

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 1 of 48

FCC Test Report

Applicant : Revopoint 3D Technologies Inc.

Office 902, 9/F, Tinno Building, Tongfa South

: Rd, Xili Street, Nanshan District, Shenzhen,

518000, China

Product Name : 3D Scanner

Address

Report Date : Jan. 18, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 2 of 48

Contents

1. Genera	al Information	Anbore	····		Rupoler	Anbe		18k (
101.0	Client Information Description of Device (EUT	<u>γ</u>	osen p	up apology	<u> Yupotek</u>	Anbor	olegia Vi.)?to.,,
1.3	Auxiliary Equipment Used I	During Test	100					/05
v. 14 (Operation channel list							
1.5.1	Description of Test Modes.	Yur Jek	, nbotel	, , , , , , , , , , , , , , , , , , ,	. ok	-hotek	Arbote	}
1.7. 1.7.	Measurement Uncertainty . Test Summary	Pulon.		rek Ar	Poge	wek Mara	Anborek	9
1.8.	Description of Test Facility.	AUpo.			pore	VU.		<u></u> 10
1.9.1	Disclaimer		10 M	ipo rek		Kupore		1(
	rest Equipment List	sek.	bojek	Pupoj		k Anbo	,	9T
2. Antenn	Test Equipment Lista requirement	o, b,	hotek	Aupoter	402	otek	10010K	\190
ote ^k 2.1,	Conclusion	'upo _{je} ,	Ann	VUpo,	ek bilip	o. k	.borek	13
3. Condu	cted Emission at AC power EUT Operation Test Setup	r line	Vupo,	.ek	ootek p	por	Vu.	14
3.1. ا	EUT Operation	- Notek	Anbo'	, Vu		Rupoter	AUD.	y 14
3.2.	Test Setup	νο, <i>Σ</i> ,,	iek	ho _{ier}	V _D	nbotek.	Wupo.	14
Angro.	rest Getup Test Data ycle SUT Operation		- rek	anbotek.	Aupo,	, MO	iek Ant	
4. Duty C	ycle	40 <u>k</u>	10°,	P. Polek	Anbois		otek	15
4.1.	EUT Operation		Nupote.	An. of	,k	7.4 NA	10°.	19
43	lestillata							19
5 Maxim	um conducted output powe	Aup. sek	, abot					20
Anboles	um conducted output powe	Anbe	e//	otek	Anboro	Arr	Vupote	2
5.2.	lest Setup	V11.		748 L	*0b_			∴`21
52	Foot Data							2
6. Power	spectral density EUT Operation Test Setup		bojek	Aupo,	γ	/a ₁₄ //a	oke. P	22
6.1.	EUT Operation	/po.	r.	Anbore	Ans	Yak.	, abotek	2
6.2.	Test Setup	Popose	Vu.)4	otek Ar	100.		23
0.3.	Test Dataon bandwidth and occupied	Anboten	p.	*ek	aborek	Aupo,	Vie	23
		2000						
A ^{nv} 7.1.	EUT Operation	oft 10	, rex	74poge.	Ann	······································	k Vipc	2
7.2. 7.3	rest Setup Test Data	4	otek	nupolek	KUD	do 45	o ^{tek} A'	2t 2!
9 Chann	ol Moyo Timo, Channol Clo	seina Trans	miccion T	imo spotel	Anbo	,	i otek	26
O. Chaili		osing mans	5111551011 1	IIII C \$33	itek An	00/8/	-46K	20
8.1.1	EUT Operation Test Setup	hotek	Aupore		-tek	∙upotek		2
Anbo 8.3.	Test Data	W. W.	¢	otek A	^U D o	ratek	VUpole.	27
9. DFS D	EUT Operation Test Setup Test Data el Move Time, Channel Clo EUT Operation Test Setup etection Thresholds EUT Operation EUT Operation Test Setup Test Data	Anbo	70K	,,ootek	Anbore	Vu.,	4 2000	28
9.1.	EUT Operation	K Anb) P	".	Anboien	AUD	e.\	28
9.2	Test Setup	otek .	pole	Vup.		k Anb		29
9.3.	Test Data		Kotek	·····Vupo.			40 gr.	29

