

TEST REPORT

: New Energy Vehicle Integrated Product **Detection Tool** : SmartSafe Trade mark : iSmartEV P03 Model/Type reference : N/A Serial Number **Report Number** : EED32O81503004 FCC ID : 2AYANEVP03 Date of Issue : Nov. 16, 2022 47 CFR Part 15 Subpart E **Test Standards** Test result : PASS

Prepared for:

SHENZHEN SMARTSAFE TECH CO., LTD. 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

	Compiled by:	mark. chen.	Reviewed by:	Tom ch	- (N)
	TERNAT/Oraby	Mark Chen	Date:	Tom Chen Nov. 16, 2022	,
CENTRE TESTING	CTI Report Seal	Aaron Ma		Check No.: 241	
(A)	(A)				

Page 2 of 57

2 Conten	t (A)			
			\sim	1
	ARY			
	FORMATION			
5.2 GENERAL 5.3 TEST CON 5.4 TEST ENV 5.5 DESCRIPT 5.6 TEST LOC 5.7 DEVIATION 5.8 ABNORMA 5.9 OTHER INI	FORMATION DESCRIPTION OF EUT IFIGURATION IRONMENT ION OF SUPPORT UNITS ATION FROM STANDARDS LITIES FROM STANDARD CONDITIONS FORMATION REQUESTED BY THE CUS EMENT UNCERTAINTY (95% CONFIDE	STOMER		
6 EQUIPMENT	LIST			9
7 RADIO TECH	NICAL REQUIREMENTS SPECIF	ICATION		
7.2 AC Powe 7.3 Maximum 7.4 6DB Emis 7.5 26DB Emi 7.6 Maximum 7.7 Frequent 7.8 Radiated	REQUIREMENT IN CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER SON BANDWIDTH SSION BANDWIDTH AND 99% OCCUF POWER SPECTRAL DENSITY CY STABILITY EMISSION MHICH FALL IN THE RESTR	PIED BANDWIDTH	<u>)</u>	
	S OF TEST SETUP			
PHOTOGRAPH	S OF EUT CONSTRUCTIONAL D	DETAILS	<u> </u>	57

Page 3 of 57

Version No.	Date	Description	
00	Nov. 16, 2022	Original	100
	∇ ∇		C

of Cummon

Page 4 of 57

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth		PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Remark:		(\mathcal{S})

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 5 of 57

5 General Information 5.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Applicant:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Manufacturer:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Factory :	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Factory :	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

5.2 General Description of EUT

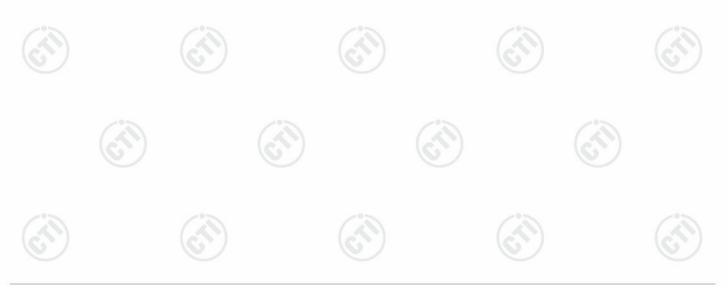
Product Name:	New Energy Vehicle Integrated Detection Tool		
Model No.:	iSmartEV P03		
Trade mark:	SmartSafe		
Product Type:	Fix Location		
Type of Modulation:	IEEE 802.11	a: OFDM (BPSK, QPSK, 16QAM, 64QAM) n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) Iac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, QAM)	
Operating Frequency	U-NII-1 : 5150-5250MHz U-NII-3:5745-5825MHz		
Antenna Type:	FPC antenna		
Antenna Gain:	2.96 dBi		
Power Supply:	Adapter:	model: CGSW65-120-5000II input: 100-240V~50/60Hz,1.5A output: 12.0V5.0A 60.0W	
Test voltage:	AC 120V		
Sample Received Date:	Sep. 23, 202	2	
Sample tested Date:	Sep. 23, 202	2 to Oct. 21, 2022	

Operation Frequency each of channel:

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	/ /				
		U-NII-1	U-NII-3		
	Channel	Frequency(MHz)	Channel	Frequency(MHz)	
	36	5180	149	5745	
1	40	5200	153	5765	
	44	5220	157	5785	
	48	5240	161	5805	
	.0	9.	165	5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


6	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 6 of

61

5.3 Test Configuration

EUT Test Software Settings:			
Software:	N/A		
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set th transmitting of the EUT.	ne lowest frequency, the middle frequency and the highest frequency keep		

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCSO
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0
802.11ac(VHT160)	MCS0

5.4 Test Environment

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C		V		S
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	10-			
Conducted Emissions:					
Temperature:	22~25.0 °C	0		0	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:	·				
Humidity:	50~55 % RH		(\mathcal{C})		6
Atmospheric Pressure:	1010mbar		\sim		\sim
	NT (Normal Temperature)		22~25.0 °C		
Temperature:	LT (Low Temperature)	13	-10 °C	<">>	
	HT (High Temperature)	(\mathcal{S})	50.0 °C	(\mathcal{S})	
U	NV (Normal Voltage)	S	AC 120V	U	
Working Voltage of the EUT:	LV (Low Voltage)		AC 100V		
	HV (High Voltage)		AC 240V		-05
) (1)	(J)		(\mathcal{A})		61

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

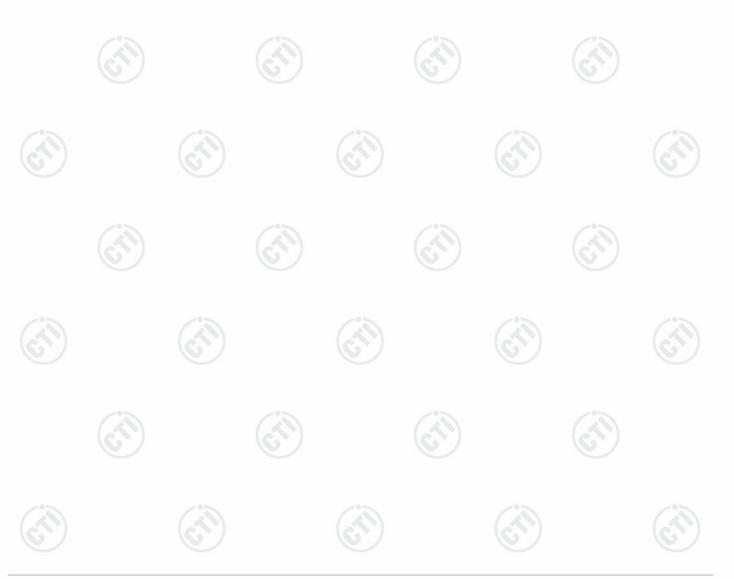
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
0		3.3dB (9kHz-30MHz)
2	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction ornigation	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
21	(GY)	

Page 8 of 57

6 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		

		Conducted dist	urbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023
Temperature/ Humidity Indicator	Defu	TH128	/		- 6
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023
Barometer	changchun	DYM3	1188		



Page 10 of 57

	3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	трк	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021 09/28/2022	10/13/2022 09/27/2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/10711112		- 6	0
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 11 of 57

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	трк	FAC-3	$\underline{\mathbb{C}}$	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		-
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	S	<u>o</u>
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (2	6
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		/
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u>-</u>	-
Cable line	Times	HF160-KMKM-3.00M	393493-0001	9	6

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 12 of 57

7 Radio Technical Requirements Specification

7.1 Antenna Requirement: Standard requirement: 47 CFR Part 15C Section 15.203 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. EUT Antenna: Please see Internal photos The antenna is FPC antenna. The best case gain of the antenna is 2.96dBi.

Page 13 of 57

Test Requirement:	47 CFR Part 15C Section 15.	207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz	(i)	0
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	G
Limit:		Limit	(dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test Procedure:	AC Mains distur	AE UISN2 + AC Ground Reference Plane bance voltage test wa	
	 room. 2) The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the r 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal g 4) The test was performed w the EUT shall be 0.4 m vertical ground reference plane. The LISI unit under test and bor mounted on top of the growthe closest points of the land associated equipmen 5) In order to find the maxim 	Network) which provide cables of all other SN 2, which was bond as the LISN 1 for the o was used to connect rating of the LISN was aced upon a non-met And for floor-standing pround reference plane ith a vertical ground re- from the vertical ground from the vertical ground a plane was bonded N 1 was placed 0.8 m and to a ground re- pund reference plane. LISN 1 and the EUT. t was at least 0.8 m from	es a $50\Omega/50\mu$ H + 5Ω li units of the EUT w led to the ground refere e unit being measure multiple power cables not exceeded. allic table 0.8m above arrangement, the EUT e. eference plane. The re- bund reference plane. to the horizontal ground from the boundary of eference plane for LI This distance was betwo All other units of the bom the LISN 2.

