

Test report

447317-2R3TRFWL

Date of issue: July 11, 2022

Applicant:

Canary Medical

Product:

Clinic Wearable Device

Model:

Variant(s):

20024-0120 (REF 43-5570-007-14) N

None

Specifications:

 FCC 47 CFR Part 95 Subpart I – Medical Device Radiocommunication Service

www.nemko.com

FCC 47 CFR Part95I_MedRadio_Wearable_Transmitters.dotm, Version V1.0

Nemko USA Inc., a testing laboratory, is accredited by NVLAP. The tests included in this report are within the scope of this accreditation.

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943; Designation Number: US5058
ISED Test Site	2040B-3
Tested by	Lan Sayasane, EMC Test Engineer
Tested by	James Cunningham, EMC/MIL/WL Supervisor
Reviewed by	Juan M Gonzalez, Business Development Manager
Review date	July 11, 2022
Reviewer signature	Aur

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of C	ontents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Summary of test results	5
2.1	Sample information	5
2.2	Testing period	5
2.3	Test results	5
Section 3	Equipment under test (EUT) details	6
3.1	Disclaimer	ô
3.2	Applicant	б
3.3	Manufacturer	6
3.4	EUT information	б
3.5	EUT exercise and monitoring details	7
3.6	EUT setup details	8
Section 4	Engineering considerations	э
4.1	Modifications incorporated in the EUT	9
4.2	Technical judgement	9
4.3	Deviations from laboratory test procedures	9
Section 5	Test conditions	٥
5.1	Atmospheric conditions	D
5.2	Power supply range	D
Section 6	Measurement uncertainty	1
6.1	Uncertainty of measurement	1
Section 7	Test equipment	2
7.1	Test equipment list1	2
Section 8	Testing data	3
8.1	Frequency accuracy	3
8.2	Field strength of fundamental1	5
8.3	Emission bandwidth; 20 dB bandwidth	D
8.4	Transmitter unwanted emissions and band edges	3
8.5	AC power line conducted emissions	3
8.6	99% Occupied bandwidth	Э
Section 9	Attestation Letter	1

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 95, Subpart I		Medical Device Radio Communications Service	
1.2	Test methods		
ANSI	C63.10, 2013	American National Standard for Compliance Testing of Unlicensed Wireless Devices.	
1.3	Exclusions		
None.			
1.4	Statement of compliance		
Testing	Testing was performed against all relevant requirements of the test standard(s).		
Results obtained indicate that the product under test complies in full with the tested requirements.			
The tes	The test results relate only to the item(s) tested.		

See "Section 2 Summary of test results" for full details.

1.5 Test report revision history

 Table 1.5-1: Test report revision history

Revision #	Issue Date	Details of changes made to test report
447317-2TRFWL	2 February 2022	Original report issued
447317-2R1TRFWL	24 February 2022	Added summary table to section 8.4
447317-2R2TRFWL	8 July, 2022	Added correct emission designator
447317-2R3TRFWL	11 July, 2022	Added EIRP calculations

Section 2 Summary of test results

2.1 Sample information

Receipt date	28-Jan-22
Nemko sample ID number	447317

2.2 Testing period

Test start date	31-Jan-22
Test end date	02-Feb-22

2.3 Test results

Table 2.3-1: FCC Par15 Subpart C, general requirements

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.203	Antenna requirements	Pass

Notes: None

Table 2.3-2: Part 95, Subpart I, Medical Device Radio Communications Service results

Clause	Test description	Verdict
§95.2565	Frequency Accuracy	Pass
§95.2567(a)	Field strength of fundamental	Pass
§95.2573(a)	Emission Bandwidth (20 dB)	Pass
§95.2579	Band Edges	Pass
§95.2579	Unwanted Emissions	Pass
§2.202(a)	99% Occupied bandwidth	Pass

Notes: None

Section 3 Equipment under test (EUT) details

3.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

3.2 Applicant

Company name	Canary Medical
Address	2710 Loker Ave West, Suite 350
City	Carlsbad
State	CA
Postal/Zip code	92010
Country	USA

3.3 Manufacturer

Company name	Canary Medical
Address	2710 Loker Ave West, Suite 350
City	Carlsbad
State	CA
Postal/Zip code	92010
Country	USA

3.4 EUT information

Product name	Clinic Wearable Device
Model	20024-0120 (REF 43-5570-007-14)
Variant(s)	None
Serial number	001435 (LOW channel), 001426 (MID channel), 001403 (HIGH channel)
Part number	N/A
Frequency band(s)	402 – 406 MHz
Minimum frequency(ies)	402.15 MHz
Maximum frequency(ies)	404.85 MHz
Type of modulation	2FSK (Emission designator 300KF1D)
Power requirements	Battery powered. Charged via cradle using wireless power transfer.
Description/theory of operation	Wearable device is intended for pre-operative characterization of patient motion. Data is collected as a baseline
	before the patient is fitted with a smart knee implant. Device consists of a 3-axis accelerometer and 3-axis gyroscope
	for capturing motion data. Data is transferred from the wearable to a clinic base station. Wearable device is
	rechargeable with wireless charging. Wireless charger is sold as an accessory with the wearable.
Antenna information	Integrated antenna

3.5 EUT exercise and monitoring details

EUT description of the methods used to exercise the EUT and all relevant ports:

- EUT was configured to transmit a modulated signal at maximum power at defined frequency channels through custom firmware.

