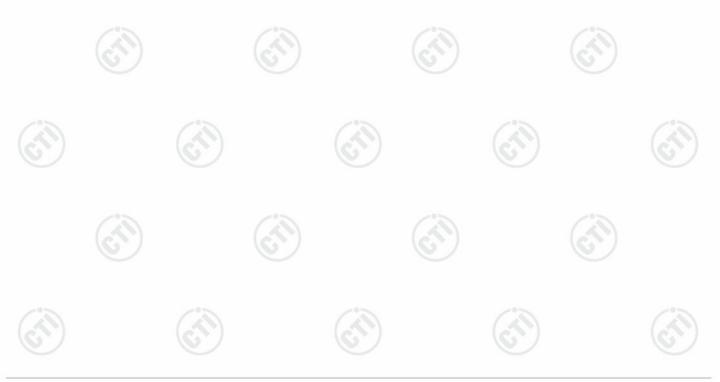

	Suspec	ted List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5740.3202	13.84	72.70	86.54	122.20	35.66	PASS	Vertical	PK



Page 39 of 57

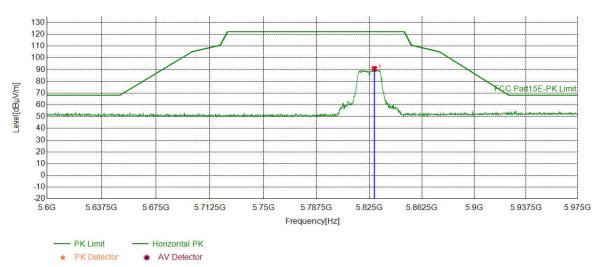
Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:		_0_	

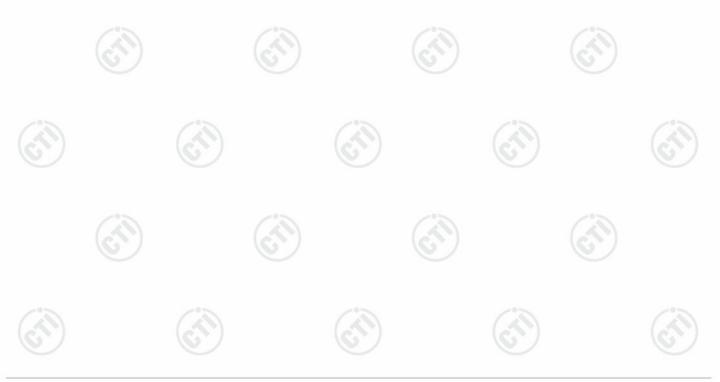

	Suspected List											
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5779.7149	13.91	77.40	91.31	122.20	30.89	PASS	Horizontal	PK		



Page 40 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:		_0_	

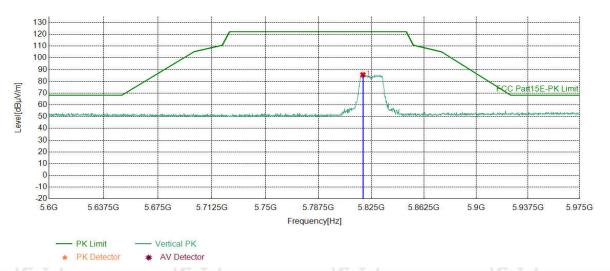

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5779.7149	13.91	72.38	86.29	122.20	35.91	PASS	Vertical	PK			

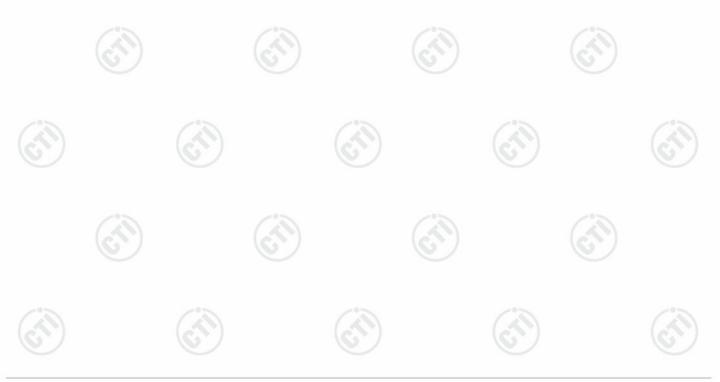


Page 41 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:		_0_	

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5828.4892	14.05	76.89	90.94	122.20	31.26	PASS	Horizontal	PK			



