

ONE WORLD OUR APPROVAL

Test report

436028-1TRFWL

Date of issue: July 16, 2021

Applicant: Canary Medical

Product: Base Station

Model: CBS

FCC ID: 2AYAJ-CBS

Specifications:

FCC 47 CFR Part 15 Subpart C §15.249

Operation within the bands 902-928 MHz, 2400 – 2483.5 MHz, 5725 – 5875 MHz and 24.0 – 24.25 GHz

Nemko USA Inc., a testing laboratory, is accredited by NVLAP. The tests included in this report are within the scope of this accreditation.

www.nemko.com

Lab and test locations

Company name	Nemko USA Inc.	
Address	2210 Faraday Ave, Suite 150	
City	Carlsbad	
State	California	
Postal code	92008	
Country	USA	
Telephone	+1 760 444 3500	
Website	www.nemko.com	
FCC Site Number	Test Firm Registration Number: 392943 Designation Number: US5058	
ISED Test Site	2040B-3	

Tested by	Martha Espinoza, Wireless Engineer
Reviewed by	James Cunningham, EMC/MIL/WL Supervisor
Review date	July 16, 2021
Reviewer signature	281

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of G	Contents	3
Section 1	Report summary	4
1.1	Applicant	4
1.2	Manufacturer	4
1.3	Test specifications	4
1.4	Test methods	4
1.5	Exclusions	4
1.6	Statement of compliance	4
1.7	Test report revision history	4
Section 2	Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements	5
2.2	FCC Part 15.249 Subpart C, intentional radiators test results	5
Section 3	Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	EUT exercise and monitoring details	6
3.5	EUT setup details	7
Section 4	Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section 5	Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section 6	Measurement uncertainty	10
6.1	Uncertainty of measurement	
Section 7	Test equipment	
7.1	Test Equipment	11
Section 8	Testing data	12
8.1	Occupied bandwidth: 20 dB Bandwidth	12
8.2	Field strength of fundamental, harmonics and spurious emissions	14
8.3	Emissions at the band edges	26
8.4	AC Power Line Conduced Emissions	
8.5	99% Occupied Bandwidth	
Section 9		
9.1	Radiated emissions set-up	36

Section 1 Report summary

1.1 Applicant

Company name	Canary Medical
Address	2710 Loker Ave West, Suite 350
City	Carlsbad
Province/State	CA
Postal/Zip code	92010
Country	USA

1.2 Manufacturer

Company name	Canary Medical
Address	2710 Loker Ave West, Suite 350
City	Carlsbad
Province/State	CA
Postal/Zip code	92010
Country	USA

1.3 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause §15.249	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz

1.4 Test methods

ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.5 Exclusions

None

1.6 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.7 Test report revision history

Table 1.7-1: Test report revision history	
Revision #	Details of changes made to test report
436028-1TRFWL	Original report issued

Notes: None

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C, general requirements

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.203	Antenna requirement	Pass ¹
§15.215(c)	20 dB occupied bandwidth	Pass

Notes: ¹EUT has an integrated antenna and it is not user accessible.

2.2 FCC Part 15.249 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.249(a)	Radiated emissions not in restricted bands	Pass
§15.249(b)	Fixed Point-to-Point operation in the 24.0–24.25 GHz band	Not applicable
§15.249(d)	Spurious emissions (except harmonics)	Pass

Notes: None

Section 3 Equipment under test (EUT) details

3.1 Sample information

Receipt date	June 21, 2021
Nemko sample ID number	NEx: 436028

3.2 EUT information

Product name	Base station
Model	BS3
Serial number	000010 (conducted sample); 000014 (radiated sample)
Part number	N/A

3.3 Technical information

Frequency band	2400 – 2483.5 MHz
Minimum frequency (MHz)	2410
Maximum frequency (MHz)	2430
Type of modulation	On-Off Keying (OOK)
Emission classification	N/A
Power requirements	USB Port
Antenna information	+4.94 dBi maximum antenna gain; -2.10 dBi average antenna gain reported. EUT has two antennas only for diversity, only one is used at once and both are identical according to manufacturer. Antenna one was considered as worst case and it was used for all the tests reported in this document.

3.4 EUT exercise and monitoring details

Radiated sample was configured through a console app (previously installed in a laptop) provided by client. The connection between laptop and EUT was though a USB cable. The console app executes the device according to the channel selected: low, middle or high channel. Each fix channel was programmed though cmd window, following the commands provided by manufacturer. The unit was able to transmit continuously in autonomous mode.

3.5 EUT setup details

l able	3.5-1: EUT	interface	ports

Description	Qty
USB Port	1

Description	Brand name	Model/Part number	Serial number	Rev.
Laptop	Dell	Vostro14 3000	N/A	
Table 3.5-3: Inter-connection cables				
		_		

Cable description	From	То	Length (m)
USB Cable	EUT	Laptop	2

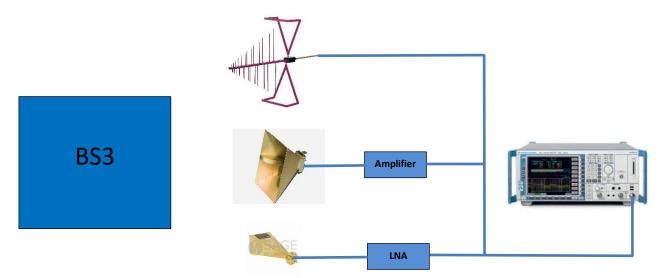


Figure 3.5-1: Test radiated setup

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15-30 °C
Relative humidity	20-75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements/ including OBW	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	1.38
Supply Voltages	0.05%
Time	2.09%

Table 6.1-1: Measurement uncertainty.

Important note: All testing in this document were done using the maximum radiation pattern from transmitter antenna for covering the worst case in all the measurements.

Section 7 Test equipment

7.1 Test Equipment

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU40	E1121	19 May 2021	19 May 2022
Spectrum analyzer	Rohde & Schwarz	FSV40	E1120	19 Nov 2019	19 Nov 2021
System controller	Sunol sciences	SC104V	E1191	NCR	NCR
DRG Horn	ETS-Lindgren	3117-PA	E1160	02 Dec 2020	02 Dec 2021
Bilog Antenna	Schaffner	CBL6111C	1763	18 Feb 2020	18 Feb 2022
Horn, Antenna	EMCO	3115	1033	15 Oct 2020	15 Oct 2021
Antenna Horn	Sage	SAR-2309-42-S2	E1143	13 Nov 2020	13 Nov 2022
Low Noise Amplifier	Sage	SBL-1834034030-KFKF	E1228	NCR	NCR
		Table 7.1-2: Test Softw	vare		
Manufacturer of Software	Details				
Rohde & Schwarz	EMC 32 V10.60.15				

Section 8 Testing data

8.1 Occupied bandwidth: 20 dB Bandwidth

8.1.1 References

FCC

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through §15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80 % of the permitted band in order to minimize the possibility of out-of-band operation.

8.1.2 Test summary

Verdict	Pass		
Test date	July 9, 2021	Temperature	20°C
Test engineer	Martha Espinoza	Air pressure	1007 mbar
Test location	3m semi anechoic chamber	Relative humidity	49 %

8.1.3 Notes

Testing was performed with EUT transmitting on a fixed channel at full power. The transmission was continuously: Low, middle, and high channel were evaluated.