Report No.: 18220WC30229201	FCC ID: 2AY/J-MIRAC	Page 3 of	48
10. Band edge emissions (Radiated)	Anbotek Anbote	Yun Vupotek	30
10.1. EUT Operation 10.2. Test Setup 10.3. Test Data	k hoosek hoose	An Anbotel	32
10.2. Test Setup 10.3. Test Data	otek hulosiak kitasi	k Tapolek Vilo	32
11. Undesirable emission limits (below 1GHz).	potek bupoter Vup.	Clok Cholek V	35
11.1. EUT Operation 11.2. Test Setup			37
11.2. Test Setup 11.3. Test Data	And Andrew		38 39
12. Undesirable emission limits (above 1GHz)	L Motek Anbore	Arr Kotek Popotek	43 ^M
12.1. EUT Operation	W. Wolek Wipote.	Vun Wek	45
12.1. EUT Operation 12.2. Test Setup 12.3. Test Data	All Market		45 46
APPENDIX I TEST SETUP PHOTOGRAPH	un tek Topolek Vup.	, hotek	48
APPENDIX II EXTERNAL PHOTOGRAPH APPENDIX III INTERNAL PHOTOGRAPH	Anbounds Anbound		

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 4 of 48

TEST REPORT

Applicant : Revopoint 3D Technologies Inc.

Manufacturer : Revopoint 3D Technologies Inc.

Product Name : 3D Scanner

Test Model No. : MIRACO

Reference Model No. : MIRACO Pro, MIRACO Plus, MIRACO SE, ACCUONE

Trade Mark : REVOPOINT

Rating(s) : Input: 7-11V--5A (with DC 3.89V, 5000mAh battery inside)

47 CFR Part 15E

Test Standard(s) : ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Oct. 31, 2023
Date of Test:	Oct. 31 ~ Dec. 08, 2023
Anbotek Anbotek Anbotek Anbotek	Nian xiu Chen
Prepared By:	Potek Aupore Aur Jek Aupo
	(Nianxiu Chen)
	Idward pan
Approved & Authorized Signer:	botek Anbo. A. Hek mbote.
	(Edward Pan)

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 5 of 48

Revision History

Report Version	Description	Issued Date
Anbore R00 potek An	Original Issue.	Jan. 18, 2024
k Anborek Anborek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Anb
ore Ambotek Anbotek	Anbotek Anbotek Anbot	rek Anbotek Anbotek

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 6 of 48

1. General Information

1.1. Client Information

Applicant	: Revopoint 3D Technologies Inc.
Address	Office 902, 9/F, Tinno Building, Tongfa South Rd, Xili Street, Nanshan District, Shenzhen, 518000, China
Manufacturer	: Revopoint 3D Technologies Inc.
Address	Office 902, 9/F, Tinno Building, Tongfa South Rd, Xili Street, Nanshan District, Shenzhen, 518000, China
Factory	: Zhejiang Revopoint Optoelectronics Technology Co., Ltd
Address	2F, Building 7, No.1, Weizhong Road, Weitang Street, Jiashan County, Jiaxing city, Zhejiang Province, China

1.2. Description of Device (EUT)

Product Name	:	3D Scanner
Test Model No.	:	MIRACO AND
Reference Model No.	:	MIRACO Pro, MIRACO Plus, MIRACO SE, ACCUONE (Note: All samples are the same except the model number and DDR capacities, so we prepare "MIRACO" for test only.)
Trade Mark	:	REVOPOINT
Test Power Supply	:	AC 120V/60Hz for Adapter/ DC 3.89V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	Manufacturer: MOSO POWER SUPPLY TECHNOLOGY CO.,LTD Model: P30T-V3250U200-065I0-US AC Input: 100-240V~50/60Hz 2.0A USB-C1: 15.0W 5.0V=3.0A or 27.0W 9.0V=3.0A or 36.0W 12.0V=3.0A or 45.0W 15.0V=3.0A or 65.0W 20.0V=3.25A PPS: 3.3V-11.0V=5.0A USB-C2: 15.0W 5.0V=3.0A or 27.0W 9.0V=3.0A or 36.0W 12.0V=3.0A or 45.0W 15.0V=3.0A or 65.0W 20.0V=3.25A PPS: 3.3V-11.0V=5.0A C1+C2: 45.0W+20.0W Total Output: 65.0W Max
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; 802.11ac(HT80)/ax(HE80): U-NII Band 1: 5210MHz; U-NII Band 2A: 5290MHz
Number of Channel	:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 4; U-NII Band 2A: 4;