EUT setup/configuration rationale:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 - None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local
 ancillary equipment and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted
 below:
 - None

3.6 EUT setup details

Table 3.6-1: EUT sub assemblies				
Description	Brand name	Model/Part number	Serial number	Rev.
EUT	Clinic Wearable Device	20024-0120 (REF 43-5570-007-14)	001435 (LOW channel), 001426 (MID channel),	N/A
	7	able 3.6-2: EUT interface ports	001403 (HIGH Channel)	
Description				Qty.
None				
	т	able 3.6-3: Support equipment		
Description	Brand name	e Model/Part number	Serial number	Rev.

					-
Charge	r cradle, wireless power charging	CanarE Charging Cradle	REF 43-5570-007-15	001472	N/A
DC ben	ch power supply	Agilent	E3631A	KR94623593	N/A
Note:	Charging cradle only used for AC conducte	d emissions measurements			

DC bench power supply only used for frequency accuracy measurements

Table 3.6-4: Inter-connection cables

Cable description	From	То	Length (m)
None			

EUT (integral antenna)

Figure 3.6-1: Test setup diagram

Report reference ID: 447317-2R3TRFWL

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

None.

4.2 Technical judgement

None.

4.3 Deviations from laboratory test procedures

None.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics, and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 6.1-1: Measurement uncertainty calculations

Measurement		U _{cispr} dB	U _{lab} dB
Conducted disturbance at AC mains and other port power using a V-AMN	9 kHz to 150 kHz	3.8	2.9
	150 kHz to 30 MHz	3.4	2.3
Conducted disturbance at telecommunication port using AAN	150 kHz to 30 MHz	5.0	4.3
Conducted disturbance at telecommunication port using CVP	150 kHz to 30 MHz	3.9	2.9
Conducted disturbance at telecommunication port using CP	150 kHz to 30 MHz	2.9	1.4
Conducted disturbance at telecommunication port using CP and CVP	150 kHz to 30 MHz	4.0	3.1
Radiated disturbance (electric field strength in a SAC)	30 MHz to 1 GHz	6.3	5.5
Radiated disturbance (electric field strength in a FAR)	1 GHz to 6 GHz	5.2	4.7
Radiated disturbance (electric field strength in a FAR)	6 GHz to 18 GHz	5.5	5.0

Notes: Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit
- If U_{lab} is greater than U_{cispr} then:
 - compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} U_{clspr}), exceeds the disturbance limit;
 - non-compliance is deemed to occur if any measured disturbance level, increased by (Ulab Ucispr), exceeds the disturbance limit

V-AMN: V type artificial mains network

- AAN: Asymmetric artificial network
- CP: Current probe
- CVP: Capacitive voltage probe
- SAC: Semi-anechoic chamber
- FAR: Fully anechoic room

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Test equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Antenna, Horn	EMCO	3115	1033	2 years	15-Oct-2022
Antenna, Bilog	Schaffner	CBL 6111D	1763	2 years	18-Feb-2022
Triple output DC power supply 0-6v, 5A	Agilent	E3631A	1936	VOU	VOU
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	E1120	2 years	9-Dec-2023
EMI Test Receiver	Rohde & Schwarz	ESU 40	E1121	1 year	19-May-2022
DRG Horn (medium	ETS-Lindgren	3117-PA	E1160	NCR	NCR
Temperature Chamber	TESTEQUITY	115A	E1162	1 year	18-Aug-2022
System controller	Sunol Sciences	SC104V	E1191	NCR	NCR
Multimeter	Fluke	111	813	1 year	10-Sep-2022
Notes: N/A – not applicable NCR – no calibration required VOU – verify on use					
	Table	e 7.1-2: Test software	details		

Manufacturer of Software	Details
Rohde & Schwarz	EMC 32 V10.60.15

Notes: None

Section 8 Testing data

8.1 Frequency accuracy

8.1.1 References and limits

- §95.2565

- Test method: ANSI C63.10

Each MedRadio transmitter type must be designed to maintain a frequency stability of ± 100 ppm of the operating frequency over the applicable temperature range set forth in this section. Frequency stability testing shall be performed over the appropriate temperature range.

|--|

(b) 0 °C to 55 °C in the case of MedRadio programmer/control transmitters and medical body-worn transmitters

8.1.2 Test summary

Verdict	Pass		
Test date	February 2, 2022	Temperature	22 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air prossure	1015 mbar
	James Cunningham, EMC/MIL/WL Supervisor	All pressure	
	10m semi anechoic chamber		45 %
Test location	3m semi anechoic chamber	Relative humidity	
rest location	⊠ Wireless bench	Relative humidity	
	Other:		

8.1.3 Notes

The test was performed as a radiated measurement. The EUT was configured to transmit at maximum power on the middle channel.