8.1.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless Bench
Measurement method	ANSI C63.10

Receiver/spectrum analyzer settings:

Resolution bandwidth	1% - 5% OBW
Video bandwidth	3*RBW
Span	Between two times and five times OBW
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

8.1.5 Test data

Test Frequency (MHz)	20 dB Bandwidth (kHz)
2410	681.354
2420	680.229
2430	1379.676

Table 8.1-1: 20 dB occupied bandwidth test data

Spectrum

Ref Level 3.00 dBm

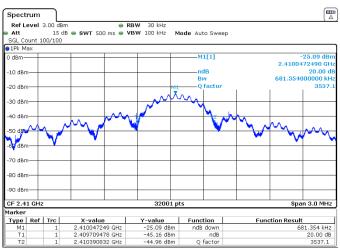


Figure 8.1-1: Low channel (2410 MHz): 20 dB OBW plot

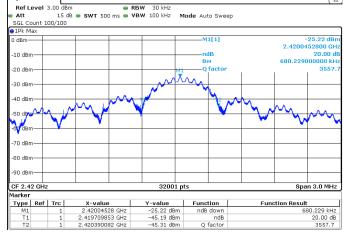


Figure 8.1-2: Middle channel (2420 MHz): 20 dB OBW plot

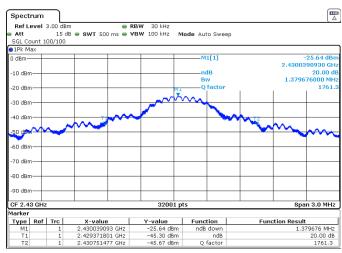


Figure 8.1-3: High channel (2430 MHz): 20 dB OBW plot

8.2 Field strength of fundamental, harmonics and spurious emissions

8.2.1 Definitions and limits

FCC:

The field strength of emissions from intentional radiators shall comply with the following table. Field strength limits are specified at 3 meters.

Fundamental	Field strength Field strength Field streng		Field strength of	Field strength of						
frequency (MHz)	(mv/m)	(dBµV/m)	harmonics (mv/m)	harmonics (dBµV/m)						
902 - 928	50	93.97	500	53.97						
2400 - 2483.5	50	93.97	500	53.97						
5725 - 5875	50	93.97	500	53.97						
24000 - 24250	250	107.95	2500	67.95						

Table 8.2-1: Field strength limits

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

§15.209 Radiated emission limits; general requirements

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Table 8.2-2: Spurious emissions limits									
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)							
30 - 88	40.00	3							
88 - 216	43.52	3							
216 - 960	46.02	3							
Above 960	53.97	3							

8.2.2 Test summary

Verdict	Pass	ass								
Test date	July 6, 2021		23°C							
	July 7, 2021	Temperature	24°C							
	July 8, 2021	8, 2021								
Test engineer	Martha Espinoza	Air pressure	1005; 1002 ; 1001 mbar							
Test location	3m semi anechoic chamber	Relative humidity	61; 65; 65%							

8.2.3 Notes

Testing was performed with EUT transmitting on a fixed channel at full power. The transmission made in continuous wave: low, middle, and high channel were evaluated. The spectrum was search from 30 MHz to 26 GHz (above the 10th harmonic of the highest transmit frequency). Radiated measurements were performed at a 3 m measurement distance.

8.2.4 Setup details

EUT setup configuration	Tabletop
Test facility	3m Chamber
Measurement method	ANSI C63.10

Spectrum analyzer settings for conducted spurious emissions:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

Receiver settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (preview measurements)
	Quasi-Peak (final measurements)
Trace mode	Max Hold
Measurement time	5 s (final measurements)

Receiver settings for radiated measurements within restricted bands above 1 GHz (Fundamental signal and range from 18-26 GHz):

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Average and peak (final measurements)
Trace mode	Max Hold
Measurement time	5 s (final measurements)
Net a The second s	

Note: The sweep measurement in this range was made at 120 kHz RBW to compliance with the 6 dB noise floor under limit line as FCC requires. Maximization and final measurements were done at 1 MHz RBW.

Testing was performed with EUT transmitting on a fixed channel at full power. The transmission was continuously. Low, middle, and high channel were evaluated. The unit was able to transmit at 100 % of duty cycle

8.2.5 Test data

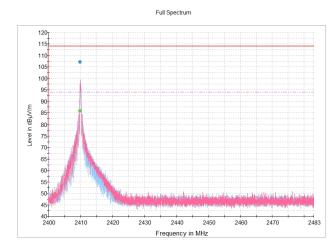


Figure 8.2-1: Field strength of fundamental: low channel (2410 MHz)

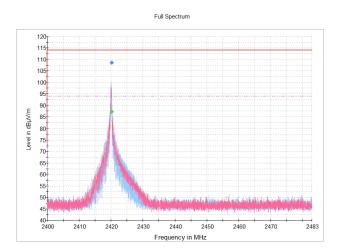


Figure 8.2-2: Field strength of fundamental: middle channel (2420 MHz)
Full Spectrum

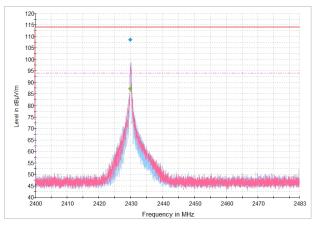
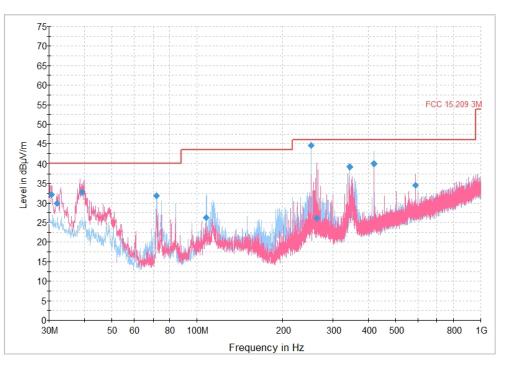



Figure 8.2-3: Field strength of fundamental: high channel (2430 MHz)

	· · · · · · · · · · · · · · · · · · ·										
Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	
					(ms)						
2409.870000		85.87	93.97	8.10	5000.0	1000.000	150.0	Н	150.0	35.3	
2409.870000	107.25		114.00	6.75	5000.0	1000.000	150.0	Н	150.0	35.3	
2420.220000	108.61		114.00	5.39	5000.0	1000.000	128.0	Н	157.0	35.3	
2420.220000		87.20	93.97	6.77	5000.0	1000.000	128.0	Н	157.0	35.3	
2429.890000		87.14	93.97	6.83	5000.0	1000.000	130.0	Н	155.0	35.3	
2429.890000	108.55		114.00	5.45	5000.0	1000.000	130.0	Н	155.0	35.3	

Table 8.2-3: Peak field strength of fundamental without correction factors applied