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 7 of 48

70. b.	The state of the s
	802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 2; U-NII Band 2A: 2; 802.11ac(HT80)/ax(HE80): U-NII Band 1: 1; U-NII Band 2A: 1
Modulation Type	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type	ANT1: FPC Antenna ANT2: FPC Antenna
Antenna Gain(Peak)	ANT1: 3.39 dBi ANT2: 3.39 dBi
Directional antenna gain	: 6.40 dBi hotek Anborek Anborek Anborek Anborek

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 3) Only 802.11n(HT20), 802.11n(HT40), 802.11ac(HT20), 802.11ac(HT40), 802.11ac(HT80), 802.11ax(HE20), 802.11ax(HE40), 802.11ax(HE80) support MIMO.
- 4) The time for the EUT to fully restart up is 65s.
- 5) The time for the master device to fully restart up is 65s

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Master device	Micronet Union Technology(Chengdu) Co., Ltd	T18-21A (FCC ID: 2A22E-WWYLT262)	Anbotek / Anbotek

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 8 of 48

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel Channel	Frequency (MHz)	Channel	Frequency (MHz)
36,50test	5180	Notek 38 Miss	5190	42	5210
botek 40 Anbote	5200	46 M	5230	Sk Wpolen	Anbo
botek44 Anb	5220	an Stek	Anbore An	potek / Anboten	And stek
48	5240	ek Inbotek	Auport Br	abotek / Anbot	A. Diek

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	nek 58 mbotel	5290
56	5280	62 ₁₀₀ 16 ¹	5310	and and	otek \\\Varpost
60 Met	5300	Por / Principole	k Woote	Vup. 16k	hbotek / Anbor
64	5320	Auport Am	otek / Anbotek	And	anbotek/ Ant

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek Anbotek Anbotek Anbotek	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
potek Anbotek Anbotek Ambotek TM2 ^k Anbotek Anbotek Anbot	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM3 nbotek	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
otek Anbotek Anbotek Anbotek Anbotek	Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 9 of 48

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anborek Anborek
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Occupied Bandwidth	925Hz
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	Aupo, Tek Vipo	iek P Anbo
Conducted Emission at AC power line	Mode1,2,3,4	botek P N
Duty Cycle	Mode1,2,3,4	anbo'P
Maximum conducted output power	Mode1,2,3,4	An Prek
Power spectral density	Mode1,2,3,4	Photek
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	ek P Anboi
Channel Move Time, Channel Closing Transmission Time	Mode4	potek P An
DFS Detection Thresholds	Mode4	A rodo
Band edge emissions (Radiated)	Mode1,2,3,4	And Bek
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	Photek
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	ek Panbot
Note: P: Pass	Brek Anbotek An	ootek Ant

N: N/A, not applicable

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 10 of 48

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 11 of 48

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k spotel	Anbore	An
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
2 50 tek	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	rek /Anbotek	Anborotek

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Channel Move Time, Channel Closing Transmission Time

Non-Occupancy Period Test

DFS Detection Thresholds

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Cal.Due Date
e* 1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
Anbox	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
o 6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 12 of 48

	edge emissions (Ra		Anborok	Auporg	Aurotek	Aupotek Ar
Unde	sirable emission limi	ts (above 1GHz)	borek	Aupo.	h. Hek	Cupole.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
7 ¹⁰ 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Andotek	Aupolok
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
e ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Unde	sirable emission limit	ts (below 1GHz)	Anbore.	Anshotek	Anboiek	Anbo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
40tel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A nbor	N/A.cook	Nupon pole	k Anbotek

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 13 of 48

2. Antenna requirement

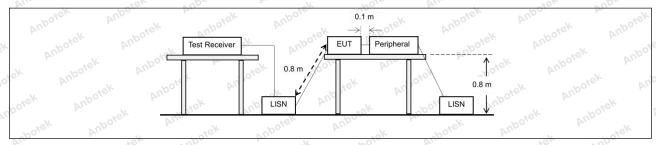
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a **ANT1/ ANT2: FPC Antenna** which permanently attached, and the best case gain of the antenna is **ANT1/ ANT2: 3.39 dBi**. It complies with the standard requirement.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 14 of 48