8.1.4 Setup details

EUT power input during test	DC powered, 3.3 V via DC bench power supply
EUT setup configuration	⊠ Table-top
	Floor standing
	□ Other:

Receiver/spectrum analyzer settings:	
Resolution bandwidth	1% - 5% OBW
Video bandwidth	3*RBW
Span	Between two times and five times OBW
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize
Measurement method:	Marker signal count function of spectrum analyzer

8.1.5 Test data

Table	8.1-1:	Frequency	accuracy	test	results
-------	--------	-----------	----------	------	---------

Temperature	Voltage (V _{DC})	Center	Drift (ppm)	Limit	Verdict
(°C)		Frequency (Hz)			
55	3.3	403.658768207	5.2	±100	PASS
50	3.3	403.658186801	3.8	±100	PASS
40	3.3	403.658571785	4.7	±100	PASS
30	3.3	403.658008353	3.3	±100	PASS
20	3.3	403.656668179	Reference	Reference	Reference
10	3.3	403.656129769	1.3	±100	PASS
0	3.3	403.654845715	4.5	±100	PASS

Note: Middle channel, 403.65 MHz was evaluated.

8.1.6 Setup photos

Refer to associated Test Setup Photos report.

Figure 8.1-1: Frequency stability setup photo

8.2 Field strength of fundamental

8.2.1 References and limits

- §95.2567(a)

- Test method: ANSI C63.10

Each MedRadio transmitter type must be designed such that the MedRadio equivalent isotropically radiated power (M-EIRP) does not exceed the limits in this section. Compliance with these limits must be determined as set forth in §95.2569.

- (a) Transmitters subject to frequency monitoring—401-406 MHz. For MedRadio transmitters that are not excepted under §95.2559(b) from the frequency monitoring requirements of §95.2559(a):
 - (1) The M-EIRP within any 300 kHz bandwidth within the 402-405 MHz band must not exceed 25 microwatts.

8.2.2 Test summary

Verdict	Pass		
Test date	January 31, 2022	Temperature	19 °C
	February 1, 2022	Temperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1008 mbar
	James Cunningham, EMC/MIL/WL Supervisor	All pressure	1010 mbar
	10m semi anechoic chamber		44 %
Test location	🗵 3m semi anechoic chamber	Relative humidity	52 %
	□ Other:		

8.2.3 Notes

The test was performed as a radiated measurement. The EUT was configured to transmit at maximum power on the middle channel. The limit of 25 μ W was converted to the equivalent field strength at 3 m measurement distance in dB μ V/m:

- 1. Convert μ W to dBm: 25 μ W = 0.025 mW => 10 x LOG10(0.025) = -16.02 dBm
- 2. Convert dBm to dBµV/m at 3 m measurement distance (ERP): = EIRP (dBm) + 97.38 = -16.02 + 97.38 = 81.36 dBµV/m @ 3 m

8.2.4 Setup details

EUT power input during test	Battery powered
EUT setup configuration	🖾 Table-top
	Floor standing
	□ Other:
Measuring distance	□ 10m
	🖾 3m
	□ Other:
Antenna height variation	1–4 m
Turn table position	0 – 360°
Measurement details	Preview measurements were performed with the receiver in continuous scan or sweep mode. Emissions detected within 6 dB or above limit (minimum of 6 frequencies) were maximized by rotating the EUT and adjusting the antenna height and polarization. At the position of maximum emission, the signal was measured with the appropriate detector against the corresponding limit and recorded as the final measurement.

Receiver/spectrum analyzer settings for frequencies below 1 GHz:

Resolution bandwidth	300 kHz
Video bandwidth	1000 MHz
Detector mode	– Peak
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement)
	– 5000 ms (Final measurement)

Section 8	Testing data
Test name	Field strength of fundamental
Specification(s)	FCC Part 95 Subpart I

8.2.5 Test data

Full Spectrum

Figure 8.2-1: Field strength of fundamental, low channel (402.15 MHz) plot (400 MHz - 406 MHz)

Table 8.2-1: Field strength of fundamental, low channel (402.15 MHz) results

	Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
	402.198800	63.42	81.38	17.96	5000.0	300.000	113.0	V	275.0	25.1
otes:	¹ Field strength (dB V	//m) = receiver/spe	ectrum analyzer v	/alue (dB V) +	correction fa	ctor (dB)				

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Testing data Field strength of fundamental FCC Part 95 Subpart I

Figure 8.2-2: Field strength of fundamental, mid channel (403.65 MHz) plot (400 MHz - 406 MHz)

Table 8.2-2: Field strength of fundamental, mid channel (403.65 MHz) results

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
403.698000	62.71	81.38	18.67	5000.0	300.000	113.0	V	78.0	25.1

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB) ² Correction factors = antenna factors ACE (dB) + returned (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

			· · · · · · · · · · · ·	
Figure 8.2-3: Radiated	emissions spectral p	lot, high channel	(404.85 MHz) plo	t (400 MHz - 406 MHz)

Table 8.2-3: Radiated emissions, high channel (404.85 MHz) results

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
404.898800	61.96	81.38	19.42	5000.0	300.000	113.0	V	77.0	25.2

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Testing data Field strength of fundamental FCC Part 95 Subpart I

Final Results:

Table 8.2-4: ERP final results

Channel (MHz)	Field Strength @ 3m (dBµV/m)	ERP (dBm)	ERP (μW)	Limit (μW)
402.15	63.42	-33.96	0.402	25
403.65	62.71	-34.67	0.341	25
404.85	61.96	-35.42	0.287	25