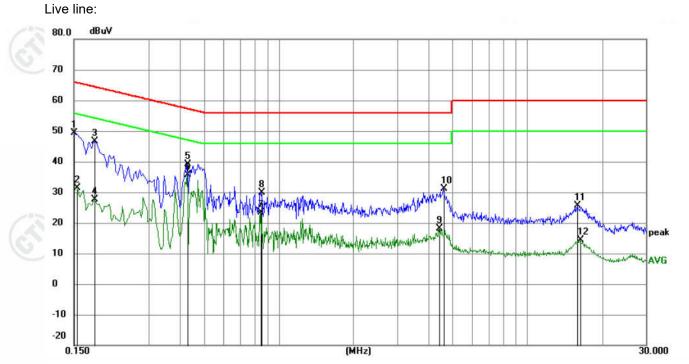
ANSI C63.10: 2013 on conducted measurement.

14 of 57

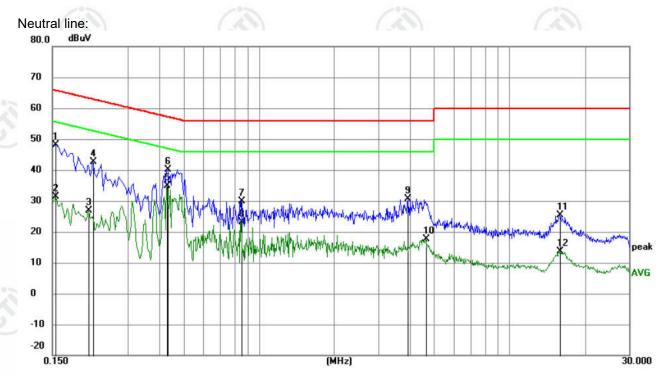
Report No. : EED32O81503004

Page 14 of 57

Test Mode:		All modes w	ere tested, on		rded in the re	port.
Test Results	S:	Pass				



Page 15 of 57


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	39.39	9.87	49.26	66.00	-16.74	QP	
2	0.1545	21.50	9.87	31.37	55.75	-24.38	AVG	
3	0.1815	36.84	9.87	46.71	64.42	-17.71	QP	
4	0.1815	17.88	9.87	27.75	54.42	-26.67	AVG	
5	0.4290	29.26	9.96	39.22	57.27	-18.05	QP	
6 *	0.4290	25.57	9.96	35.53	47.27	-11.74	AVG	
7	0.8475	13.58	9.85	23.43	46.00	-22.57	AVG	
8	0.8565	20.12	9.85	29.97	56.00	-26.03	QP	
9	4.4250	8.30	9.78	18.08	46.00	-27.92	AVG	
10	4.6185	21.26	9.78	31.04	56.00	-24.96	QP	
11	15.9270	15.67	9.94	25.61	60.00	-34.39	QP	
12	16.3860	4.32	9.94	14.26	50.00	-35.74	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 57

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1545	38.32	9.87	48.19	65.75	-17.56	QP		
2	0.1545	21.48	9.87	31.35	55.75	-24.40	AVG		
3	0.2085	17.07	9.89	26.96	53.26	-26.30	AVG		
4	0.2175	32.85	9.90	42.75	62.91	-20.16	QP		
5 *	0.4290	24.98	9.96	34.94	47.27	-12.33	AVG		
6	0.4335	30.13	9.96	40.09	57.19	-17.10	QP		
7	0.8520	20.15	9.85	30.00	56.00	-26.00	QP		
8	0.8520	13.37	9.85	23.22	46.00	-22.78	AVG		
9	3.9300	20.87	9.78	30.65	56.00	-25.35	QP		
10	4.6410	7.88	9.78	17.66	46.00	-28.34	AVG		
11	15.8415	15.52	9.94	25.46	60.00	-34.54	QP		
12	15.9495	3.79	9.94	13.73	50.00	-36.27	AVG		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



7.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)		
	Test Method:	KDB789033 D02 G E	General UNII Tes	t Procedures New Rule	es v02r01 Section
	Test Setup:	Control Computer Power Supply TEMPERATURE CABI	Attenuator	RF test System Instrument	
Ś		Table	T		
	Test Procedure:	General UNII Test I 2. The RF output of attenuator. The pat measurement. 3. Set to the maxim continuously.	Procedures New f EUT was conne th loss was comp num power setting	ent Procedure of KDB7 Rules v02r01 Section E cted to the power mete ensated to the results f g and enable the EUT t wer and record the res	E, 3, a r by RF cable and or each ransmit
<u>S</u> 1-	Limit:			63	
		Frequency band (MHz)	Limit		<u> </u>
		(MHz)		or master device	
			≤1W(30dBm) fc	or master device m) for client device	
		(MHz) 5150-5250	≤1W(30dBm) fc ≤250mW(24dB	m) for client device	1dBm+10loaB*
		(MHz) 5150-5250 5250-5350	≤1W(30dBm) fc ≤250mW(24dBi ≤250mW(24dBi	m) for client device m) for client device or 1	
		(MHz) 5150-5250 5250-5350 5470-5725	≤1W(30dBm) fo ≤250mW(24dBr ≤250mW(24dBr ≤250mW(24dBr	m) for client device	
(K)		(MHz) 5150-5250 5250-5350	≤1W(30dBm) fo ≤250mW(24dBr ≤250mW(24dBr ≤250mW(24dBr ≤1W(30dBm) * Where B is the The maximum of measured over	m) for client device m) for client device or 1 m) for client device or 1 e 26dB emission bandv conducted output powe any interval of continuo ntation calibrated in terr	1dBm+10logB* vidth in MHz r must be bus transmission
CT.	Test Mode:	(MHz) 5150-5250 5250-5350 5470-5725 5725-5850	≤1W(30dBm) fo ≤250mW(24dBr ≤250mW(24dBr ≤250mW(24dBr ≤1W(30dBm) * Where B is the The maximum of measured over using instrumer equivalent volta	m) for client device m) for client device or 1 m) for client device or 1 e 26dB emission bandv conducted output powe any interval of continuo ntation calibrated in terr	1dBm+10logB* vidth in MHz r must be bus transmission

7.4 6dB Emisson Bandwidth


	Test Requirement:	47 CFR Part 15C Section 15.407 (e)						
(3	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C						
(c)	Test Setup:	Control Computer Computer pot(b) Actenna pot(b)						
		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 						
6	Limit:	≥ 500 kHz						
e	Test Mode:	Transmitting mode with modulation						
	Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 1						

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (a)
15	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
(S	Test Setup:	
(A)		RF test System Instrument RF test System Instrument
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
100	Limit:	No restriction limits
(Test Mode:	Transmitting mode with modulation
6	Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 1

7.6 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C S	ection 15.407 (a))			
100	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Ru	les v02r01 Section F		
Ś	Test Setup:	(<i>é</i> .	57)				
		Control Conguter Power Suppy Power Suppy TEMPERATURE CASI	Attenuator	RF test System Instrument			
S.		Remark: Offset=Ca	ble loss+ attenua	ation factor.			
	Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweeps	RBW = 510 kHz/1 MS. s to continue unti	receiver span to vie MHz, VBW ≥ 3*RBV I the trace stabilizes. letermine the maxim			
	Limit:		Ú				
		Frequency band (MHz)	Limit				
1		5150-5250	≤17dBm in 1MH	Iz for master device			
S I		c (c	≤11dBm in 1MF	Iz for client device	67		
_		5250-5350	≤11dBm in 1MH	Iz for client device	\sim		
		5470-5725	≤11dBm in 1MF	Iz for client device			
		5725-5850	≤30dBm in 500	kHz	^`>		
		Remark:	a conducted en	oower spectral densi nission by direct con nstrument to the equ	nection of a		
	Test Mode:	Transmitting mode	with modulation				
~ ~	Test Results:	Refer to Appendix &	5G WIFI Band 1,4	4 of module 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
<u>()</u>	(S ^r)	ć	9		(ST)		