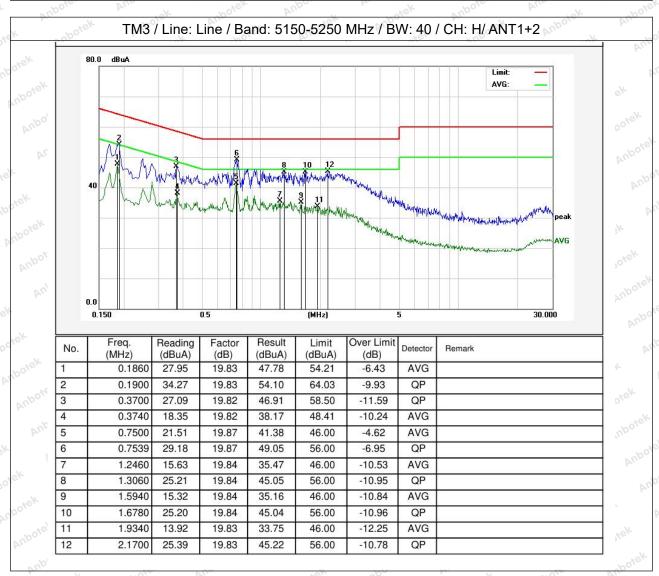

3. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	ick hotek An	pore. And
Aug sek Spotek	Frequency of emission (MHz)	Conducted limit (dBµV) boten And
Anbor Ar	tel uporen And	Quasi-peak	Average
K- Lotek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And	56°	46 300 tell
otek Anbore A	5-30	60 hotek Anbot	50
atek Anbotek	*Decreases with the logarithm of the	he frequency.	Aupo. Sk
Test Method:	ANSI C63.10-2020 section 6.2	Augo Kek	otek Anbore

3.1. EUT Operation

Operating Env	ironment: And the Andrew Andrew Andrew Andrew Andrew
Anbotek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n
Test mode:	modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
atek Anbotek	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the
hotek Anbot	report. hotek Anborek Anborek Anborek Anborek Anborek