Sample Calculation (402.15 MHz):

ERP (dBm) = Field Strength @ 3m (dB μ V/m) - 97.38 ERP (dBm) = 63.42 - 97.38 ERP (dBm) = -33.96 dBm

$$\begin{split} & \mathsf{ERP}\;(\mu\mathsf{W}) = 10^{(\mathsf{ERP}(\mathsf{dBm})/10)*1000} \\ & \mathsf{ERP}\;(\mu\mathsf{W}) = 10^{(-33.96/10)*1000} \\ & \mathsf{ERP}\;(\mu\mathsf{W}) = 0.40\;\mu\mathsf{W} \end{split}$$

8.2.6 Setup photos

Refer to associated Test Setup Photos report.

Figure 8.2-4: Field strength of fundamental setup photo

8.3 Emission bandwidth; 20 dB bandwidth

8.3.1 References and limits

- §95.2573(a)

- Test method: ANSI C63.10

Each MedRadio transmitter type must be designed such that the MedRadio emission bandwidth does not exceed the applicable authorized bandwidth set forth in this section.

(a) For MedRadio transmitters operating in the 402-405 MHz band, the maximum authorized bandwidth is 300 kHz. Such transmitters must not use more than 300 kHz of bandwidth (total) during a MedRadio communications session. This provision does not preclude full duplex or half duplex communications provided that the total bandwidth of all of the channels employed in a MedRadio communications session does not exceed 300 kHz.

8.3.2 Test summary

Verdict	Pass		
Test date	January 31, 2022	Temperature	19 °C
Test engineer	Len Severane EMC Test Engineer		20 C
rest engineer	James Cunningham, EMC/MIL/WL Supervisor	Air pressure	1008 mbar 1010 mbar
	10m semi anechoic chamber		44 %
Test location	🗵 3m semi anechoic chamber	Relative humidity	52 %
	□ Other:		

8.3.3 Notes

The test was performed as a radiated measurement with the EUT oriented to the position of maximum fundamental emission. The EUT was configured to transmit at maximum power on the lowest, middle, and highest channels.

The spectrum analyzer was set to a 5-minute sweep time and left to sweep on a MaxHold for ~ 1 hour. This was sufficient time to capture all transient modulation products.

Resolution bandwidth:
Number of sweep points:
Frequency span:
Min. time per sweep point:
Number of sweeps in 1 hour:
Actual time per sweep point:

30 kHz 625 500 kHz 5 seconds 12 12 x (500 kHz / 625 sweep points) = 9.6 seconds

Figure 8.3-1: Duty cycle

8.3.4 Setup details

EUT power input during test	Battery powered
EUT setup configuration	⊠ Table-top
	Floor standing
	Other:

Receiver / spectrum analyzer settings:

Resolution bandwidth	1% - 5% OBW
Video bandwidth	3*RBW
Span	Between 1.5 times and 5 times OBW
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

8.3.5 Test data

Table 8.3-1: Emission bandwidth; 20 dB bandwidth test results

Test Frequency (MHz)	20 dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
402.15	40.87	300	259.13
403.65	12.82	300	287.18
404.85	12.02	300	287.98

Date: 31.JAN.2022 17:35:30

Figure 8.3-2: Emission bandwidth; 20 dB bandwidth, low channel (402.15 MHz) Date: 31.JAN.2022 18:22:07

Figure 8.3-3: Emission bandwidth; 20 dB bandwidth, mid channel (403.65 MHz) Section 8 Test name Specification(s) Testing data Emission bandwidth; 20 dB bandwidth FCC Part 95 Subpart I

Date: 1.FEB.2022 13:53:50

Figure 8.3-4: Emission bandwidth; 20 dB bandwidth, high channel (404.85MHz)

8.3.6 Setup photos

Refer to associated Test Setup Photos report.

Figure 8.3-5: Emission bandwidth; 20 dB bandwidth setup photo

8.4 Transmitter unwanted emissions and band edges

8.4.1 References and limits

- §95.2579

- Test method: ANSI C63.10

Unwanted emission field strength limits and attenuation requirements apply to each MedRadio transmitter type, as set forth in this section and part 2.

- (a) Field strength limits. The field strengths of unwanted emissions from each MedRadio transmitter type, measured at a distance of 3 meters, must not exceed the field strength limits shown in the table in this paragraph for the indicated frequency ranges, if the frequencies of these emissions are:
 - (1) More than 250 kHz outside of the 402-405 MHz band (for devices designed to operate in the 402-405 MHz band);

Frequency (MHz)	Field strength (µV/m at 3 meters)
30 - 88	100
88 - 216	150
216 – 960	200
Above 960	500

Note to table in paragraph (a)(5): At the boundaries between frequency ranges, the tighter limit (lower field strength) applies. Below 1 GHz, field strength is measured using a CISPR quasi-peak detector. Above 1 GHz, field strength is measured using an average detector with a minimum reference bandwidth of 1 MHz. See also part 2, subpart J of this chapter.

(b) Harmonic emissions. Radiated unwanted emissions from a MedRadio transmitter type must be measured to at least the tenth harmonic of the highest fundamental frequency emitted.