Page 21 of 57

7.7 Frequency Stability

	Test Requirement:	47 CFR Part 15C Section 15.407 (g)						
10	Test Method:	ANSI C63.10: 2013	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0					
6	Test Setup:	(257)							
		Control Computer Power Supply TEMPERATURE CABNET Table	RF test – System Instrument	9					
6		Remark: Offset=Cable loss+ attenu	ation factor.						
	Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. 							
	Limit:	The frequency tolerance shall be frequency over a temperature var normal supply voltage, and for a va 85% to 115% of the rated supply vo	iation of 0 degree ariation in the prima	es to 45 degrees C at ary supply voltage from					
	Test Mode:	Transmitting mode with modulation							
	Test Results:	Refer to Appendix 5G WIFI Band 1,	4 of module 1	(C)					

7.8 Radiated Emission

	Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)			
	Test Method:	ANSI C63.10 2013						- 51
~	Test Site:	Measurement Distance	e: 3m	n (Semi-Aneo	choic Cha	mbe	r)	(A)
2	Receiver Setup:	Frequency)	Detector	RB	W	VBW	Remark
		0.009MHz-0.090MH	Ηz	Peak	10kl	Hz	30kHz	Peak
		0.009MHz-0.090MH	Ηz	Average	10kl	Hz	30kHz	Average
		0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kl	Hz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Ηz	Peak	10kl	Ηz	30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10kl	Hz	30kHz	Average
		0.490MHz -30MH	z	Quasi-pea	k 10kl	Hz	30kHz	Quasi-peak
23		30MHz-1GHz	0	Quasi-pea	k 100 k	кНz	300kHz	Quasi-peak
5		Above 1GHz	9	Peak	1MH	Ηz	3MHz	Peak
-		Above IGHZ		Peak	1Mł	Ηz	10kHz	Average
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m) F	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	24	00/F(kHz)	-		6	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-		-	30
		1.705MHz-30MHz		30	-		-	30
3		30MHz-88MHz	1	100	40.0	Qu	iasi-peak	3
		88MHz-216MHz)	150	43.5	Qu	iasi-peak	3
		216MHz-960MHz		200	46.0	Qu	iasi-peak	3
		960MHz-1GHz		500	54.0	Qu	iasi-peak	3
		Above 1GHz		500	54.0	A	verage	3
		 *(1) For transmitters outside of the 5.15-4 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz k (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall above or below the base above or below the base above or below the base above or below the base of the band edge, and for linearly to a level of 27 Remark: The emission 	5.35 eratio operation oper	GHZ band ng in the 5.23 shall not exc ating in the 5 GHZ band ng in the 5.73 nited to a lev edge increas edge, and fr a level of 15 5 MHZ abov n/MHZ at the	shall no 5-5.35 GF seed an e. 5.47-5.72 shall no 25-5.85 G rel of -27 ing linear rom 25 M 5.6 dBm/M /e or belo band edg	t ex i.r.p. 25 C ot ex iHz b dBm ly to Hz a 1Hz w th je.	and: All em of -27 dE Hz band: ceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz a ne band e	e.i.r.p. of -2 hissions outside Bm/MHz. All emissions e.i.r.p. of -2 5 MHz or more MHz at 25 MH below the band above or below dge increasing
		frequency bands 9-9 emission limits in the	oying 0kHz	a CISPR z, 110-490kl	quasi-pe Hz and a	ak abov	detector e /e 1000 N	except for the MHz. Radiated



Ì

Page 23 of 57

Page 24 of 57

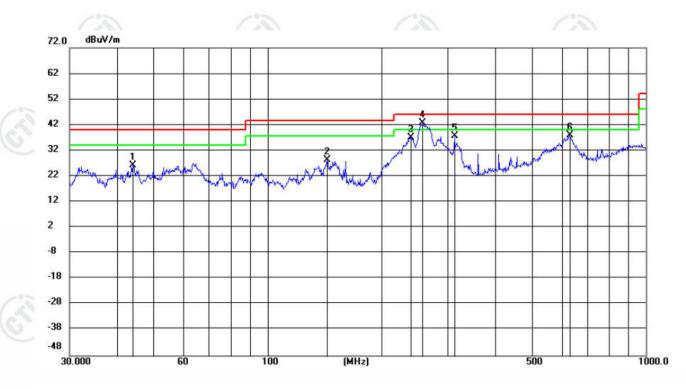
Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	i. Repeat above procedures until all frequencies measured was complete.
	 g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
<u> </u>	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
<u> </u>	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		151.5972	16.24	11.41	27.65	43.50	-15.85	QP	200	298	
2	*	260.1444	27.69	15.26	42.95	46.00	-3.05	QP	100	277	
3		275.1570	23.56	15.86	39.42	46.00	-6.58	QP	100	235	
4		312.1794	19.57	17.02	36.59	46.00	-9.41	QP	100	255	
5		360.4476	18.40	17.72	36.12	46.00	-9.88	QP	100	277	
6		629.4772	14.81	22.78	37.59	46.00	-8.41	QP	200	356	

Hotline:400-6788-333



www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 26 of 57

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.1202	12.24	13.87	26.11	40.00	-13.89	QP	100	148	
2	6	143.8295	17.31	11.00	28.31	43.50	-15.19	QP	100	270	
3		238.3102	22.79	14.40	37.19	46.00	-8.81	QP	200	51	
4	*	256.5211	27.63	15.13	42.76	46.00	-3.24	QP	200	30	
5		312.1794	20.62	17.02	37.64	46.00	-8.36	QP	100	356	
6		627.2738	15.16	22.77	37.93	46.00	-8.07	QP	100	260	

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

				1.5		1.3			
Mod	le:		802.11 a Tran	smitting		Chann	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1392.7393	1.42	40.02	41.44	68.20	26.76	PASS	Horizontal	PK
2	2373.4873	4.29	39.00	43.29	68.20	24.91	PASS	Horizontal	PK
3	3088.5589	6.79	39.59	46.38	68.20	21.82	PASS	Horizontal	PK
4	8319.3910	-10.95	53.30	42.35	68.20	25.85	PASS	Horizontal	PK
5	12449.2475	-4.14	52.73	48.59	68.20	19.61	PASS	Horizontal	PK
6	14881.0441	-0.75	50.12	49.37	68.20	18.83	PASS	Horizontal	PK
7	1281.6282	1.09	41.27	42.36	68.20	25.84	PASS	Vertical	PK
8	1921.3421	4.28	40.47	44.75	68.20	23.45	PASS	Vertical	PK
9	2710.1210	5.58	39.16	44.74	68.20	23.46	PASS	Vertical	PK
10	7711.0106	-11.21	53.54	42.33	68.20	25.87	PASS	Vertical	PK
11	11186.4843	-5.81	52.75	46.94	68.20	21.26	PASS	Vertical	PK
12	17586.5543	3.17	50.85	54.02	68.20	14.18	PASS	Vertical	PK

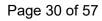
	Mode	:		802.11 a Tran	smitting		Channe	el:	5200MHz	
3	NO	Freq. [MHz]	Facto [dB]	Deediner	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1248.0748	0.98	40.56	41.54	68.20	26.66	PASS	Horizontal	PK
	2	1950.4951	4.41	39.78	44.19	68.20	24.01	PASS	Horizontal	PK
Γ	3	2820.6821	5.97	39.46	45.43	68.20	22.77	PASS	Horizontal	PK
Γ	4	7460.8730	-11.3	6 53.93	42.57	68.20	25.63	PASS	Horizontal	PK
	5	10772.4636	-6.18	3 52.23	46.05	68.20	22.15	PASS	Horizontal	PK
	6	13256.0128	-3.33	3 51.03	47.70	68.20	20.50	PASS	Horizontal	PK
Γ	7	1314.6315	1.19	40.52	41.71	68.20	26.49	PASS	Vertical	PK
-0	8	2339.3839	4.18	39.50	43.68	68.20	24.52	PASS	Vertical	PK
4	9	3503.8504	7.60	38.08	45.68	68.20	22.52	PASS	Vertical	PK
2	10	8933.5217	-8.99	52.95	43.96	68.20	24.24	PASS	Vertical	PK
	11	11837.4169	-5.92	2 52.45	46.53	68.20	21.67	PASS	Vertical	PK
	12	14441.7221	0.03	49.45	49.48	68.20	18.72	PASS	Vertical	PK
L	12	14441.7221	0.00	40.40	40.40	00.20	10.72	17100	Vortiour	110