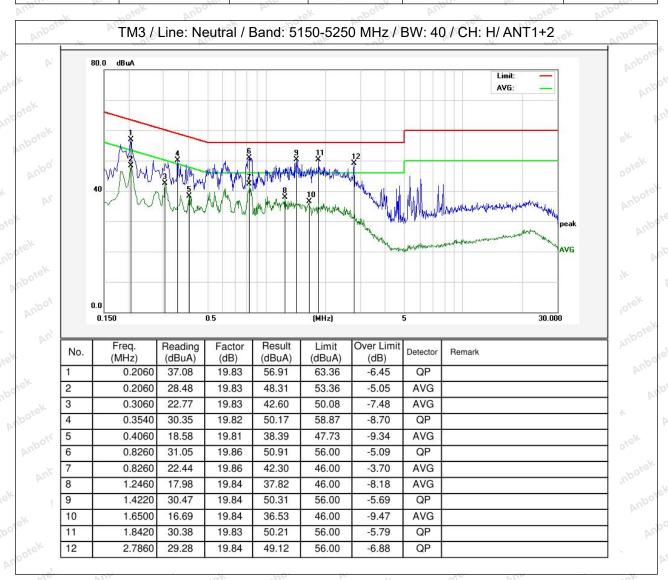
3.2. Test Setup



Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 15 of 48

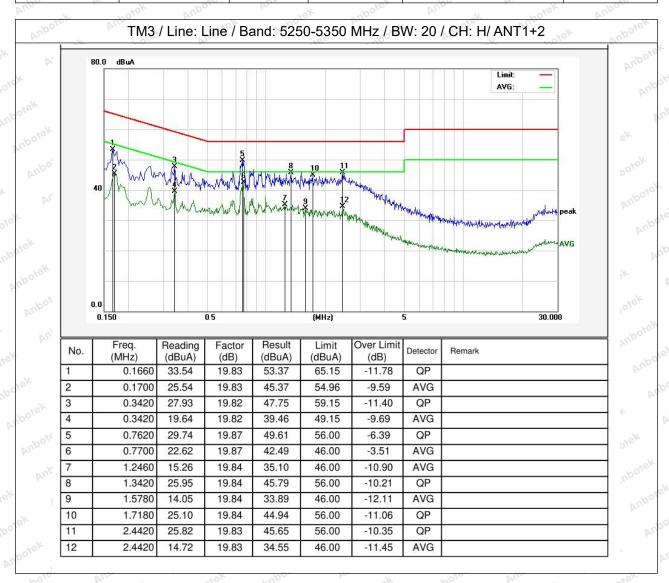
3.3. Test Data

Temperature: 23.8 °C Humidity: 51.1 % Atmospheric Pressure	101 kPa	
--	---------	--



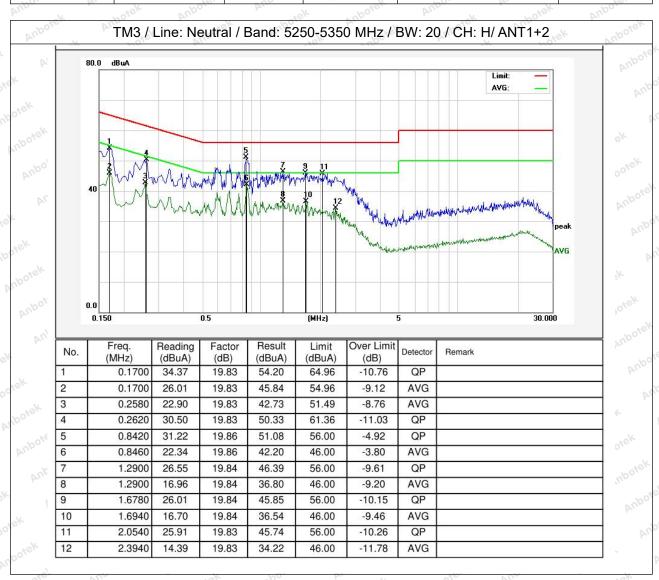
Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 16 of 48

Temperature: 23.8 °C Humidity: 51.1 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 17 of 48

Temperature: 23.8 °C Humidity: 51.1 % Atmospheric Pressure: 101 kPa

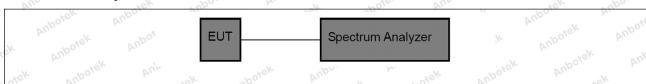


Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 18 of 48

Temperature: 23.8 °C Humidity: 51.1 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 19 of 48


4. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Aupotek Aupotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW. iv) Set detector = peak.
otek Anbotek Anb	v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.1. EUT Operation

Operating Envi	ronment: And
tek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n
^{upotek} Aupote	modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ootek Aupotei	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature:	25.7 °C	Humidity:	44 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

FCC ID: 2AY7J-MIRACO Report No.: Page 20 of 48 18220WC30229201

	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
Pure della chi	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
ak aborek	For an outdoor access point operating in the band 5.15-5.25 GHz, the
	maximum conducted output power over the frequency band of operation
otek Anbore	shall not exceed 1 W provided the maximum antenna gain does not exceed
	6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that
	the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at
	any elevation angle above 30 degrees as measured from the horizon must
	not exceed 125 mW (21 dBm).
	THOUGHOUSE TECHNIA (ET CIDITI).
	For an indoor access point operating in the band 5.15-5.25 GHz, the
*ek abotek	maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed
	6 dBi.
	V V V V V V V V V V V V V V V V V V V
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that
	the directional gain of the antenna exceeds 6 dBi.
	Eset and solution in the least a fact of Olle
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz,
	the maximum conducted output power over the frequency band of operation
	shall not exceed 1 W.
not Linkite sofek	Fixed point-to-point U-NII devices may employ antennas with directional gain
est Limit:	up to 23 dBi without any corresponding reduction in the maximum conducted
	output power.
	For fixed point-to-point transmitters that employ a directional antenna gain
	greater than 23 dBi, a 1 dB reduction in maximum conducted output power is
	required for each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint
	systems, omnidirectional applications, and multiple collocated transmitters
	transmitting the same information. The operator of the U-NII device, or if the
	equipment is professionally installed, the installer, is responsible for ensuring
	that systems employing high gain directional antennas are used exclusively
	for fixed, point-to-point operations.
	otek Anbors Ari tek upotek Anbo
"upoter Vu	For client devices in the 5.15-5.25 GHz band, the maximum conducted
	output power over the frequency band of operation shall not exceed 250 mW
	provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that
	the directional gain of the antenna exceeds 6 dBi.
	k Jupote Ant ok hotek Aupo, W. viek Jupotes,
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted
	output power over the frequency bands of operation shall not exceed the
	lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission
	handwidth in magabartz

bandwidth in megahertz.