(c) Attenuation requirements, 402-405 MHz. For MedRadio transmitter types designed to operate in the 402-405 MHz band, unwanted emissions must be attenuated below the maximum permitted transmitter output power by at least:

- (1) 20 dB, on any frequency within the 402-405 MHz band that is more than 150 kHz away from the center frequency of the occupied bandwidth;
- (g) Measurements. Compliance with the limits in paragraphs (c), (d), and (e) of this section is based on the use of measurement instrumentation using a peak detector function with an instrument reference bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.4.2 Test summary

Verdict	Pass		
Test date	January 31, 2022	Temperature	19 °C
	February 1, 2022	remperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1008 mbar
	James Cunningham, EMC/MIL/WL Supervisor	All pressure	1010 mbar
	10m semi anechoic chamber		44 %
Test location	🖾 3m semi anechoic chamber	Relative humidity	52 %
	Other:		
		-	

8.4.3 Notes

The test was performed as a radiated measurement. The EUT was configured to transmit at maximum power on the middle channel. The spectrum was searched from 30 MHz to 5 GHz (> 10th harmonic of the highest transmit frequency). Measurements were performed at a 3 m measurement distance. Spectral plots are corrected with their associate transducer factors (i.e., antenna factors, cable loss, amplifier gains, etc.).

8.4.4 Setup details

EUT power input during test	Battery powered
EUT setup configuration	🖂 Table-top
	Floor standing
	□ Other:
Measuring distance	□ 10m
	🖂 3m
	Other:
Antenna height variation	1–4 m
Turn table position	0 – 360°
Measurement details	Preview measurements were performed with the receiver in continuous scan or sweep mode. Emissions detected
	within 6 dB or above limit (minimum of 6 frequencies) were maximized by rotating the EUT and adjusting the
	antenna height and polarization. At the position of maximum emission, the signal was measured with the
	appropriate detector against the corresponding limit and recorded as the final measurement.

Receiver/spectrum analyzer settings for frequencies below 1 GHz:

kHz
Peak (Preview measurement)
Quasi-peak (Final measurement)
Hold
100 ms (Peak preview measurement)
5000 ms (Quasi-peak final measurement)
k : 1

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

Resolution bandwidth	1 MHz
Detector mode	Peak (Preview measurement)
	Peak and Average (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement)
	 5000 ms (Peak and Average final measurement)

8.4.5 Test data

Table 8.4-1: Radiated emissions results summary

Frequency (MHz)	Field strength Limit	Field strength limit	Verdict (worst case
	(µV/m at 3 meters)	(dBµV/m at 3 meters)	margin)
30 - 88	100	40.0 (quasi-peak)	Pass (9.29 dB)
88-216	150	43.5 (quasi-peak)	Pass (16.20 dB)
216 - 960	200	46.0 (quasi-peak)	Pass (11.51 dB)
Above 960	500	53.9 (average)	Pass (20.10 dB)
		73.9 (peak)	Pass (31.65 dB)

Full Spectrum

Figure 8.4-1: Radiated emissions spectral plot, low channel (402.15 MHz) (30 MHz - 1 GHz)

Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB/m)
				(ms)					• • •
60.801333	25.69	40.00	14.31	5000.0	120.000	100.0	V	308.0	12.7
113.666333	27.30	43.50	16.20	5000.0	120.000	369.0	V	170.0	19.1
804.691000	31.49	46.00	14.51	5000.0	120.000	141.0	V	278.0	31.8
821.235333	31.91	46.00	14.09	5000.0	120.000	298.0	Н	0.0	32.3
863.086667	32.56	46.00	13.44	5000.0	120.000	153.0	V	239.0	33.0
949.053333	34.27	46.00	11.73	5000.0	120.000	385.0	V	20.0	34.6

Notes: ¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: 447317-2R3TRFWL

Figure 8.4-2: Radiated emissions spectral plot, low channel (402.15 MHz) (1 GHz - 5 GHz)

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1349.852067	39.69		73.90	34.21	5000.0	1000.000	192.0	V	201.0	-13.4
1349.852067		32.42	53.90	21.48	5000.0	1000.000	192.0	V	201.0	-13.4
1799.846300		33.60	53.90	20.30	5000.0	1000.000	210.0	V	178.0	-10.7
1799.846300	41.94		73.90	31.96	5000.0	1000.000	210.0	V	178.0	-10.7
1979.963200	39.43		73.90	34.47	5000.0	1000.000	287.0	V	291.0	-9.9
1979.963200		26.18	53.90	27.72	5000.0	1000.000	287.0	V	291.0	-9.9
3446.848667		27.34	53.90	26.56	5000.0	1000.000	115.0	V	234.0	-5.5
3446.848667	40.58		73.90	33.32	5000.0	1000.000	115.0	V	234.0	-5.5
3969.224300	41.00		73.90	32.90	5000.0	1000.000	318.0	Н	234.0	-3.3
3969.224300		27.91	53.90	25.99	5000.0	1000.000	318.0	Н	234.0	-3.3
4743.795300	41.63		73.90	32.27	5000.0	1000.000	183.0	V	0.0	-0.7
4743.795300		28.58	53.90	25.32	5000.0	1000.000	183.0	V	0.0	-0.7