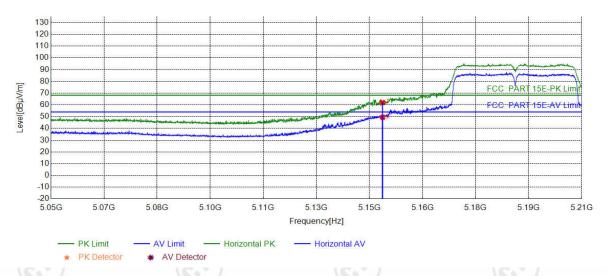


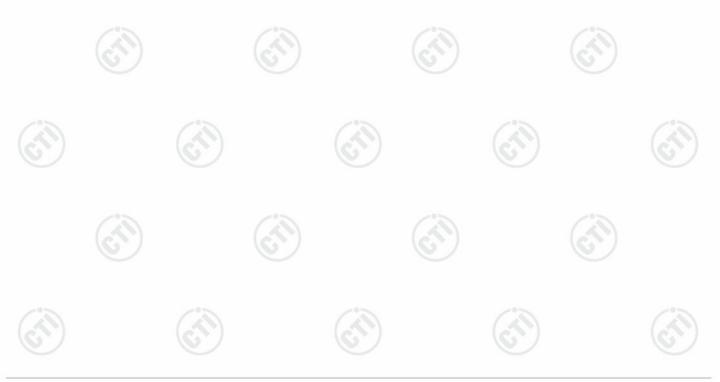
Page 42 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:		-0-	



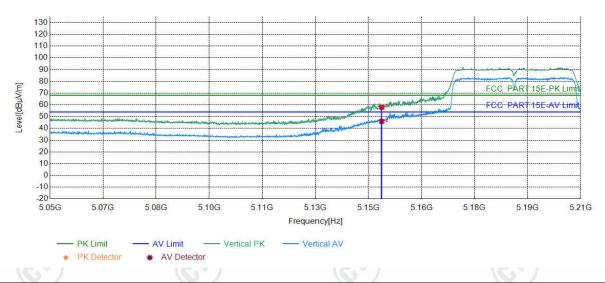
Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5818.9220	14.01	71.65	85.66	122.20	36.54	PASS	Vertical	PK			

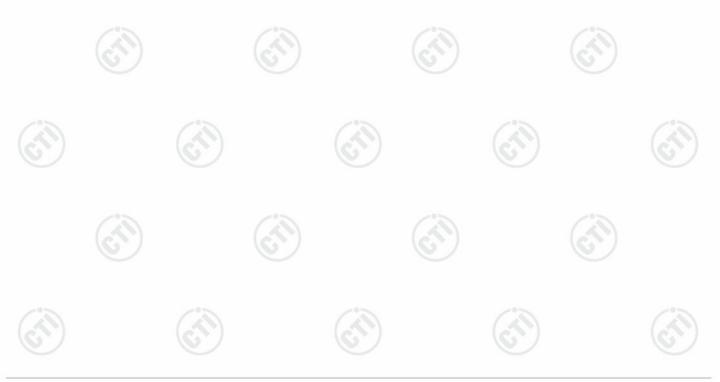




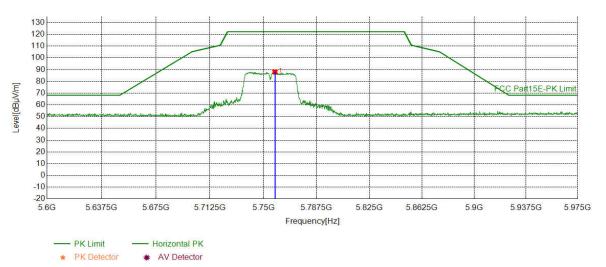
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:		-0-	

	Suspected List											
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
ò	1	5150.0000	12.36	49.65	62.01	68.20	6.19	PASS	Horizontal	PK		
-	2	5150.0000	12.36	37.16	49.52	54.00	4.48	PASS	Horizontal	AV		