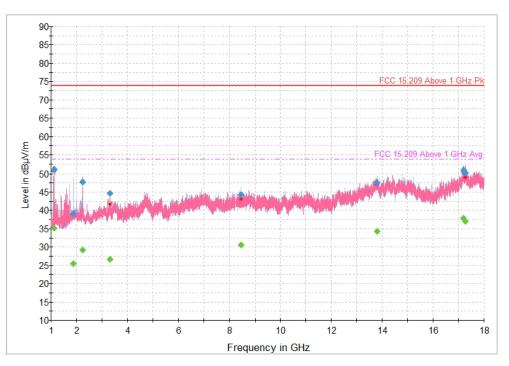
The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2-4: Radiated emissions, low channel (2410 MHz), 30 - 1000 MHz

Frequency (MHz)	QuasiPeak (dBµV/m)					Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)			
30.640000	32.14	40.00	7.86	5000.0	120.000	100.0	V	243.0	26.2			
31.991667	29.91	40.00	10.09	5000.0	120.000	118.0	V	209.0	25.4			
39.168333	32.77	40.00	7.23	5000.0	120.000	100.0	V	256.0	21.5			
71.953333	31.84	40.00	8.16	5000.0	120.000	234.0	Н	195.0	13.9			
107.964167	26.21	43.50	17.29	5000.0	120.000	205.0	Н	198.0	18.6			
252.008333	44.53	46.00	1.47	5000.0	120.000	223.0	Н	176.0	21.1			
264.012500	26.06	46.00	19.94	5000.0	120.000	244.0	V	266.0	21.8			
344.433333	39.16	46.00	6.84	5000.0	120.000	110.0	Н	341.0	23.5			
419.980833	39.98	46.00	6.02	5000.0	120.000	196.0	Н	178.0	25.7			
588.072500	34.61	46.00	11.39	5000.0	120.000	155.0	V	205.0	29.0			

Table 8.2-4: Radiated emissions, low channel (2410 MHz), 30 – 1000 MHz

Notes:


 1 Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ The maximum measured value observed over a period of 5 seconds was recorded.

⁴The spectral plot shows the vertical and horizontal scan separately. ⁵This measurement was done at 3m ⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2-5: Radiated emissions, low channel (2410 MHz), 1 – 18 GHz

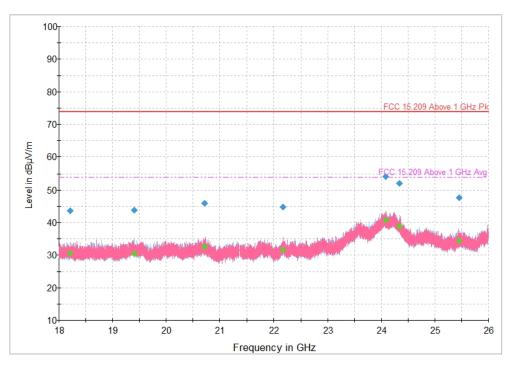
Table 8.2-5: Radiated emissions,	low channel	(2410 MHz), 1 - 18 GHz
----------------------------------	-------------	------------------------

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1115.700000		35.16	53.90	18.74	5000.0	1000.000	125.0	V	246.0	-13.8
1115.700000	51.05		73.90	22.85	5000.0	1000.000	125.0	V	246.0	-13.8
1868.650000		25.37	53.90	28.53	5000.0	1000.000	266.0	н	210.0	-10.3
1868.650000	39.05		73.90	34.85	5000.0	1000.000	266.0	н	210.0	-10.3
2254.150000		29.11	53.90	24.79	5000.0	1000.000	334.0	н	144.0	-9.7
2254.150000	47.68		73.90	26.22	5000.0	1000.000	334.0	н	144.0	-9.7
3327.950000		26.57	53.90	27.33	5000.0	1000.000	116.0	V	235.0	-5.9
3327.950000	44.72		73.90	29.18	5000.0	1000.000	116.0	V	235.0	-5.9
8459.100000		30.58	53.90	23.32	5000.0	1000.000	152.0	н	113.0	3.7
8459.100000	44.32		73.90	29.58	5000.0	1000.000	152.0	н	113.0	3.7
13794.050000		34.31	53.90	19.59	5000.0	1000.000	98.0	н	0.0	13.2
13794.050000	47.56		73.90	26.34	5000.0	1000.000	98.0	н	0.0	13.2
17194.550000		37.84	53.90	16.06	5000.0	1000.000	314.0	н	276.0	16.5
17194.550000	50.95		73.90	22.95	5000.0	1000.000	314.0	н	276.0	16.5
17275.100000		37.09	53.90	16.81	5000.0	1000.000	250.0	V	315.0	16.6
17275.100000	50.24		73.90	23.66	5000.0	1000.000	250.0	V	315.0	16.6

Notes:

 1 Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

⁴The spectral plot shows the vertical and horizontal scan separately.


⁵This measurement was done at 3m

⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

⁷A 2.4 GHz filter was used to protect the receiver system.

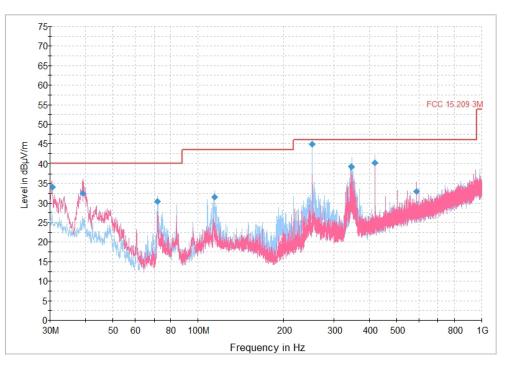
² Correction factors = antenna factor ACF (dB) + cable loss (dB)

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18208.600000		30.56	53.90	23.34	5000.0	1000.000	166.0	V	294.0	17.4
18208.600000	43.61		73.90	30.29	5000.0	1000.000	166.0	V	294.0	17.4
19401.933333	43.77		73.90	30.13	5000.0	1000.000	108.0	Н	349.0	18.4
19401.933333		30.38	53.90	23.52	5000.0	1000.000	108.0	Н	349.0	18.4
20722.733333	45.91		73.90	27.99	5000.0	1000.000	351.0	V	102.0	20.1
20722.733333		32.51	53.90	21.39	5000.0	1000.000	351.0	V	102.0	20.1
22165.400000	44.82		73.90	29.08	5000.0	1000.000	287.0	V	258.0	19.8
22165.400000		31.57	53.90	22.33	5000.0	1000.000	287.0	V	258.0	19.8
24088.600000	54.23		73.90	19.67	5000.0	1000.000	136.0	V	86.0	29.6
24088.600000		40.76	53.90	13.14	5000.0	1000.000	136.0	V	86.0	29.6
24335.000000	51.99		73.90	21.91	5000.0	1000.000	213.0	Н	232.0	27.7
24335.000000		38.86	53.90	15.04	5000.0	1000.000	213.0	Н	232.0	27.7
25449.400000	47.63		73.90	26.27	5000.0	1000.000	229.0	V	225.0	23.9
25449.400000		34.41	53.90	19.49	5000.0	1000.000	229.0	V	225.0	23.9

Table 8.2-6: Radiated emissions, low channel (2410 MHz), 18 - 26 GHz

Notes:


 1 Field strength (dB $\mu V/m)$ = receiver/spectrum analyzer value (dB $\mu V)$ + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

⁴The spectral plot shows the vertical and horizontal scan separately. ⁵This measurement was done at 3m

⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

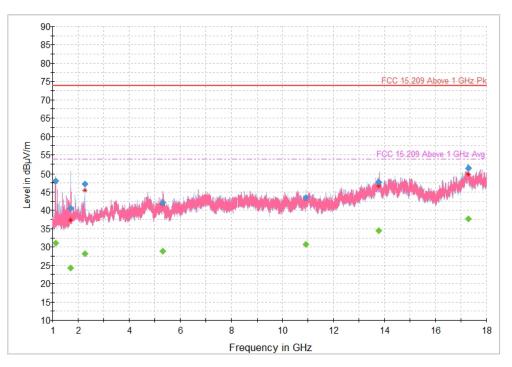
The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2.7: Radiated emissions, middle channel	l (2420 MHz), 30 – 1000 MHz
--	-----------------------------

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.		
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)		
30.560000	34.02	40.00	5.98	5000.0	120.000	100.0	V	347.0	26.2		
39.174167	32.53	40.00	7.47	5000.0	120.000	100.0	V	270.0	21.5		
71.951667	30.46	40.00	9.54	5000.0	120.000	184.0	н	209.0	13.9		
114.470000	31.61	43.50	11.89	5000.0	120.000	136.0	н	212.0	19.1		
252.008333	44.96	46.00	1.04	5000.0	120.000	202.0	н	165.0	21.1		
346.430000	39.21	46.00	6.79	5000.0	120.000	100.0	н	11.0	23.5		
420.020833	40.14	46.00	5.86	5000.0	120.000	199.0	н	179.0	25.7		
588.072500	33.01	46.00	12.99	5000.0	120.000	246.0	V	192.0	29.0		

Table 8.2-7: Radiated emissions, middle channel (2420 MHz), 30 - 1000 MHz

Notes: ¹Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)


² Correction factors = antenna factor ACF (dB) + cable loss (dB)

⁴The spectral plot shows the vertical and horizontal scan separately.

⁵This measurement was done at 3m

⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

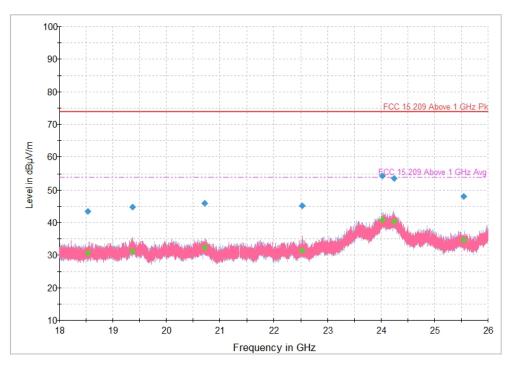
Figure 8.2-8: Radiated emissions	, middle channel	(2420 MHz), 1 – 18 GHz
----------------------------------	------------------	------------------------

Table 8.2-8: Radiatea emissions, midale channel (2420 MHZ), 1 - 18 GHZ												
Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)		
1113.150000	48.07		73.90	25.83	5000.0	1000.000	125.0	V	236.0	-13.8		
1113.150000		31.08	53.90	22.82	5000.0	1000.000	125.0	V	236.0	-13.8		
1711.450000	40.52		73.90	33.38	5000.0	1000.000	277.0	н	328.0	-11.8		
1711.450000		24.21	53.90	29.69	5000.0	1000.000	277.0	н	328.0	-11.8		
2263.950000	47.24		73.90	26.66	5000.0	1000.000	247.0	н	11.0	-9.6		
2263.950000		28.15	53.90	25.75	5000.0	1000.000	247.0	н	11.0	-9.6		
5329.750000	42.14		73.90	31.76	5000.0	1000.000	326.0	V	216.0	-0.8		
5329.750000		28.90	53.90	25.00	5000.0	1000.000	326.0	V	216.0	-0.8		
10927.700000	43.43		73.90	30.47	5000.0	1000.000	164.0	н	339.0	5.3		
10927.700000		30.75	53.90	23.15	5000.0	1000.000	164.0	н	339.0	5.3		
13784.600000	47.67		73.90	26.23	5000.0	1000.000	186.0	V	0.0	13.1		
13784.600000		34.48	53.90	19.42	5000.0	1000.000	186.0	V	0.0	13.1		
17280.600000		37.70	53.90	16.20	5000.0	1000.000	387.0	V	54.0	16.7		
17280.600000	51.44		73.90	22.46	5000.0	1000.000	387.0	V	54.0	16.7		

Table 8.2-8: Radiated emissions, middle channel (2420 MHz), 1 - 18 GHz

Notes:

¹ Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)


² Correction factors = antenna factor ACF (dB) + cable loss (dB)

⁴The spectral plot shows the vertical and horizontal scan separately. ⁵This measurement was done at 3m

⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

⁷A 2.4 GHz filter was used to protect the receiver system

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

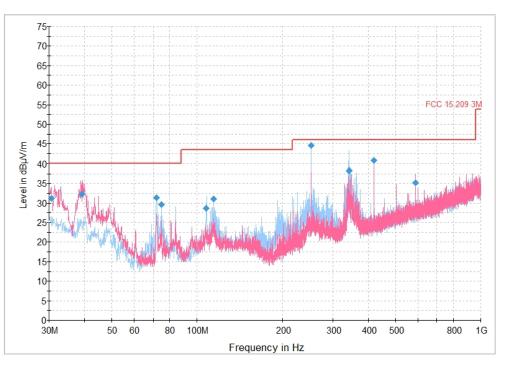
Figure 8.2-9: Radiated emissions, middle channel (2420 MHz), 18 - 26 GHz

Table 8.2-9: Radiated emissions, middle channel (2420 MHz), 18 - 26 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18537.666667		30.62	53.90	23.28	5000.0	1000.000	254.0	Н	163.0	17.9
18537.666667	43.37		73.90	30.53	5000.0	1000.000	254.0	Н	163.0	17.9
19372.333333	44.77		73.90	29.13	5000.0	1000.000	343.0	V	86.0	18.5
19372.333333		31.27	53.90	22.63	5000.0	1000.000	343.0	V	86.0	18.5
20719.400000		32.41	53.90	21.49	5000.0	1000.000	318.0	Н	83.0	20.2
20719.400000	45.99		73.90	27.91	5000.0	1000.000	318.0	Н	83.0	20.2
22524.200000	45.25		73.90	28.65	5000.0	1000.000	353.0	V	0.0	19.5
22524.200000		31.47	53.90	22.43	5000.0	1000.000	353.0	V	0.0	19.5
24026.200000	54.29		73.90	19.61	5000.0	1000.000	154.0	Н	0.0	29.7
24026.200000		40.71	53.90	13.19	5000.0	1000.000	154.0	Н	0.0	29.7
24243.266667		40.44	53.90	13.46	5000.0	1000.000	116.0	V	116.0	29.0
24243.266667	53.52		73.90	20.38	5000.0	1000.000	116.0	V	116.0	29.0
25544.600000	48.08		73.90	25.82	5000.0	1000.000	250.0	Н	283.0	24.3
25544.600000		34.56	53.90	19.34	5000.0	1000.000	250.0	Н	283.0	24.3

Notes:

 1 Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)


² Correction factors = antenna factor ACF (dB) + cable loss (dB)

⁴The aspectral plot shows the vertical and horizontal scan separately.