Page 28 of 57

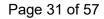
				(10)		61		1	10	
	Mode:			802.11 a Tran	smitting		Channe	el:	5240MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1283.8284	1.10	40.33	41.43	68.20	26.77	PASS	Horizontal	PK
23	2	2566.0066	5.15	39.41	44.56	68.20	23.64	PASS	Horizontal	PK
-	3	3319.5820	7.43	38.22	45.65	68.20	22.55	PASS	Horizontal	PK
	4	7391.2946	-11.46	53.71	42.25	68.20	25.95	PASS	Horizontal	PK
	5	9744.8872	-7.39	52.42	45.03	68.20	23.17	PASS	Horizontal	PK
	6	16289.2895	0.89	50.56	51.45	68.20	16.75	PASS	Horizontal	PK
	7	1422.4422	1.47	40.37	41.84	68.20	26.36	PASS	Vertical	PK
	8	2677.1177	5.46	39.43	44.89	68.20	23.31	PASS	Vertical	PK
	9	3200.7701	6.97	38.93	45.90	68.20	22.30	PASS	Vertical	PK
20	10	9012.8756	-8.43	52.76	44.33	68.20	23.87	PASS	Vertical	PK
4	11	11948.9724	-5.14	53.89	48.75	68.20	19.45	PASS	Vertical	PK
9	12	14457.8229	-0.20	50.21	50.01	68.20	18.19	PASS	Vertical	PK

ode:	8	02.11 a Tran	smitting		Chann	el:	5745MHz	
D Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1266.2266	1.45	40.57	42.02	68.20	26.18	PASS	Horizontal	PK
1951.5952	4.91	39.49	44.40	68.20	23.80	PASS	Horizontal	PK
3081.9582	7.56	39.59	47.15	68.20	21.05	PASS	Horizontal	PK
7667.7112	-10.98	53.10	42.12	68.20	26.08	PASS	Horizontal	PK
11487.4992	-5.85	55.83	49.98	68.20	18.22	PASS	Horizontal	PK
14365.7577	0.27	48.94	49.21	68.20	18.99	PASS	Horizontal	PK
1889.4389	4.62	39.72	44.34	68.20	23.86	PASS	Vertical	PK
2889.4389	6.98	39.15	46.13	68.20	22.07	PASS	Vertical	PK
4003.8504	10.38	36.83	47.21	68.20	20.99	PASS	Vertical	PK
8351.6234	-10.83	52.15	41.32	68.20	26.88	PASS	Vertical	PK
1 11492.8662	-5.83	55.20	49.37	68.20	18.83	PASS	Vertical	PK
2 14384.1589	0.47	48.41	48.88	68.20	19.32	PASS	Vertical	PK
	Freq. [MHz] 1266.2266 1951.5952 3081.9582 7667.7112 11487.4992 14365.7577 1889.4389 2889.4389 4003.8504 8351.6234 11492.8662	Freq. [MHz] Factor [dB] 1266.2266 1.45 1951.5952 4.91 3081.9582 7.56 7667.7112 -10.98 11487.4992 -5.85 14365.7577 0.27 1889.4389 4.62 2889.4389 6.98 4003.8504 10.38 11492.8662 -5.83	Freq. [MHz] Factor [dB] Reading [dBμV] 1266.2266 1.45 40.57 1951.5952 4.91 39.49 3081.9582 7.56 39.59 7667.7112 -10.98 53.10 11487.4992 -5.85 55.83 14365.7577 0.27 48.94 1889.4389 4.62 39.72 2889.4389 6.98 39.15 4003.8504 10.38 36.83 8351.6234 -10.83 52.15 11492.8662 -5.83 55.20	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]1266.22661.4540.5742.0268.2026.181951.59524.9139.4944.4068.2023.803081.95827.5639.5947.1568.2021.057667.7112-10.9853.1042.1268.2026.0811487.4992-5.8555.8349.9868.2018.2214365.75770.2748.9449.2168.2018.991889.43894.6239.7244.3468.2023.862889.43896.9839.1546.1368.2022.074003.850410.3836.8347.2168.2020.998351.6234-10.8352.1541.3268.2026.8811492.8662-5.8355.2049.3768.2018.83	Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Result 1266.2266 1.45 40.57 42.02 68.20 26.18 PASS 1951.5952 4.91 39.49 44.40 68.20 23.80 PASS 3081.9582 7.56 39.59 47.15 68.20 21.05 PASS 7667.7112 -10.98 53.10 42.12 68.20 26.08 PASS 11487.4992 -5.85 55.83 49.98 68.20 18.22 PASS 14365.7577 0.27 48.94 49.21 68.20 23.86 PASS 1889.4389 4.62 39.72 44.34 68.20 23.86 PASS 2889.4389 6.98 39.15 46.13 68.20 23.86 PASS 4003.8504 10.38 36.83 47.21 68.20 20.99 PASS 403.8504 10.38 36.83 47.21 68.20 20.99 PASS	Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Result Polarity 1266.2266 1.45 40.57 42.02 68.20 26.18 PASS Horizontal 1951.5952 4.91 39.49 44.40 68.20 23.80 PASS Horizontal 3081.9582 7.56 39.59 47.15 68.20 21.05 PASS Horizontal 7667.7112 -10.98 53.10 42.12 68.20 26.08 PASS Horizontal 11487.4992 -5.85 55.83 49.98 68.20 18.22 PASS Horizontal 14365.7577 0.27 48.94 49.21 68.20 23.86 PASS Vertical 1889.4389 4.62 39.72 44.34 68.20 23.86 PASS Vertical 2889.4389 6.98 39.15 46.13 68.20 20.99 PASS Vertical 4003.8504 10.38 36.83 47.21

Page 29 of 57


				(1)		1.1		1	10	
	Mode:	:	8	02.11 a Tran	smitting		Channe	el:	5785MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1333.8834	1.70	42.17	43.87	68.20	24.33	PASS	Horizontal	PK
	2	2178.2178	4.64	39.58	44.22	68.20	23.98	PASS	Horizontal	PK
	3	3465.8966	8.29	37.36	45.65	68.20	22.55	PASS	Horizontal	PK
	4	8906.7271	-9.22	52.25	43.03	68.20	25.17	PASS	Horizontal	PK
	5	11283.5522	-6.43	52.87	46.44	68.20	21.76	PASS	Horizontal	PK
	6	15483.6322	0.25	51.11	51.36	68.20	16.84	PASS	Horizontal	PK
	7	1636.4136	3.02	40.66	43.68	68.20	24.52	PASS	Vertical	PK
	8	3035.2035	7.31	38.53	45.84	68.20	22.36	PASS	Vertical	PK
	9	4635.3135	12.66	36.09	48.75	68.20	19.45	PASS	Vertical	PK
	10	9752.4168	-7.36	52.69	45.33	68.20	22.87	PASS	Vertical	PK
4	11	11571.8381	-6.29	55.77	49.48	68.20	18.72	PASS	Vertical	PK
	12	14484.5990	-0.60	51.55	50.95	68.20	17.25	PASS	Vertical	PK

Мо	ode:	:	8	02.11 a Tran	smitting		Channe	el:	5825MHz	
N	NO Freq. [MHz]		Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	I	1402.0902	1.82	39.62	41.44	68.20	26.76	PASS	Horizontal	PK
2	2	2272.2772	4.54	38.86	43.40	68.20	24.80	PASS	Horizontal	PK
3	3	4329.4829	11.94	35.36	47.30	68.20	20.90	PASS	Horizontal	PK
4	ł	9247.9165	-7.65	51.98	44.33	68.20	23.87	PASS	Horizontal	PK
5	5	11660.0107	-6.06	56.84	50.78	68.20	17.42	PASS	Horizontal	PK
6	3	14459.2973	-0.23	49.67	49.44	68.20	18.76	PASS	Horizontal	PK
7	7	1438.3938	1.86	40.54	42.40	68.20	25.80	PASS	Vertical	PK
8	3	2184.8185	4.56	39.16	43.72	68.20	24.48	PASS	Vertical	PK
9)	4096.8097	10.45	36.52	46.97	68.20	21.23	PASS	Vertical	PK
1(0	8441.3294	-10.63	53.04	42.41	68.20	25.79	PASS	Vertical	PK
1	1	11652.3435	-6.11	59.42	53.31	68.20	14.89	PASS	Vertical	PK
1:	2	15563.3709	0.43	50.03	50.46	68.20	17.74	PASS	Vertical	PK