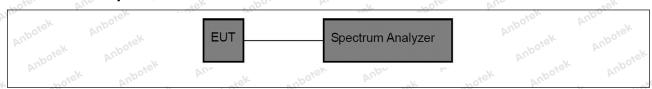
Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 21 of 48

Anbotek Anbotek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2013, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature:	25.7 °C	Humidity:	44 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

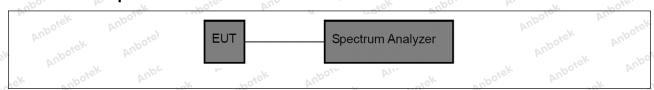
Page 22 of 48 Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO

6. Power spectral density

Test Requirement: 47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(2) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximup power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters.	nbotek
Test Requirement: 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(2) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point u-NIII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximur power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	hore da
47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximur power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	stode
For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximup ower spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	br.
maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 Ghave the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximupower spectral density is required for each 1 dB of antenna gain in exceed 3 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	Anb
megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, to maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, to maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
If transmitting antennas of directional gain greater than 6 dBi are used, to maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximic power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	8
maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	tek
the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	that
maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, 1 maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, to maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
maximum power spectral density shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directiona up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
the directional gain of the antenna exceeds 6 dBi. For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
For fixed point-to-point access points operating in the band 5.15-5.25 G the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directiona up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	that
the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directiona up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antennal gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antennal gain in exceed 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	,v
megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	Hz,
Fixed point-to-point U-NII devices may employ antennas with directional up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	VUP
spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in exces 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
Test Limit: directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	er 🤼
power spectral density is required for each 1 dB of antenna gain in exce 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint	
Fixed, point-to-point operations exclude the use of point-to-multipoint	SS OT
systems, ornindrectional applications, and multiple collocated transmitte	Vien
transmitting the same information. The operator of the U-NII device, or in equipment is professionally installed, the installer, is responsible for ens	
that systems employing high gain directional antennas are used exclusive for fixed, point-to-point operations.	very
ioi iixed, point-to-point operations.	
For client devices in the 5.15-5.25 GHz band, the maximum power spec	rtral
density shall not exceed 11 dBm in any 1 megahertz band.	rti ai
If transmitting antennas of directional gain greater than 6 dBi are used, t	the
maximum power spectral density shall be reduced by the amount in dB	
the directional gain of the antenna exceeds 6 dBi.	II MI
Anno k otek Anno Anno Anno Anno Anno k sotek	
For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power	r
spectral density shall not exceed 11 dBm in any 1 megahertz band.	
If transmitting antennas of directional gain greater than 6 dBi are used, t	the
maximum power spectral density shall be reduced by the amount in dB	
the directional gain of the antenna exceeds 6 dBi.	
Test Method: ANSI C63.10-2020, section 12.6	Sporek
the poly the property of the poly	nbotek
Procedure: Refer to ANSI C63.10-2020, section 12.6	nbotek

FCC ID: 2AY7J-MIRACO Page 23 of 48 Report No.: 18220WC30229201

6.1. EUT Operation


Operating Environment: 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data

rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode: 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

> 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report

6.2. Test Setup

6.3. Test Data

Temperature:	25.7 °C	Humidity:	44 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Hotline

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 24 of 48

7. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
Andr	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
boiek Anbo	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the
	peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and
	repeat measurement
k hotek anh	as needed until the RBW/EBW ratio is approximately 1%.
Aug	Potek Aupo, W. Stek Upoter Aug.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
VII.	frequency span for the spectrum analyzer shall be between 1.5 times and
	5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise
v sotek	specified by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
Procedure:	from exceeding the
anboren Anbo	maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the
	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection an
	single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be used.
	l used. f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are
in wotek	recovered and directly summed in linear power terms. The recovered
	amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of
	the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated
	much requestory is recorded as the lower frequency. The process is repeated