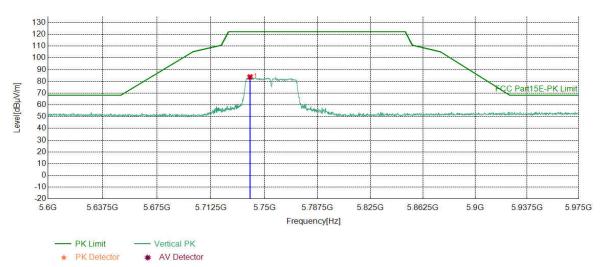
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:		-0-	


	Suspected List											
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5150.0000	12.36	45.68	58.04	68.20	10.16	PASS	Vertical	PK		
	2	5150.0000	12.36	33.62	45.98	54.00	8.02	PASS	Vertical	AV		

Page 45 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:		-0-	

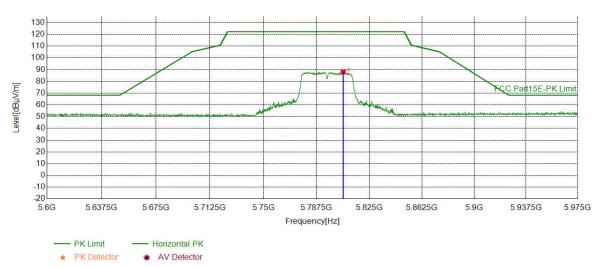
Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5758.1416	13.87	74.20	88.07	122.20	34.13	PASS	Horizontal	PK			



Page 46 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:			

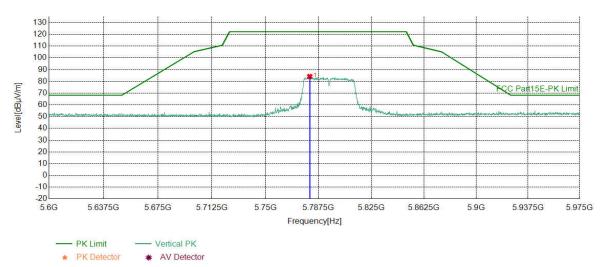
Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5739.9450	13.84	70.00	83.84	122.20	38.36	PASS	Vertical	PK			

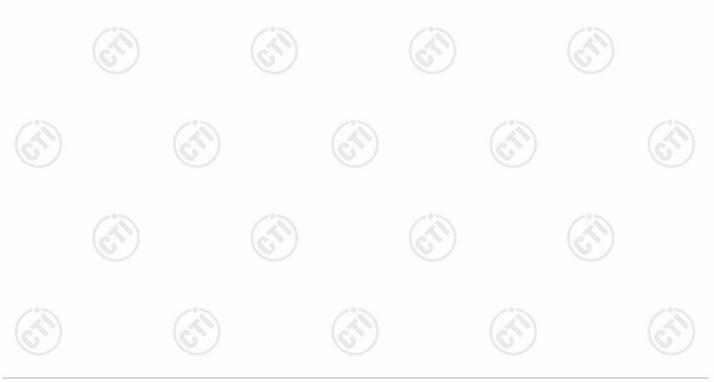




Page 47 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:		_0_	

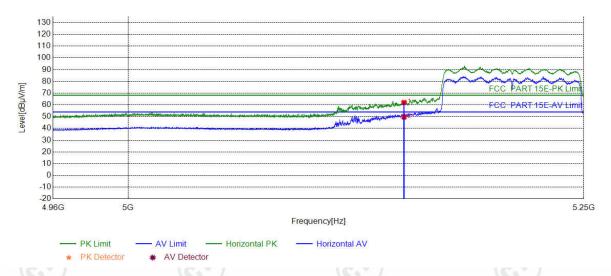

	Suspected List											
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5806.3532	13.96	74.18	88.14	122.20	34.06	PASS	Horizontal	PK		