_				(1)	(1.1		1	10	
	Mode:	:		802.11 n(HT4	0) Transmitti	ng	Chann	el:	5190MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1432.8933	1.49	39.83	41.32	68.20	26.88	PASS	Horizontal	PK
	2	2007.7008	4.65	38.91	43.56	68.20	24.64	PASS	Horizontal	PK
1	3	2828.3828	6.00	39.05	45.05	68.20	23.15	PASS	Horizontal	PK
	4	7368.8684	-11.4(53.89	42.49	68.20	25.71	PASS	Horizontal	PK
	5	9656.9078	-7.47	51.93	44.46	68.20	23.74	PASS	Horizontal	PK
	6	12440.6220	-4.12	52.10	47.98	68.20	20.22	PASS	Horizontal	PK
	7	1250.8251	0.99	39.96	40.95	68.20	27.25	PASS	Vertical	PK
	8	2101.7602	5.03	39.20	44.23	68.20	23.97	PASS	Vertical	PK
	9	3723.8724	7.60	36.88	44.48	68.20	23.72	PASS	Vertical	PK
24	10	8075.5788	-11.06	5 52.52	41.46	68.20	26.74	PASS	Vertical	PK
4	11	10861.5931	-6.33	52.27	45.94	68.20	22.26	PASS	Vertical	PK
3	12	14429.0715	0.22	49.00	49.22	68.20	18.98	PASS	Vertical	PK

Mod	e:	80	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1280.5281	1.09	41.22	42.31	68.20	25.89	PASS	Horizontal	PK
2	2009.9010	4.66	39.30	43.96	68.20	24.24	PASS	Horizontal	PK
3	3312.9813	7.41	38.70	46.11	68.20	22.09	PASS	Horizontal	PK
4	9050.8275	-8.53	52.53	44.00	68.20	24.20	PASS	Horizontal	PK
5	10817.3159	-6.22	52.67	46.45	68.20	21.75	PASS	Horizontal	PK
6	17159.8830	2.66	50.58	53.24	68.20	14.96	PASS	Horizontal	PK
7	1607.8108	2.49	39.67	42.16	68.20	26.04	PASS	Vertical	PK
8	2417.4917	4.51	40.65	45.16	68.20	23.04	PASS	Vertical	PK
9	3845.4345	8.71	37.54	46.25	68.20	21.95	PASS	Vertical	PK
10	9183.0842	-7.88	52.59	44.71	68.20	23.49	PASS	Vertical	PK
11	10980.0490	-5.94	51.95	46.01	68.20	22.19	PASS	Vertical	PK
12	17160.4580	2.67	50.61	53.28	68.20	14.92	PASS	Vertical	PK

	Mode	:	80)2.11 n(HT4	0) Transmitti	ing	Channe	Channel:		
0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1570.4070	2.47	39.45	41.92	68.20	26.28	PASS	Horizontal	PK
	2	2464.7965	5.24	39.03	44.27	68.20	23.93	PASS	Horizontal	PK
	3	3194.1694	7.81	38.82	46.63	68.20	21.57	PASS	Horizontal	PK
	4	8802.4535	-9.09	51.98	42.89	68.20	25.31	PASS	Horizontal	PK
	5	10121.2081	-6.87	52.98	46.11	68.20	22.09	PASS	Horizontal	PK
	6	13170.4447	-3.01	50.86	47.85	68.20	20.35	PASS	Horizontal	PK
	7	1436.1936	1.86	40.70	42.56	68.20	25.64	PASS	Vertical	PK
	8	2690.8691	6.08	39.13	45.21	68.20	22.99	PASS	Vertical	PK
	9	3947.7448	10.02	36.92	46.94	68.20	21.26	PASS	Vertical	PK
	10	9154.3770	-8.15	51.98	43.83	68.20	24.37	PASS	Vertical	PK
	11	11948.2966	-5.15	52.26	47.11	68.20	21.09	PASS	Vertical	PK
	12	14389.5260	0.53	48.93	49.46	68.20	18.74	PASS	Vertical	PK

Mod	e:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1404.8405	1.82	40.72	42.54	68.20	25.66	PASS	Horizontal	PK
2	2034.6535	5.27	39.40	44.67	68.20	23.53	PASS	Horizontal	PK
3	3139.1639	7.72	38.68	46.40	68.20	21.80	PASS	Horizontal	PK
4	9305.4204	-7.61	52.95	45.34	68.20	22.86	PASS	Horizontal	PK
5	12455.8637	-4.16	52.44	48.28	68.20	19.92	PASS	Horizontal	PK
6	15972.7982	-0.13	51.41	51.28	68.20	16.92	PASS	Horizontal	PK
7	1223.8724	1.21	40.89	42.10	68.20	26.10	PASS	Vertical	PK
8	2035.7536	5.28	39.89	45.17	68.20	23.03	PASS	Vertical	PK
9	3301.9802	8.32	38.22	46.54	68.20	21.66	PASS	Vertical	PK
10	8379.9920	-10.73	53.71	42.98	68.20	25.22	PASS	Vertical	PK
11	11568.0045	-6.26	54.18	47.92	68.20	20.28	PASS	Vertical	PK
12	15881.5588	-0.15	50.24	50.09	68.20	18.11	PASS	Vertical	PK
3 1		0		0	1		1	1	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

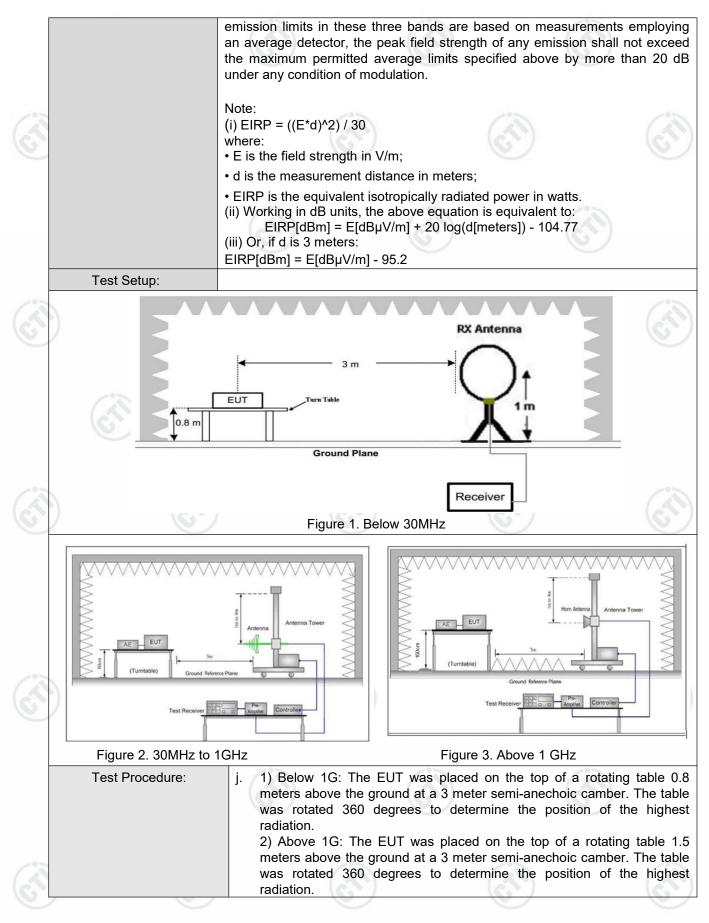
Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 32 of 57