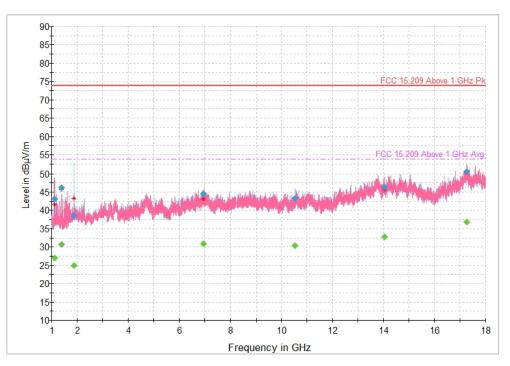
⁵This measurement was done at 3m

 $^{6}\mathrm{FCC}$ 15.209 limits are equivalent to FCC 15.249 limits

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)		
30.575000	31.26	40.00	8.74	5000.0	120.000	100.0	V	0.0	26.2		
39.177500	32.40	40.00	7.60	5000.0	120.000	100.0	V	239.0	21.5		
71.953333	31.32	40.00	8.68	5000.0	120.000	244.0	Н	195.0	13.9		
75.023333	29.64	40.00	10.36	5000.0	120.000	206.0	Н	194.0	14.4		
107.965000	28.64	43.50	14.86	5000.0	120.000	156.0	н	212.0	18.6		
114.470833	31.07	43.50	12.43	5000.0	120.000	146.0	н	211.0	19.1		
252.008333	44.55	46.00	1.45	5000.0	120.000	246.0	н	178.0	21.1		
342.495000	38.19	46.00	7.81	5000.0	120.000	110.0	н	0.0	23.4		
420.020833	40.78	46.00	5.22	5000.0	120.000	196.0	н	190.0	25.7		
587.992500	35.17	46.00	10.83	5000.0	120.000	157.0	V	193.0	29.0		

Table 8.2-10: Radiated emissions	hiah channel	(2/30 MHz) 30.	_ 1000 MH7
TUDIE 0.2-10. RUUIULEU EIIIISSIOIIS	, mgn chunner	(2450 IVITIZ), 50 ·	


Notes:

 1 Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB) ² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ The maximum measured value observed over a period of 5 seconds was recorded.

⁴The spectral plot shows the vertical and horizontal scan separately. ⁵This measurement was done at 3m ⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

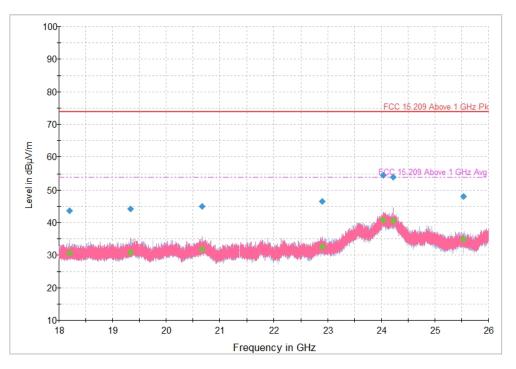
Figure 8.2-11: Radiated emissions, high channel (2430 MHz), 1 – 18 GHz

Tuble 6.2-11. Rudiated emissions, high chainnei (2450 Min2), 1 - 18 GHz												
Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.		
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)		
1121.550000	43.12		73.90	30.78	5000.0	1000.000	110.0	V	255.0	-13.7		
1121.550000		27.03	53.90	26.87	5000.0	1000.000	110.0	V	255.0	-13.7		
1394.150000	46.15		73.90	27.75	5000.0	1000.000	136.0	Н	225.0	-13.7		
1394.150000		30.76	53.90	23.14	5000.0	1000.000	136.0	н	225.0	-13.7		
1880.250000		25.01	53.90	28.89	5000.0	1000.000	321.0	н	100.0	-10.1		
1880.250000	38.51		73.90	35.39	5000.0	1000.000	321.0	н	100.0	-10.1		
6953.600000		30.95	53.90	22.95	5000.0	1000.000	310.0	н	96.0	1.8		
6953.600000	44.54		73.90	29.36	5000.0	1000.000	310.0	н	96.0	1.8		
10531.700000		30.42	53.90	23.48	5000.0	1000.000	116.0	н	353.0	5.7		
10531.700000	43.32		73.90	30.58	5000.0	1000.000	116.0	н	353.0	5.7		
14039.600000	46.37		73.90	27.53	5000.0	1000.000	257.0	V	262.0	11.6		
14039.600000		32.82	53.90	21.08	5000.0	1000.000	257.0	V	262.0	11.6		
17273.300000	50.66		73.90	23.24	5000.0	1000.000	116.0	V	305.0	16.6		
17273.300000		36.81	53.90	17.09	5000.0	1000.000	116.0	V	305.0	16.6		

Table 8.2-11: Radiated emissions, high channel (2430 MHz), 1 - 18 GHz

Notes:

 1 Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)


² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ The maximum measured value observed over a period of 5 seconds was recorded. ⁴The spectral plot shows the vertical and horizontal scan separately.

⁵This measurement was done at 3m

⁶FCC 15.209 limits are equivalent to FCC 15.249 limits ⁷A 2.4 GHz filter was used to protect the receiver system

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2-13: Radiated emissions, high channel (2430 MHz), 18 - 26 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
()	(((()	()	((0)		((,,
18197.800000	43.65		73.90	30.25	5000.0	1000.000	384.0	н	58.0	17.4
18197.800000		30.66	53.90	23.24	5000.0	1000.000	384.0	н	58.0	17.4
19337.133333	44.16		73.90	29.74	5000.0	1000.000	402.0	V	182.0	18.5
19337.133333		30.91	53.90	22.99	5000.0	1000.000	402.0	V	182.0	18.5
20670.600000	44.90		73.90	29.00	5000.0	1000.000	409.0	н	164.0	19.8
20670.600000		31.78	53.90	22.12	5000.0	1000.000	409.0	н	164.0	19.8
22895.400000		32.47	53.90	21.43	5000.0	1000.000	129.0	V	11.0	21.2
22895.400000	46.47		73.90	27.43	5000.0	1000.000	129.0	V	11.0	21.2
24031.933333	54.52		73.90	19.38	5000.0	1000.000	313.0	V	193.0	29.7
24031.933333		40.82	53.90	13.08	5000.0	1000.000	313.0	V	193.0	29.7
24218.200000	53.88		73.90	20.02	5000.0	1000.000	399.0	V	182.0	29.1
24218.200000		40.48	53.90	13.42	5000.0	1000.000	399.0	V	182.0	29.1
25531.400000	48.11		73.90	25.79	5000.0	1000.000	373.0	Н	40.0	24.4
25531.400000		34.80	53.90	19.10	5000.0	1000.000	373.0	Н	40.0	24.4

Notes:

 1 Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)
 ³ The maximum measured value observed over a period of 5 seconds was recorded.
 ⁴The spectral plot shows the vertical and horizontal scan separately.