Table 8.4-3: Radiated emissions, low channel (402.15 MHz) results

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.4-3: Radiated emissions spectral plot, mid channel (403.65 MHz) (30 MHz - 1 GHz)

Table 8 A-A: Radiated	emissions	mid channel	1103 65 MH7) roculta
Table 8.4-4: Rudialea	emissions	, mia chamer	(403.05 IVITIZ	resuits

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
30.000000	24.22	40.00	15.78	5000.0	120.000	375.0	Н	43.0	26.6
60.824333	28.14	40.00	11.86	5000.0	120.000	107.0	V	315.0	12.7
741.591667	31.05	46.00	14.95	5000.0	120.000	303.0	Н	222.0	31.4
871.175000	32.66	46.00	13.34	5000.0	120.000	148.0	V	307.0	33.0
903.480333	33.01	46.00	12.99	5000.0	120.000	147.0	V	0.0	33.3
949.013333	34.32	46.00	11.68	5000.0	120.000	386.0	V	240.0	34.6

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Figure 8.4-4: Radiated emissions spectral plot,	, mid channel (403.65 MHz) (1 GHz - 5 GH	z)
3	,	

Table 8.4-5 Radiated	emissions	mid channel	(403 65 MHz) results
Tuble 0.4 9. Maulaleu	CIIII3310113,	mu chumici	+03.03 WII 12	, icsuits

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1350.013500	41.20		73.90	32.70	5000.0	1000.000	193.0	V	257.0	-13.4
1350.013500		33.83	53.90	20.07	5000.0	1000.000	193.0	V	257.0	-13.4
1800.123834		30.95	53.90	22.95	5000.0	1000.000	134.0	V	272.0	-10.7
1800.123834	41.14		73.90	32.76	5000.0	1000.000	134.0	V	272.0	-10.7
2100.008567		32.35	53.90	21.55	5000.0	1000.000	228.0	V	20.0	-10.0
2100.008567	42.00		73.90	31.90	5000.0	1000.000	228.0	V	20.0	-10.0
2713.824666		27.22	53.90	26.68	5000.0	1000.000	189.0	V	64.0	-7.8
2713.824666	40.38		73.90	33.52	5000.0	1000.000	189.0	V	64.0	-7.8
3570.785800		27.99	53.90	25.91	5000.0	1000.000	323.0	V	270.0	-4.9
3570.785800	41.27		73.90	32.63	5000.0	1000.000	323.0	V	270.0	-4.9
4687.166800	42.25		73.90	31.65	5000.0	1000.000	402.0	V	210.0	-0.7
4687.166800		28.94	53.90	24.96	5000.0	1000.000	402.0	V	210.0	-0.7

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.4-5: Radiated emissions spectral plot, high channel (404.85 MHz) (30 MHz - 1 GHz)

Table 8.4-6: Radiated	emissions, hig	h channel	(404.85 MHz) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
60.847333	30.71	40.00	9.29	5000.0	120.000	107.0	V	172.0	12.7
699.009333	30.18	46.00	15.82	5000.0	120.000	161.0	V	0.0	30.6
702.461333	30.11	46.00	15.89	5000.0	120.000	308.0	V	238.0	30.5
702.815333	30.11	46.00	15.89	5000.0	120.000	292.0	V	0.0	30.5
836.234667	32.07	46.00	13.93	5000.0	120.000	401.0	V	174.0	32.4
956.179333	34.49	46.00	11.51	5000.0	120.000	193.0	н	0.0	34.7

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Figure 8.4-6: Radiated emissions spectral plot, high channel (404.85 MHz) (1 GHz - 5 GHz)

Table 8.4-7 : Radiatea	l emissions, high channel	(404.85 MHz) results	

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(19182)	(aeµv/m)	(d6µv/m)	(ασμν/m)	(ab)	(ms)	(KHZ)	(cm)		(deg)	(ab/m)
1349.989167	40.65		73.90	33.25	5000.0	1000.000	194.0	V	288.0	-13.4
1349.989167		33.80	53.90	20.10	5000.0	1000.000	194.0	V	288.0	-13.4
1927.441333		25.39	53.90	28.51	5000.0	1000.000	183.0	V	227.0	-10.0
1927.441333	38.92		73.90	34.98	5000.0	1000.000	183.0	V	227.0	-10.0
2843.056534		27.07	53.90	26.83	5000.0	1000.000	348.0	Н	260.0	-7.5
2843.056534	40.45		73.90	33.45	5000.0	1000.000	348.0	Н	260.0	-7.5
3563.528433	40.54		73.90	33.36	5000.0	1000.000	153.0	Н	200.0	-5.0
3563.528433		27.66	53.90	26.24	5000.0	1000.000	153.0	Н	200.0	-5.0
4080.965300	40.77		73.90	33.13	5000.0	1000.000	162.0	Н	231.0	-2.8
4080.965300		27.65	53.90	26.25	5000.0	1000.000	162.0	Н	231.0	-2.8
4716.988967	41.88		73.90	32.02	5000.0	1000.000	305.0	Н	174.0	-0.6
4716.988967		28.96	53.90	24.94	5000.0	1000.000	305.0	Н	174.0	-0.6
Notes: ¹ Field strengt	th (dB V/m) = rece	eiver/spectrum an	alyzer value (dB	V) + correctio	on factor (dB)				