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 25 of 48

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

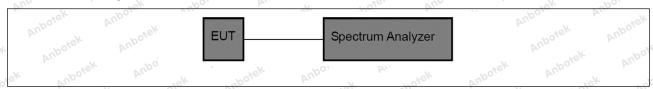
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

7.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

7.2. Test Setup

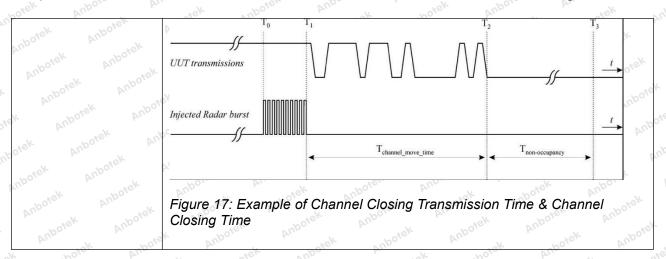
7.3. Test Data

Temperature: 25.7 °C	Humidity: 44 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

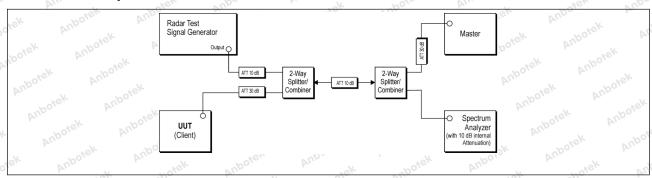
Please Refer to Appendix for Details.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 26 of 48

8. Channel Move Time, Channel Closing Transmission Time


Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
Test Method: Anborek Anborek	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> will be used to allow the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test. 4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for equipment variations/errors. 5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds
	record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time. 6. When operating as a Master Device, monitor the UUT for more than 30
	minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the measurement result. 7. In case the UUT is a U-NII device operating as a <i>Client Device</i> with <i>In-Service Monitoring</i> , perform steps 1 to 6.

Page 27 of 48 Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO


8.1. EUT Operation

Operating Environment:

Test mode:

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

8.2. Test Setup

8.3. Test Data

Temperature:	25.7 °C	hotek	Humidity:	44 %	Atmospheric Pressure:	101 kPa
200	2 C 1			V. 140'	12.	

Please Refer to Appendix for Details.

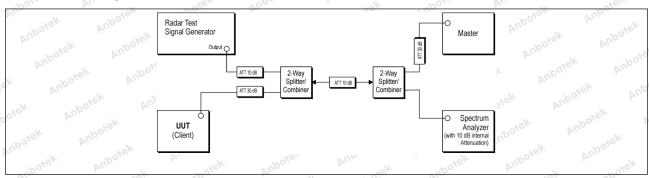
Hotline

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 28 of 48

9. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	
Aupotek Aupotek	Table 3: DFS Detection Thresholds for Master Detection Table 3: DFS Detection Thresholds for Manual Client Devices with Radar Detection Thresholds for Master Devices with Radar Detection Thresholds for Manual Client Devices with Radar	ster Devices
	Maximum Transmit Power	Value (See Notes 1, 2, and 3)
	EIRP ≥ 200 milliwatt	-64 dBm
est Limit:	EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
	EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm
	Note 1: This is the level at the input of the receiver assuming a 0 dR Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurement the test signal is at or above the detection threshold level to trigger a Note3: EIRP is based on the highest antenna gain. For MIMO device 662911 D01.	en added to the amplitude of the ent equipment. This will ensure that a DFS response.
est Method:	KDB 905462 D02, Clause 7.4.1.1	Aupois Air.
Anbotek Anbotek	1) A 50 ohm load is connected in place of the spectrum analyzer is connected to place of the 2) The interference Radar Detection Threshold had been taken into account the autout power of	master Level is TH+ 0dBi +1dB tha
	nad been taken into account the output power i	ange and antenna gain.
	had been taken into account the output power r 3) The following equipment setup was used to d waveform. A vector signal generator was utilized level for radar type 0. During this process, there either the master or client device. The spectrum	calibrate the conducted rada d to establish the test signal were no transmissions by
Procedure: Anbotek Anbotek Anbotek Anbotek	3) The following equipment setup was used to disappear waveform. A vector signal generator was utilized level for radar type 0. During this process, there	calibrate the conducted rada d to establish the test signal e were no transmissions by a analyzer was switched to of the radar waveform rum analyzer resolution were set to 3 MHz. The
Procedure:	3) The following equipment setup was used to describe waveform. A vector signal generator was utilized level for radar type 0. During this process, there either the master or client device. The spectrum the zero spans (time domain) at the frequency of generator. Peak detection was used. The spectro bandwidth (RBW) and video bandwidth (VBW) was set to consider the constant of the second secon	calibrate the conducted radard to establish the test signal were no transmissions by analyzer was switched to of the radar waveform rum analyzer resolution were set to 3 MHz. The sate RF cable loss 1.0dB. et so that the power level dBi +1dB = -63dBm. Captu