⁵This measurement was done at 3m

⁶FCC 15.209 limits are equivalent to FCC 15.249 limits

8.3 Emissions at the band edges

8.3.1 Definitions and limits

FCC

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBµV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Table 8.3-1: 15.209 and RSS-Gen emissions field strength limits

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.3-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5-5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0
12.29-12.293	167.72–173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5
12.57675-12.57725	322-335.4	3600–4400	Above 38.6
13.36–13.41			

8.3.2 Test summary

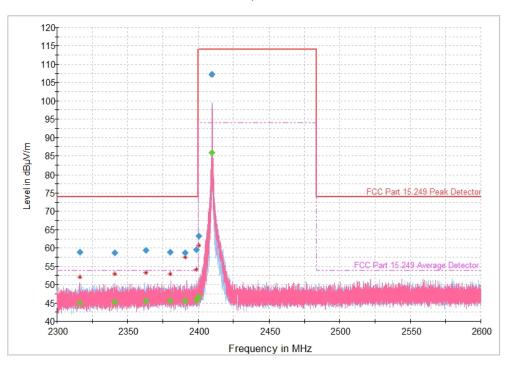
Verdict	Pass		
Test date	July 8, 2021	Temperature	22°C
Test engineer	Martha Espinoza	Air pressure	1001 mbar
Test location	3m semi anechoic chamber	Relative humidity	65 %

8.3.3 Observations, settings, and special notes

This is a radiated test. Signal was transmitting at max power and continuously mode: low and high channel were evaluated.

EUT setup configuration	Table top
Test facility	3M Chamber
Measurement method	ANSI C63.10

Spectrum analyzer settings for frequencies above 1 GHz:


Resolution bandwidth	1 MHz
Video bandwidth	≥ 3 MHz
Detector mode	Peak
Trace mode	Max hold
Measurement time	Long enough for trace to stabilize

Note: The sweep measurement in this range was made at 120 kHz RBW to compliance with the 6 dB noise floor under limit line as FCC requires. Maximization and final measurements were done at 1 MHz RBW.

8.3.5 Test data

Full Spectrum

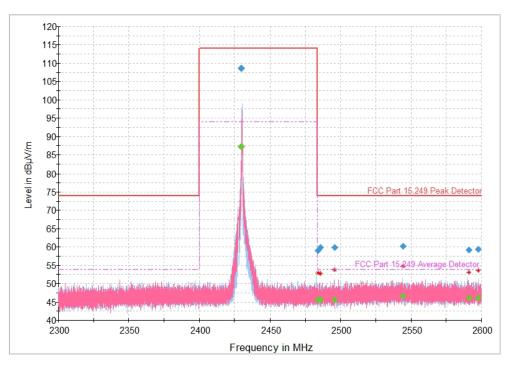
The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.3-1: Band edges, low channel (2410 MHz).

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2316.500000	58.88		73.90	15.02	5000.0	1000.000	155.0	V	82.0	34.7
2316.500000		45.00	53.90	8.90	5000.0	1000.000	155.0	V	82.0	34.7
2340.850000		45.28	53.90	8.62	5000.0	1000.000	117.0	V	37.0	34.9
2340.850000	58.76		73.90	15.14	5000.0	1000.000	117.0	V	37.0	34.9
2363.130000		45.60	53.90	8.30	5000.0	1000.000	122.0	н	-11.0	35.2
2363.130000	59.34		73.90	14.56	5000.0	1000.000	122.0	н	-11.0	35.2
2380.260000		45.60	53.90	8.30	5000.0	1000.000	113.0	V	10.0	35.2
2380.260000	58.82		73.90	15.08	5000.0	1000.000	113.0	V	10.0	35.2
2391.020000		45.66	53.90	8.24	5000.0	1000.000	104.0	н	6.0	35.3
2391.020000	58.73		73.90	15.17	5000.0	1000.000	104.0	н	6.0	35.3
2398.700000	59.46		73.90	14.44	5000.0	1000.000	200.0	н	285.0	35.4
2398.700000		45.80	53.90	8.10	5000.0	1000.000	200.0	н	285.0	35.4
2400.750000	63.31		114.00	50.69	5000.0	1000.000	162.0	V	338.0	35.3
2400.750000		46.56	93.97	47.41	5000.0	1000.000	162.0	V	338.0	35.3
2409.870000	Fundamental signal just for reference				5000.0	1000.000	150.0	н	150.0	35.3
2409.870000	Fund	amental signal	just for referen	ce	5000.0	1000.000	150.0	Н	150.0	35.3

Table 8.3-3: Band edges, low channel (2410 MHz) results.

Notes: ¹Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)


³ The maximum measured value observed over a period of 5 seconds was recorded.

⁴The spectral plot shows the vertical and horizontal scan separately.

⁵This measurement was done at 3m

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

The spectral plot shows the vertical (red plot) and horizontal (blue plot) scans. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2429.890000	 F				5000.0	1000.000	130.0	н	155.0	35.3
2429.890000	Fund	lamental signal	just for referen	ce	5000.0	1000.000	130.0	Н	155.0	35.3
2483.930000	58.99		73.90	14.91	5000.0	1000.000	137.0	Н	10.0	35.4
2483.930000		45.66	53.90	8.24	5000.0	1000.000	137.0	Н	10.0	35.4
2485.900000	59.79		73.90	14.11	5000.0	1000.000	157.0	V	214.0	35.3
2485.900000		45.61	53.90	8.29	5000.0	1000.000	157.0	V	214.0	35.3
2496.020000	59.94		73.90	13.96	5000.0	1000.000	214.0	V	131.0	35.4
2496.020000		45.63	53.90	8.27	5000.0	1000.000	214.0	V	131.0	35.4
2544.210000		46.65	53.90	7.25	5000.0	1000.000	200.0	Н	249.0	35.7
2544.210000	60.25		73.90	13.65	5000.0	1000.000	200.0	Н	249.0	35.7
2591.050000		46.05	53.90	7.85	5000.0	1000.000	108.0	Н	64.0	35.8
2591.050000	59.17		73.90	14.73	5000.0	1000.000	108.0	Н	64.0	35.8
2597.690000		46.11	53.90	7.79	5000.0	1000.000	250.0	Н	58.0	35.9
2597.690000	59.44		73.90	14.46	5000.0	1000.000	250.0	Н	58.0	35.9
		Тс	able 8.3-4: Band	l edges, high	channel (2430 N	ЛНz) results.				

Figure 8.3-2: Band edges, high channel (2430 MHz).

 1 Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ The maximum measured value observed over a period of 5 seconds was recorded. ⁴The spectral plot shows the vertical and horizontal scan separately. ⁵This measurement was done at 3m

Notes:

8.4 AC Power Line Conduced Emissions

8.4.1 Definitions and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.207(a)

For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequency ranges.

Table 8.4-1: Conducted emissions limit

Frequency of emission,	Conduct	ed limit, dBμV
MHz	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Note: * - Decreases with the logarithm of the frequency.