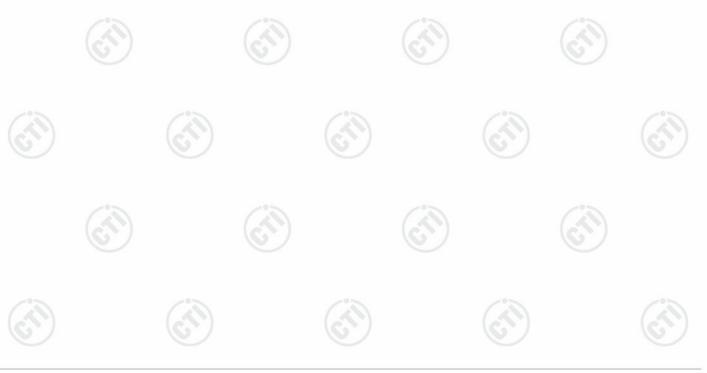


Page 48 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:		_0_	

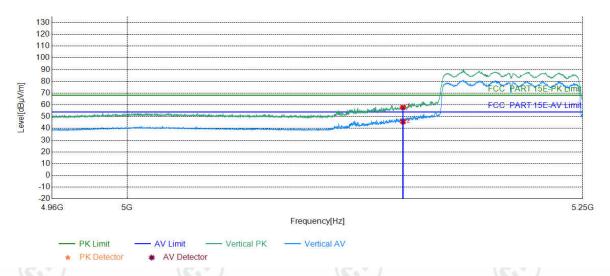
Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5781.2156	13.91	70.28	84.19	122.20	38.01	PASS	Vertical	PK			

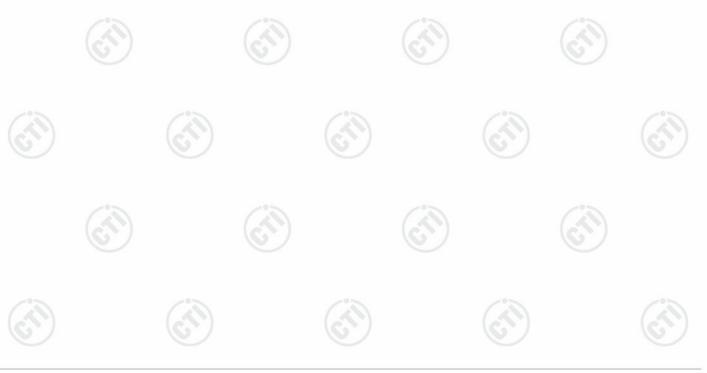




Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:		_0_	

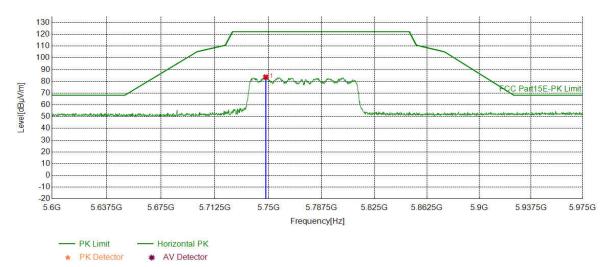
Suspected List										
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	49.68	62.04	68.20	6.16	PASS	Horizontal	PK
	2	5150.0000	12.36	37.32	49.68	54.00	4.32	PASS	Horizontal	AV





Page 50 of 57

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:		-0-	

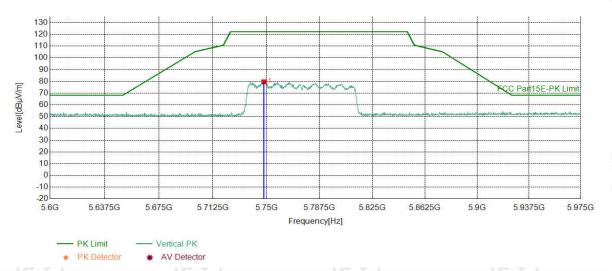

Suspected List										
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	45.50	57.86	68.20	10.34	PASS	Vertical	PK
	2	5150.0000	12.36	33.38	45.74	54.00	8.26	PASS	Vertical	AV



Page 51 of 57

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:		-0-	

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5748.1991	13.85	69.87	83.72	122.20	38.48	PASS	Horizontal	PK



Page 52 of 57

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:		-0-	

Test Graph

	Suspected List									
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
V	1	5748.3867	13.85	65.81	79.66	122.20	42.54	PASS	Vertical	PK
						•	1.70			

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 53 of 57

8 Appendix A

Refer to Appendix: 5G WIFI of module 2 of EED32O81503006.