7.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Sect	tion 1	15.209 and 1	5.407 (b)			
13	Test Method:	ANSI C63.10 2013	2		1	E.		13
6	Test Site:	Measurement Distance	e: 3n	n (Semi-Ane	choic Cha	ambe	er)	(6)
	Receiver Setup:	Frequency	/	Detector	RE	SW	VBW	Remark
		0.009MHz-0.090MH	Ηz	Peak	10	Hz	30kHz	Peak
		0.009MHz-0.090MH	Ηz	z Average		Hz	30kHz	Average
		0.090MHz-0.110MHz		Iz Quasi-peak		Hz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Ηz	Peak	10	Hz	30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10	Hz	30kHz	Average
10-		0.490MHz -30MH:	z	Quasi-pea	ık 10	κHz	30kHz	Quasi-peak
		30MHz-1GHz	9	Quasi-pea	ik 100	kHz	300kHz	Quasi-peak
6		Above 1GHz)	Peak	1M	Hz	3MHz	Peak
		Above IGHZ		Peak	1M	Hz	10kHz	Average
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m	n) F	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	24	400/F(kHz)	-		- ~	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-		-	30
100		1.705MHz-30MHz		30	- /	1	-	30
		30MHz-88MHz		100	40.0	Qu	iasi-peak	3
		88MHz-216MHz	1	150	43.5	Qu	iasi-peak	3
		216MHz-960MHz		200	46.0	Qu	iasi-peak	3
		960MHz-1GHz		500	54.0	Qu	iasi-peak	3
		Above 1GHz		500	54.0	A	verage	3
(ST		 *(1) For transmitters outside of the 5.15-4 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz k (3) For transmitters op outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall k above or below the base above	5.35 berati opera 5.725 be lir and e and ly to from	GHz band ng in the 5.2 shall not exc ating in the 5 GHz band ng in the 5.7 mited to a lev edge increas edge, and fi a level of 15 5 MHz abov	shall no 5-5.35 G ceed an e 5.47-5.7 I shall n 25-5.85 (vel of -27 ing linea rom 25 M 5.6 dBm// ve or be	ot ex Hz ba ot.r.p 25 G ot ex GHz b GHz b dBn rly to MHz a WHz ow th	and: All em of -27 dE Hz band: Acceed an band: n/MHz at 7 10 dBm/N above or h at 5 MHz	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below
Ś		Remark: The emissi measurements emplo frequency bands 9-9	on l bying	imits shown a CISPR	in the quasi-p	abo eak	detector e	except for the

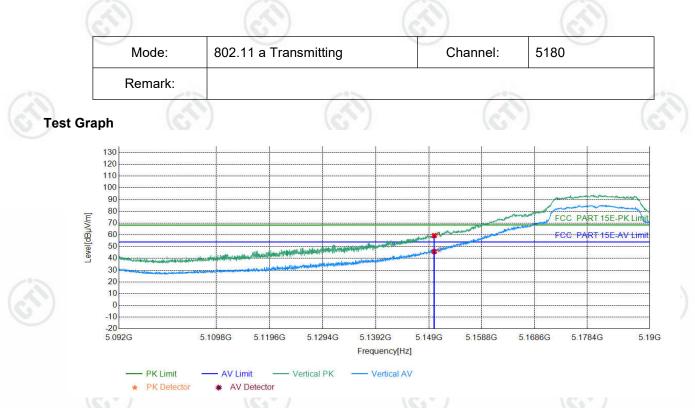


S

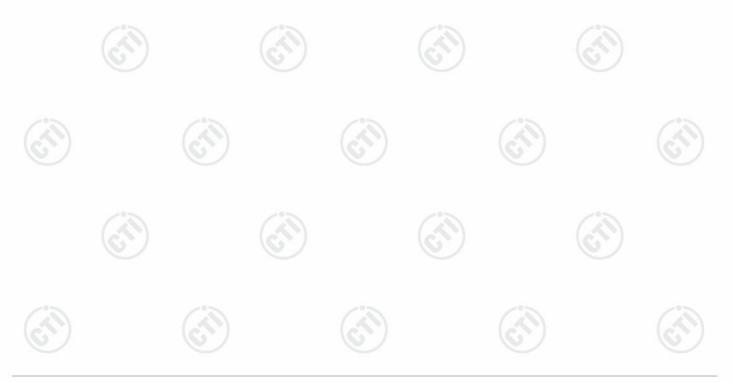
Page 33 of 57

Page 34 of 57

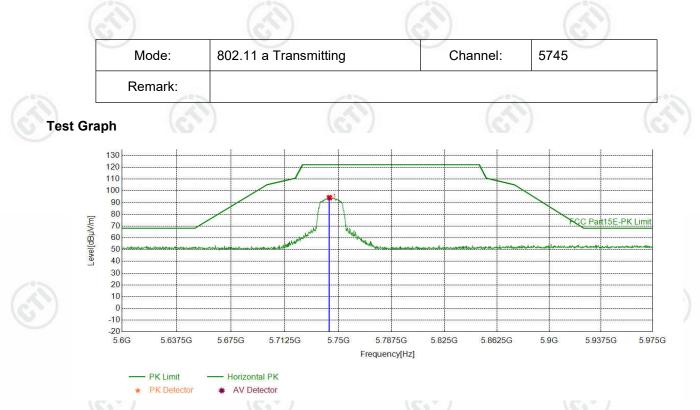
Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	 q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. r. Repeat above procedures until all frequencies measured was complete.
ર્સ	 o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel
	 and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
<u>S</u>	 I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. m. For each suspected emission, the EUT was arranged to its worst case
3	 Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.



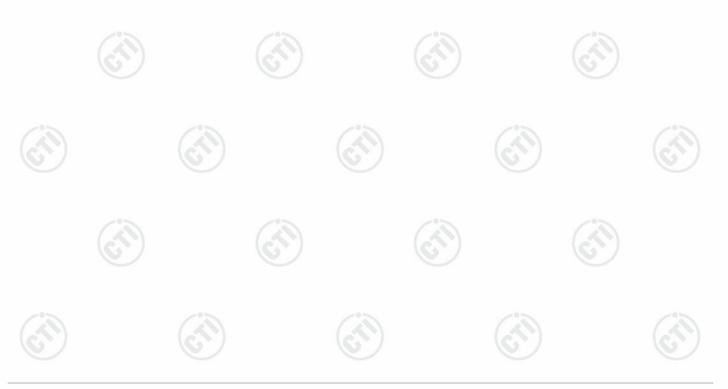
	Suspe	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
C	1	5150.0000	-15.08	74.86	59.78	68.44	8.66	PASS	Horizontal	PK
	2	5150.0000	-15.08	61.64	46.56	54.00	7.44	PASS	Horizontal	AV



Page 36 of 57



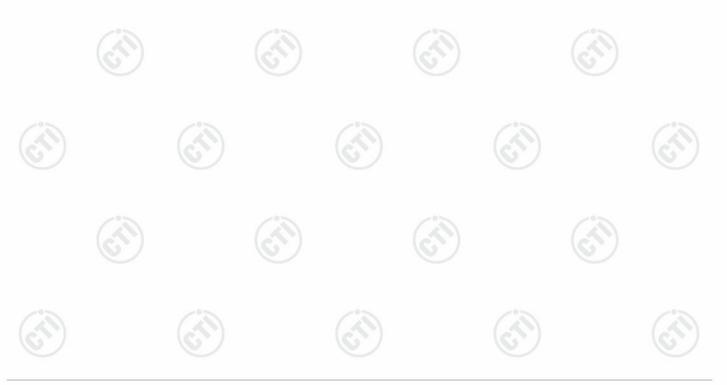
	Suspe	cted List								
1.3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	5150.0000	-15.08	74.49	59.41	68.44	9.03	PASS	Vertical	PK
No.	2	5150.0000	-15.08	60.91	45.83	54.00	8.17	PASS	Vertical	AV



Page 37 of 57

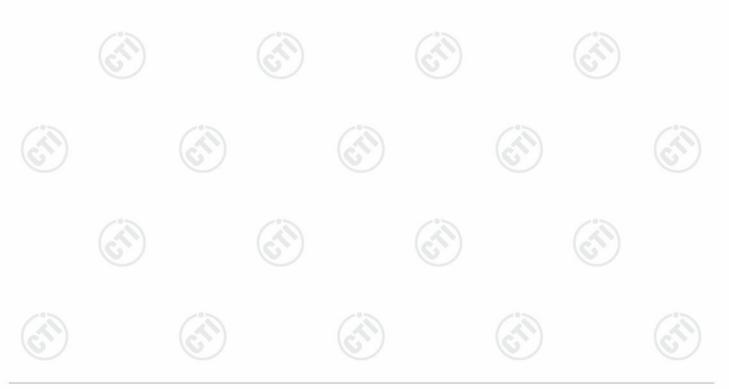


[Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5743.6968	13.84	80.47	94.31	122.20	27.89	PASS	Horizontal	PK