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.4-7: Radiated emissions spectral plot, low band edge (401.75 MHz - 403 MHz)

Table 8.4-8: Radiated emissions, low band edge results

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
401.878708	30.53	56.00	25.47	5000.0	10.000	127.0	Н	333.0	25.1

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Figure 8.4-8: Radiated emissions spectral plot, high band edge (404 MHz - 405.25 MHz)

Table 8.4-9: Radiated emissions, high band edge results

	Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
	405.085708	28.20	56.00	27.80	5000.0	10.000	294.0	V	0.0	25.2
Notes:	¹ Field strength (dB V	//m) = receiver/spe	ectrum analyzer v	value (dB V) +	correction fa	ctor (dB)				

Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

8.4.6 Setup photos

Refer to associated Test Setup Photos report.

Figure 8.4-9: Transmitter unwanted emissions setup photo

8.5 AC power line conducted emissions

8.5.1 References and limits

- §15.207(a)

- Test method: ANSI C63.4

For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequency ranges.

Frequency of emission,	Conc	łucted limit, dBμV
MHz	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

- Note: * - Decreases with the logarithm of the frequency.

8.5.2 Test summary

Verdict	Pass		
Test date	February 1, 2022	Temperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1010 mbar
Test location	⊠ Ground plan □ Other:	Relative humidity	52 %

8.5.3 Notes

Testing was performed with the EUT transmitting on a fixed channel at full power. Lowest, middle, and highest channels were evaluated.

The spectral plots within this section have been corrected with all relevant transducer factors.

8.5.4 Setup details

EUT power input during test	120 VAC/60 Hz, EUT connected to cradle, charging via wireless power transfer
EUT setup configuration	🖾 Table-top
	□ Floor standing
	Other:
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	 Peak and Average (Preview measurement)
	 Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak and Average preview measurement)
	– 5000 ms (Quasi-peak final measurement)
	 5000 ms (CAverage final measurement)

Section 8	Testing data
Test name	AC power line conducted emissions
Specification(s)	FCC Part 95 Subpart I

8.5.5 Test data

Full Spectrum

Figure 8.5-1: Conducted emissions at mains port spectral plot, low channel (402.15 MHz) (150 kHz - 30 MHz)

Table 8.5-1: Conducted emissions at mains port, low channel (402.15 MHz) results

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	Filter	Corr. (dB)
()	()	((()	(ms)	()			()
0.398000		41.96	47.90	5.93	5000.0	9.000	L1	ON	19.4
0.398000	51.09		57.90	6.80	5000.0	9.000	L1	ON	19.4
0.426000		36.89	47.33	10.44	5000.0	9.000	L1	ON	19.4
0.426000	47.56		57.33	9.77	5000.0	9.000	L1	ON	19.4
0.674000		28.85	46.00	17.15	5000.0	9.000	L1	ON	19.4
0.674000	41.23		56.00	14.77	5000.0	9.000	L1	ON	19.4
0.694000		30.85	46.00	15.15	5000.0	9.000	L1	ON	19.4
0.694000	44.52		56.00	11.48	5000.0	9.000	L1	ON	19.4
0.706000		27.79	46.00	18.21	5000.0	9.000	L1	ON	19.4
0.706000	40.22		56.00	15.78	5000.0	9.000	L1	ON	19.4
0.790000		34.52	46.00	11.48	5000.0	9.000	L1	ON	19.4
0.790000	45.00		56.00	11.00	5000.0	9.000	L1	ON	19.4
1.106000		25.14	46.00	20.86	5000.0	9.000	L1	ON	19.4
1.106000	38.69		56.00	17.31	5000.0	9.000	L1	ON	19.4
1.122000		29.04	46.00	16.96	5000.0	9.000	L1	ON	19.4
1.122000	41.95		56.00	14.05	5000.0	9.000	L1	ON	19.4

¹ Result (dB μ V) = receiver analyzer value (dB μ V) + correction factor (dB).

Notes:

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Testing data AC power line conducted emissions FCC Part 95 Subpart I

Full Spectrum

Figure 8.5-2: Conducted emissions at mains port spectral plot, mid channel (403.65 MHz) (150 kHz - 30 MHz)