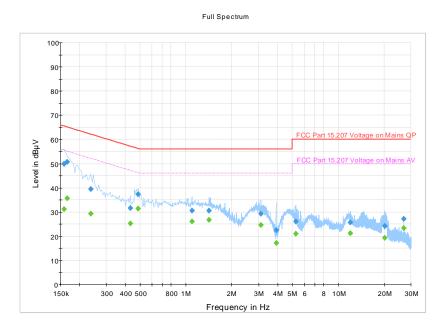
8.4.2 Test Summary

Verdict	Pass		
Test date	July 2, 2021	Temperature	24 °C
Test engineer	Martha Espinoza	Air pressure	1002 mbar
Test location	Ground plane	Relative humidity	65 %

8.4.3 Notes

Testing was performed with the EUT transmitting on a fixed channel at full power. The transmission was transmitting continuously: low, middle, and high channel were evaluated.

8.4.4 Setup Details


Port under test	AC mains
EUT setup configuration	Tabletop
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final
	measurement.

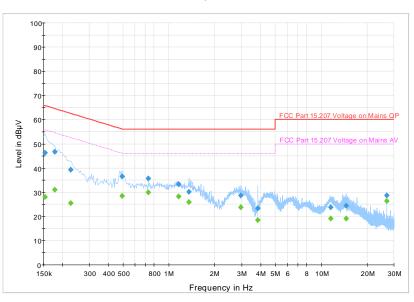
Receiver settings:

Resolution bandwidth	9 kHz				
Video bandwidth					
Detector mode	 Peak and Average (Preview measurement) Quasi-peak and CAverage (Final measurement) 				
Trace mode	Max Hold				
Measurement time	 100 ms (Peak and Average preview measurement) 5000 ms (Quasi-peak final measurement) 5000 ms (CAverage final measurement) 				

8.4.5 Test Data

The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators) **Figure 8.4-1:** AC conducted emissions, 150 kHz – 30 MHz (Unit transmitting at low channel, 2410 MHz) **Table 8.4-2:** AC conducted emissions, 150 kHz – 30 MHz (Unit transmitting at low channel, 2410 MHz)

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
. ,									
0.158000		31.18	55.57	24.39	5000.0	9.000	N	ON	19.6
0.158000	49.96		65.57	15.60	5000.0	9.000	N	ON	19.6
0.166000	50.71		65.16	14.44	5000.0	9.000	L1	ON	19.6
0.166000		35.66	55.16	19.50	5000.0	9.000	L1	ON	19.6
0.238000		29.26	52.17	22.91	5000.0	9.000	L1	ON	19.5
0.238000	39.46		62.17	22.70	5000.0	9.000	L1	ON	19.5
0.430000		25.19	47.25	22.07	5000.0	9.000	N	ON	19.4
0.430000	31.60		57.25	25.65	5000.0	9.000	N	ON	19.4
0.486000	37.46		56.24	18.77	5000.0	9.000	L1	ON	19.4
0.486000		31.37	46.24	14.87	5000.0	9.000	L1	ON	19.4
1.094000		26.15	46.00	19.85	5000.0	9.000	L1	ON	19.4
1.094000	30.65		56.00	25.35	5000.0	9.000	L1	ON	19.4
1.418000	30.65		56.00	25.35	5000.0	9.000	L1	ON	19.4
1.418000		26.76	46.00	19.24	5000.0	9.000	L1	ON	19.4
3.098000	29.38		56.00	26.62	5000.0	9.000	L1	ON	19.3
3.098000		24.66	46.00	21.34	5000.0	9.000	L1	ON	19.3
3.906000	22.52		56.00	33.48	5000.0	9.000	L1	ON	19.3
3.906000		17.14	46.00	28.86	5000.0	9.000	L1	ON	19.3
5.270000		20.99	50.00	29.01	5000.0	9.000	L1	ON	19.3
5.270000	26.01		60.00	33.99	5000.0	9.000	L1	ON	19.3
12.010000	25.75		60.00	34.25	5000.0	9.000	L1	ON	19.9
12.010000		21.20	50.00	28.80	5000.0	9.000	L1	ON	19.9
20.138000	24.11		60.00	35.89	5000.0	9.000	L1	ON	20.2
20.138000		19.33	50.00	30.67	5000.0	9.000	L1	ON	20.2
27.002000	27.15		60.00	32.85	5000.0	9.000	L1	ON	20.0
27.002000		23.43	50.00	26.57	5000.0	9.000	L1	ON	20.0

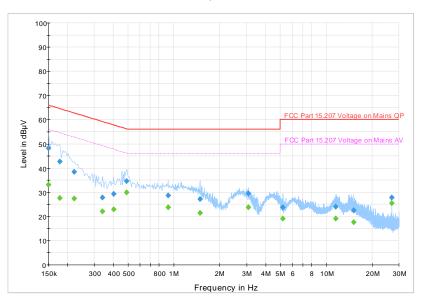

Notes:

¹Result (dB μ V) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

³ The maximum measured value observed over a period of 5 seconds was recorded.

The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators) **Figure 8.4-2:** AC conducted emissions, 150 kHz – 30 MHz (Unit transmitting at middle channel, 2420 MHz) **Table 8.4-3:** AC conducted emissions, 150 kHz – 30 MHz (Unit transmitting at middle channel, 2420 MHz)


Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.154000		27.96	55.78	27.82	5000.0	9.000	N	ON	19.6
0.154000	46.32		65.78	19.47	5000.0	9.000	N	ON	19.6
0.178000	46.78		64.58	17.80	5000.0	9.000	L1	ON	19.6
0.178000		31.03	54.58	23.55	5000.0	9.000	L1	ON	19.6
0.226000		25.52	52.60	27.07	5000.0	9.000	N	ON	19.5
0.226000	39.28		62.60	23.32	5000.0	9.000	N	ON	19.5
0.494000	36.45		56.10	19.65	5000.0	9.000	N	ON	19.4
0.494000		28.38	46.10	17.72	5000.0	9.000	N	ON	19.4
0.730000	35.66		56.00	20.34	5000.0	9.000	L1	ON	19.4
0.730000		30.03	46.00	15.97	5000.0	9.000	L1	ON	19.4
1.154000	33.36		56.00	22.64	5000.0	9.000	L1	ON	19.4
1.154000		28.31	46.00	17.69	5000.0	9.000	L1	ON	19.4
1.350000		25.98	46.00	20.02	5000.0	9.000	L1	ON	19.4
1.350000	30.06		56.00	25.94	5000.0	9.000	L1	ON	19.4
2.974000		23.85	46.00	22.15	5000.0	9.000	L1	ON	19.4
2.974000	28.60		56.00	27.40	5000.0	9.000	L1	ON	19.4
3.822000		18.41	46.00	27.59	5000.0	9.000	L1	ON	19.3
3.822000	23.36		56.00	32.64	5000.0	9.000	L1	ON	19.3
11.578000	23.85		60.00	36.15	5000.0	9.000	Ν	ON	19.8
11.578000		19.18	50.00	30.82	5000.0	9.000	N	ON	19.8
14.598000	24.40		60.00	35.60	5000.0	9.000	L1	ON	20.2
14.598000		19.06	50.00	30.94	5000.0	9.000	L1	ON	20.2
27.002000		26.28	50.00	23.72	5000.0	9.000	Ν	ON	20.1
27.002000	28.59		60.00	31.41	5000.0	9.000	N	ON	20.1

Notes:

 $\label{eq:alpha} ^{1} \text{Result (dB} \mu\text{V}) = \text{receiver/spectrum analyzer value (dB} \mu\text{V}) + \text{correction factor (dB)} \\ ^{2} \text{Correction factor (dB)} = \text{LISN factor IL (dB)} + \text{cable loss (dB)} + \text{attenuator (dB)} \\ \end{array}$

³ The maximum measured value observed over a period of 5 seconds was recorded.