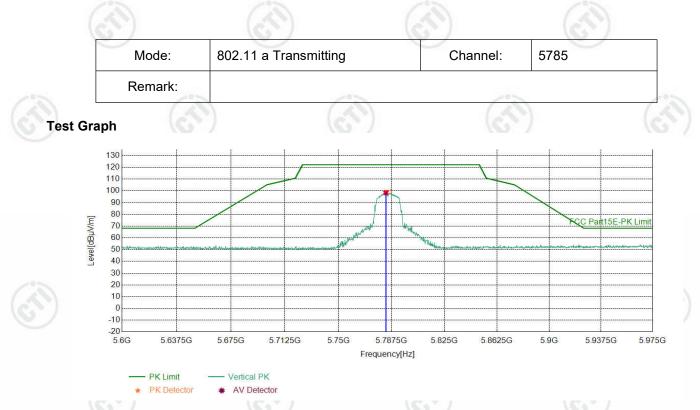


Page 38 of 57

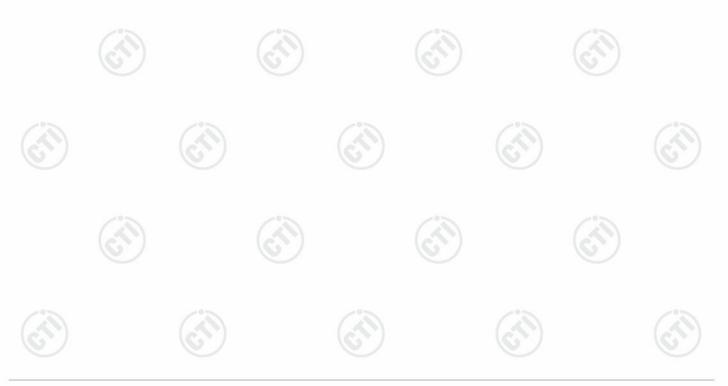
ſ	Suspec	cted List								
23	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5746.3232	13.85	84.63	98.48	122.20	23.72	PASS	Vertical	PK



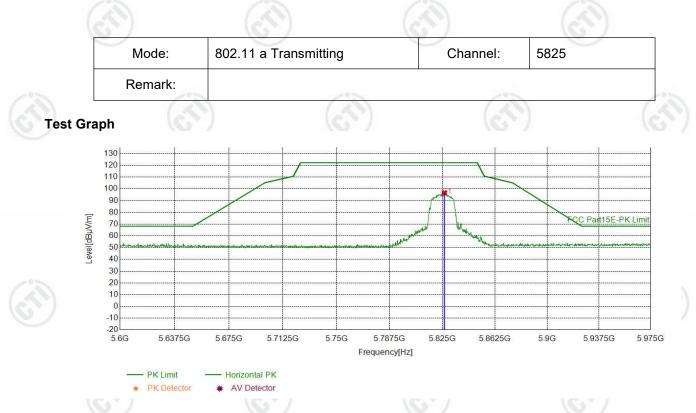
Page 39 of 57



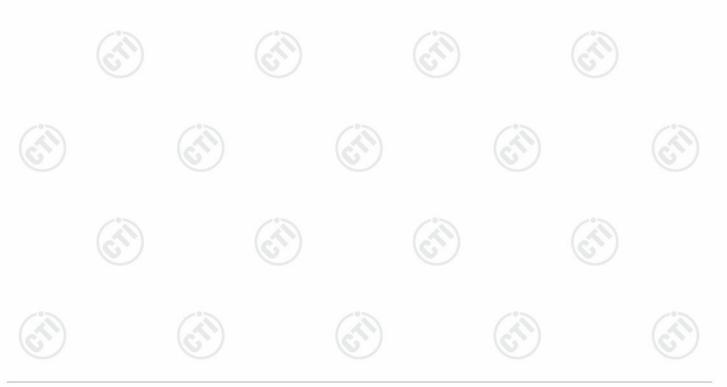
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5784.2171	13.91	80.33	94.24	122.20	27.96	PASS	Horizontal	PK



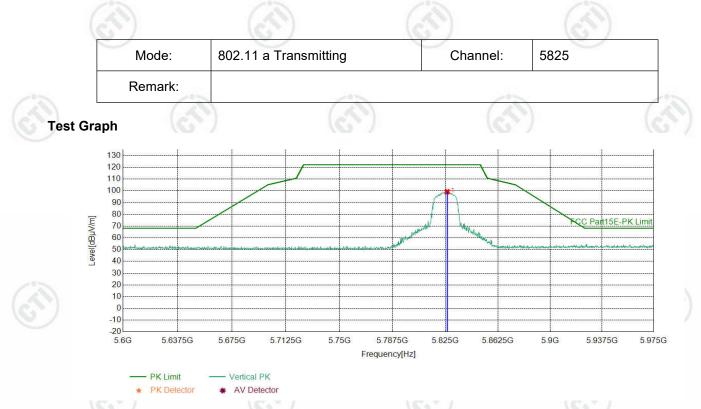
Page 40 of 57



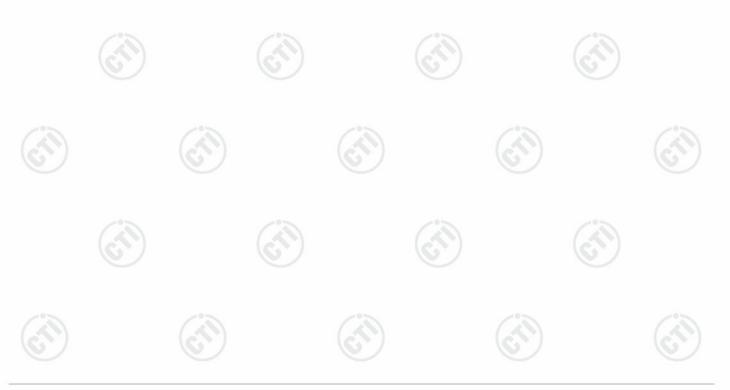
[Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5783.4667	13.91	84.60	98.51	122.20	23.69	PASS	Vertical	PK



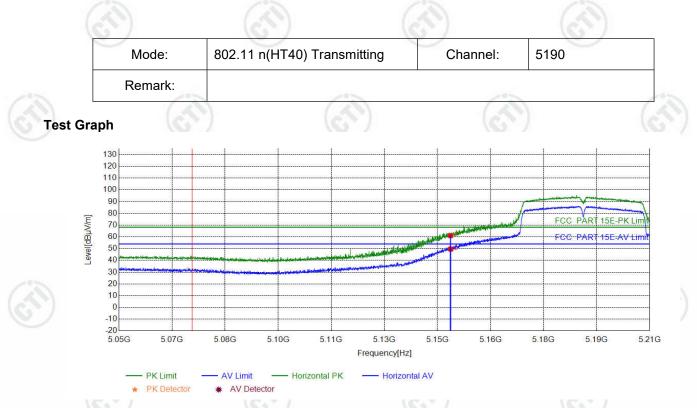
Page 41 of 57



00	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5826.4257	14.04	82.68	96.72	122.20	25.48	PASS	Horizontal	PK
	O 1	O [MHz]	[MHz]	Ο [MHz] [dBμV]	[MHz] [dBµV] [dBµV/m]	C [MHz] [dBμV] [dBμV/m] [dBμV/m]	C [MHz] [dBμV] [dBμV/m] [dBμV/m] [dBμV/m] [dB]	[MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] Result	$\begin{bmatrix} (MHz] \\ [dB] \\ [dB]$

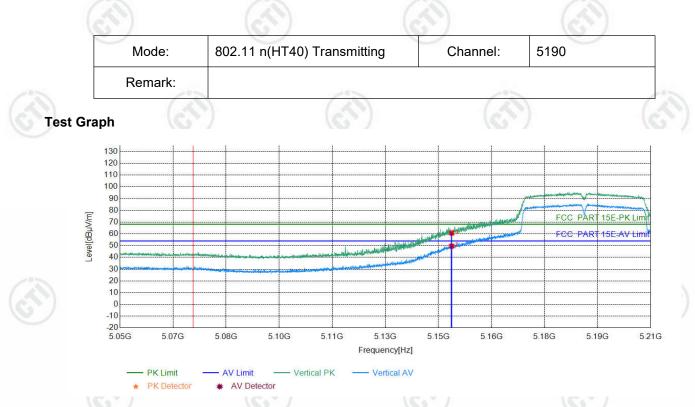


Page 42 of 57



S	uspec	ted List								
I	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5826.2381	14.04	85.27	99.31	122.20	22.89	PASS	Vertical	PK