Table 8.5-2: Conducted emissions at mains port, mid channel (403.65 MHz) results

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	Filter	Corr. (dB)
(2)	(0040)	(0041)	(00,00)	(02)	(ms)	(1112)			(42)
0.386000		26.30	48.15	21.85	5000.0	9.000	L1	ON	19.4
0.386000	44.84		58.15	13.31	5000.0	9.000	L1	ON	19.4
0.398000		41.58	47.90	6.32	5000.0	9.000	L1	ON	19.4
0.398000	50.76		57.90	7.14	5000.0	9.000	L1	ON	19.4
0.430000		37.30	47.25	9.95	5000.0	9.000	L1	ON	19.4
0.430000	47.35		57.25	9.91	5000.0	9.000	L1	ON	19.4
0.478000		21.62	46.37	24.75	5000.0	9.000	L1	ON	19.4
0.478000	37.71		56.37	18.66	5000.0	9.000	L1	ON	19.4
0.654000		24.01	46.00	21.99	5000.0	9.000	L1	ON	19.4
0.654000	35.75		56.00	20.25	5000.0	9.000	L1	ON	19.4
0.678000		30.05	46.00	15.95	5000.0	9.000	L1	ON	19.4
0.678000	41.22		56.00	14.78	5000.0	9.000	L1	ON	19.4
0.702000		28.48	46.00	17.52	5000.0	9.000	L1	ON	19.4
0.702000	42.56		56.00	13.44	5000.0	9.000	L1	ON	19.4
0.710000	34.94		56.00	21.06	5000.0	9.000	Ν	ON	19.4
0.710000		24.65	46.00	21.35	5000.0	9.000	Ν	ON	19.4
0.718000		29.00	46.00	17.00	5000.0	9.000	L1	ON	19.4
0.718000	43.41		56.00	12.59	5000.0	9.000	L1	ON	19.4
0.794000	42.85		56.00	13.15	5000.0	9.000	L1	ON	19.4
0.794000		32.80	46.00	13.20	5000.0	9.000	L1	ON	19.4

Notes:

 1 Result (dBµV) = receiver analyzer value (dBµV) + correction factor (dB). 2 Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.5-3: Conducted emissions at mains port spectral plot, high channel (404.85 MHz) (150 kHz - 30 MHz)

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.350000		26.87	48.96	22.09	5000.0	9.000	L1	ON	19.4
0.350000	41.40		58.96	17.57	5000.0	9.000	L1	ON	19.4
0.398000		42.16	47.90	5.74	5000.0	9.000	L1	ON	19.4
0.398000	51.10		57.90	6.79	5000.0	9.000	L1	ON	19.4
0.434000		27.62	47.18	19.56	5000.0	9.000	L1	ON	19.4
0.434000	43.73		57.18	13.44	5000.0	9.000	L1	ON	19.4
0.682000		32.00	46.00	14.00	5000.0	9.000	L1	ON	19.4
0.682000	44.51		56.00	11.49	5000.0	9.000	L1	ON	19.4
0.706000		28.54	46.00	17.46	5000.0	9.000	L1	ON	19.4
0.706000	42.85		56.00	13.16	5000.0	9.000	L1	ON	19.4
0.794000		30.82	46.00	15.18	5000.0	9.000	L1	ON	19.4
0.794000	41.70		56.00	14.30	5000.0	9.000	L1	ON	19.4

Table 8.5-3: Conducted emissions at mains port, high channel (404.85 MHz) results

Notes: ¹ Result ($dB\mu V$) = receiver analyzer value ($dB\mu V$) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

8.5.6 Setup photos

Refer to associated Test Setup Photos report.

Figure 8.5-4: AC power line conducted emissions setup photo

8.6 99% Occupied bandwidth

8.6.1 References and limits

- §2.202(a)

- Test method: ANSI C63.10
- (a) Occupied bandwidth. The frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. In some cases, for example multichannel frequency-division systems, the percentage of 0.5 percent may lead to certain difficulties in the practical application of the definitions of occupied and necessary bandwidth; in such cases a different percentage may prove useful.

8.6.2 Test summary

Verdict	Pass		
Test date	January 31, 2022	Temperature	19 °C
	February 1, 2022	remperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	ngineer 1008 mbar	
	James Cunningham, EMC/MIL/WL Supervisor	All pressure	1010 mbar
	10m semi anechoic chamber		44 %
Test location	🖾 3m semi anechoic chamber	Relative humidity	52 %
	□ Other:		

8.6.3 Notes

The test was performed as a radiated measurement with the EUT oriented to the position of maximum fundamental emission. The EUT was configured to transmit at maximum power on the lowest, middle, and highest channels.

8.6.4 Setup details

EUT power input during test	Battery powered
EUT setup configuration	⊠ Table-top
	Floor standing
	□ Other:

Receiver / spectrum analyzer settings:

never (speen and analyzer settings)	
Resolution bandwidth	1% - 5% OBW
Video bandwidth	3*RBW
Span	Between 1.5 times and 5 times OBW
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

8.6.5 Test data

Table 8.6-1: 99% Occupied	bandwidth	test results
---------------------------	-----------	--------------

Test Frequency (MHz)	99% Bandwidth (kHz)
402.15	435.10
403.65	463.94
404.85	404.86

Date: 31.JAN.2022 17:36:24

Date: 31.JAN.2022 18:23:14

Figure 8.6-1: 99% Occupied bandwidth, low channel (402.15 MHz)

* RBW 3 kHz * VBW 10 kHz * SWT 360 s Ø Marker 1 [T1] 61.28 dBµV/: 404.857211538 MH Ref 72 dBµV/r • Att 0 dB 1 PK VIEW 404.85 MHz 50 kHz/

Date: 1.FEB.2022 13:57:05

Figure 8.6-3: 99% Occupied bandwidth, high channel (404.85 MHz)

8.6.6 Setup photos

Refer to associated Test Setup Photos report.

Figure 8.6-4: 99% Occupied bandwidth setup photo

Figure 8.6-2: 99% Occupied bandwidth, mid channel (403.65 MHz)

Section 9 Attestation Letter

Not applicable.

End of test report