The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators) **Figure 8.4-3:** AC conducted emissions, 150 kHz – 30 MHz (Unit transmitting at high channel, 2430 MHz) **Table 8.4-4:** AC conducted emissions, 150 kHz – 30 MHz (Unit transmitting at high channel, 2430 MHz)

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.150000	48.29		66.00	17.71	5000.0	9.000	N	ON	19.6
0.150000		33.03	56.00	22.97	5000.0	9.000	N	ON	19.6
0.178000		27.62	54.58	26.96	5000.0	9.000	N	ON	19.5
0.178000	42.74		64.58	21.83	5000.0	9.000	N	ON	19.5
0.222000		27.41	52.74	25.33	5000.0	9.000	L1	ON	19.5
0.222000	38.38		62.74	24.37	5000.0	9.000	L1	ON	19.5
0.338000		22.13	49.25	27.12	5000.0	9.000	N	ON	19.4
0.338000	27.85		59.25	31.40	5000.0	9.000	N	ON	19.4
0.402000		22.99	47.81	24.82	5000.0	9.000	L1	ON	19.5
0.402000	29.40		57.81	28.41	5000.0	9.000	L1	ON	19.5
0.490000	34.67		56.17	21.50	5000.0	9.000	L1	ON	19.4
0.490000		29.88	46.17	16.29	5000.0	9.000	L1	ON	19.4
0.914000	28.69		56.00	27.31	5000.0	9.000	L1	ON	19.4
0.914000		23.88	46.00	22.12	5000.0	9.000	L1	ON	19.4
1.482000		21.53	46.00	24.47	5000.0	9.000	L1	ON	19.4
1.482000	27.16		56.00	28.84	5000.0	9.000	L1	ON	19.4
3.078000		23.83	46.00	22.17	5000.0	9.000	L1	ON	19.4
3.078000	29.55		56.00	26.45	5000.0	9.000	L1	ON	19.4
5.170000		19.07	50.00	30.93	5000.0	9.000	L1	ON	19.3
5.170000	23.75		60.00	36.25	5000.0	9.000	L1	ON	19.3
11.578000		19.20	50.00	30.80	5000.0	9.000	L1	ON	19.8
11.578000	23.89		60.00	36.11	5000.0	9.000	L1	ON	19.8
15.166000		17.55	50.00	32.45	5000.0	9.000	L1	ON	20.2
15.166000	22.41		60.00	37.59	5000.0	9.000	L1	ON	20.2
27.002000	27.78		60.00	32.22	5000.0	9.000	L1	ON	20.0
27.002000		25.42	50.00	24.58	5000.0	9.000	L1	ON	20.0

1 Result (dB μ V) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Notes:

2 Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB) 3 The maximum measured value observed over a period of 5 seconds was recorded.

Report reference ID: 436028-1TRWL

8.5 99% Occupied Bandwidth

8.5.1 References

FCC Part 15 → §2.202 (a)

(a) Occupied bandwidth. The frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. In some cases, for example multichannel frequency-division systems, the percentage of 0.5 percent may lead to certain difficulties in the practical application of the definitions of occupied and necessary bandwidth; in such cases a different percentage may prove useful.

8.5.2 Test summary

Verdict	Pass		
Test date	July 9, 2021	Temperature	20°C
Test engineer	Martha Espinoza	Air pressure	1007 mbar
Test location	3m semi anechoic chamber	Relative humidity	60 %

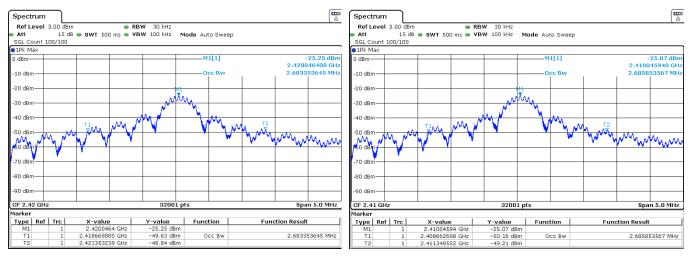
8.5.3 Notes

Testing was performed with EUT transmitting on a fixed channel at full power. The transmission was continuously: Low, middle, and high channel were evaluated.

8.5.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless Bench
Measurement method	ANSI C63.10

Receiver/spectrum analyzer settings:


Resolution bandwidth	1% - 5% OBW	
Video bandwidth	3*RBW	
Span	Between 1.5 times and 5 times OBW	
Detector mode	Peak	
Trace mode	Max Hold	
Measurement time Long enough for trace to stabilize		

8.5.5 Test data

Table 8.6-1:	99% OBW	occupied	bandwidth	test data
--------------	---------	----------	-----------	-----------

Test Frequency (MHz)	99% OBW (MHz)
2410	2.685
2420	2.683
2430	2.687

Figure 8.6-2: Low channel (2410 MHz): 99% OBW plot

Figure 8.6-2: Middle channel (2420 MHz): 99% OBW plot

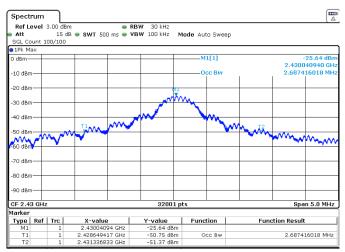
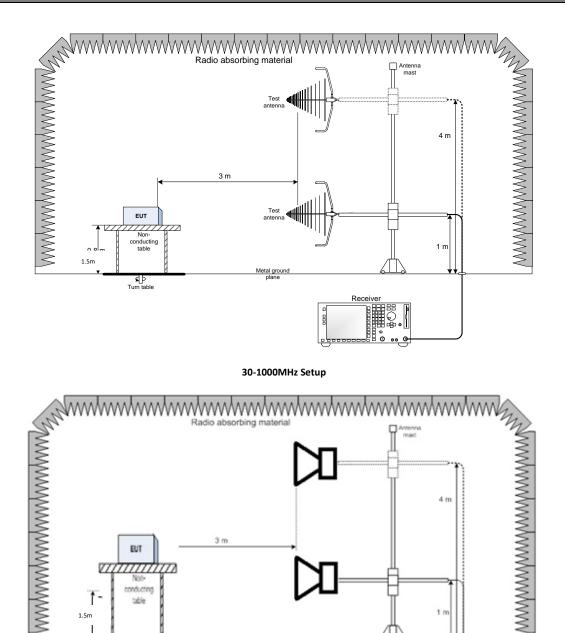



Figure 8.6-3: High channel (2430 MHz): 99% OBW plot

9.1 Radiated emissions set-up

Above 1GHz Setup

¶∳ Turn table

Thank you for choosing