Page 43 of 57



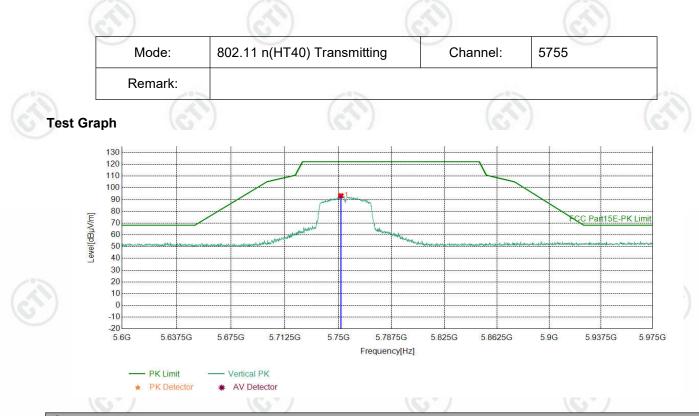
	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{S})	1	5150.0000	12.36	48.77	61.13	68.20	7.07	PASS	Horizontal	PK
C	2	5150.0000	12.36	37.31	49.67	54.00	4.33	PASS	Horizontal	AV



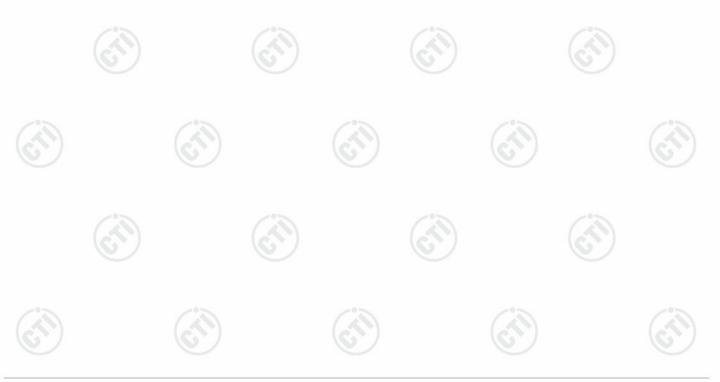
Page 44 of 57

	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\sim)	1	5150.0000	12.36	48.34	60.70	68.20	7.50	PASS	Vertical	PK
C	2	5150.0000	12.36	37.20	49.56	54.00	4.44	PASS	Vertical	AV

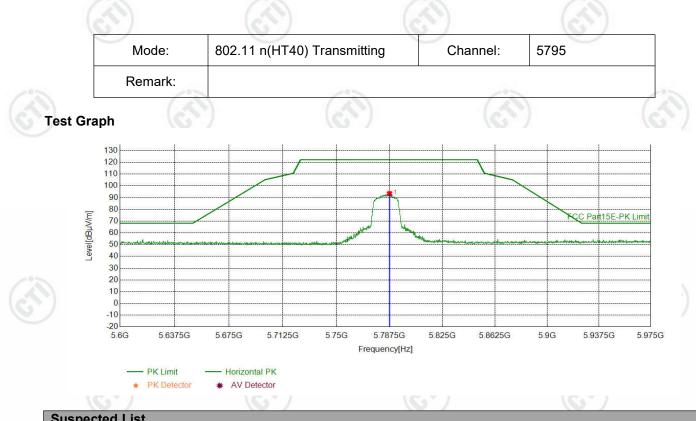
Page 45 of 57



	Suspec	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	5752.5138	13.86	76.19	90.05	122.20	32.15	PASS	Horizontal	PK

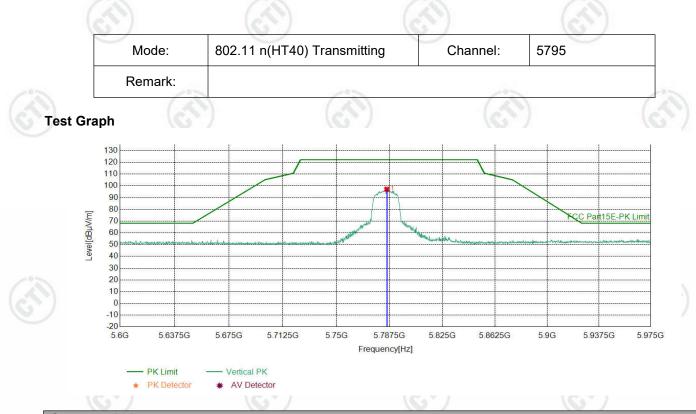


Page 46 of 57

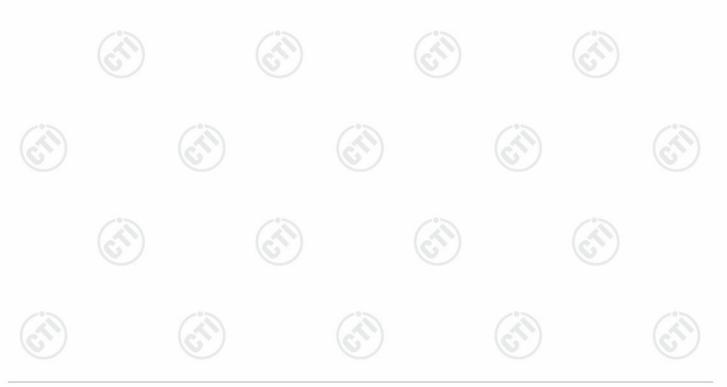


	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(a)	1	5751.7634	13.86	79.44	93.30	122.20	28.90	PASS	Vertical	PK
	1									

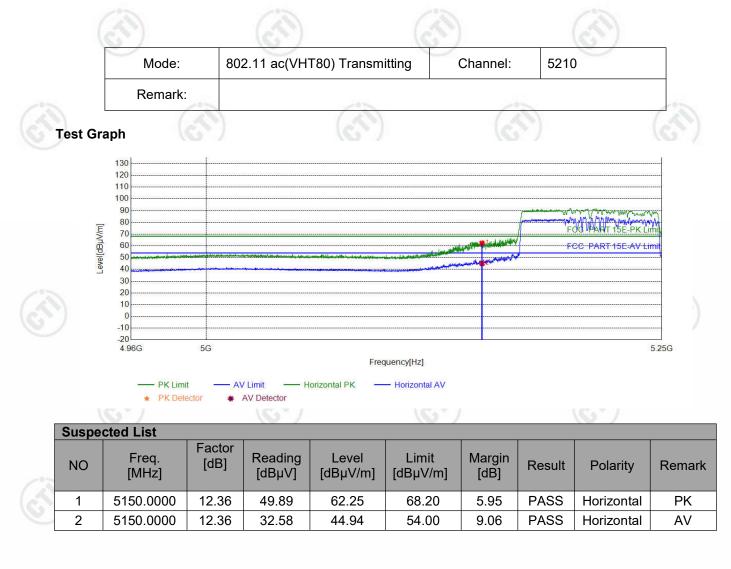
Page 47 of 57



I	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(a)	1	5787.4062	13.92	79.54	93.46	122.20	28.74	PASS	Horizontal	PK
	1									



Page 48 of 57



	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	5785.5303	13.92	83.23	97.15	122.20	25.05	PASS	Vertical	PK
	1									

Page 49 of 57

0-----10-----20 4.96G

5G

AV Limit

- PK Limit

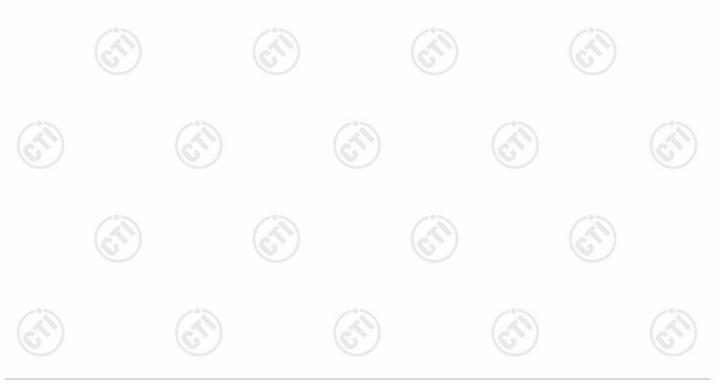
		🖈 PK Dete		AV Detector									
		57/		(G)									
	Suspected List												
-3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
2	1	5150.0000	12.36	34.09	46.45	54.00	7.55	PASS	Vertical	AV			
	2	5150.0000	12.36	50.64	63.00	68.20	5.20	PASS	Vertical	PK			

- Vertical PK

Frequency[Hz]

- Vertical AV

5.25G



Page 51 of 57

	Suspe	ected List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\sim)	1	5763.7694	13.88	71.18	85.06	122.20	37.14	PASS	Horizontal	PK
	1									

Page 52 of 57

NC	D	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1		5773.7119	13.90	74.53	88.43	122.20	33.77	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 53 of 57

Refer to Appendix: 5G WIFI of module 1 of EED32O81503004.