9.1. EUT Operation


	Operating Envir	onment:						bi.
or or	Test mode:	modulation	n type. All bar	ndwidth and	data rates ha	transmitting is been tested worst case is	and found t	he data

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 29 of 48

9.2. Test Setup

9.3. Test Data

Temperature: 25.7 °C	Humidity: 44 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Please Refer to Appendix for Details.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 30 of 48

10. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b 47 CFR Part 15.407(b)(2)	Anbotek Anbo	upotek Aupot
ek Vupotek Vupo	For transmitters opera of the 5.15-5.35 GHz k			
	For transmitters opera	ting in the 5 25-5 35 (GHz band: All er	missions outside
ootek Anbor	of the 5.15-5.35 GHz k			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
Anborek Anbor	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
tek aboten	0.07005.0.00075	156.52525	2000 2000	00 04 00 40
est Limit:	8.37625-8.38675 8.41425-8.41475	156.7-156.9 162.0125-167.17	2690-2900 3260-3267	22.01-23.12 23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57025	322-335.4	3600-4400	(²)
	13.36-13.41	322-333.4	3000-4400	-X
ootek Anbotek	¹ Until February 1, 1999 ² Above 38.6	9, this restricted band	shall be 0.490-0	0.510 MHz.
	The field strength of ending not exceed the limits is 1000 MHz, compliance using measurement in detector. Above 1000 I	hown in § 15.209. At a with the limits in § 1 strumentation employ	frequencies equ 5.209shall be de ing a CISPR qu	ial to or less tha emonstrated asi-peak
	15.209shall be demon emissions. The provisi	strated based on the ons in § 15.35apply to	average value o o these measure	of the measured ements.
	Except as provided els intentional radiator sha following table:			
	Frequency (MHz)	Field strength (microvolts/met	ter) hotek	Measurement distance

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 31 of 48

otek Anbore A	Thotek Doger	ups K hotek An	por A. tek
igh spotek	buper bush	Mportal Anti-	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	Anb 30
	1.705-30.0	30 nbores Arriva	30
	30-88	100 **	3
w. otek vupo	88-216	150 **	3 ports
	216-960	200 **	4 3 5010 N
	Above 960	500	otoli 3 Ambo
	7/2, ///	paragraph (g), fundamental	1/2/
hotek Anbor		rating under this section shal	
		инд индегина зесион знаг ИНz, 76-88 МНz, 174-216 М	
		n these frequency bands is p	
rojek Anbore	sections of this part, e.g.		cimilities under other
And		ove, the tighter limit applies a	t the hand edges
		n in the above table are bas	
	- C/2	si-peak detector except for th	
		d above 1000 MHz. Radiate	
		ased on measurements empl	
	detector.	ased on measurements empi	Cyling all average
- hotek Anboro	Ly. Ok Pole.	Augo K Polek	Aupore All
Test Method:	ANSI C63.10-2020, sect	ion 12.7.4, 12.7.6, 12.7.7	botek Anbore
"Upole" Aur	Above 1GHz:	At Albore	And ak bo
	a. For above 1GHz, the l	EUT was placed on the top o	f a rotating table 1.5
		d at a 3 meter fully-anechoic	
		etermine the position of the I	
		eters away from the interfere	
		ne top of å variable-height ar	
		varied from one meter to fou	
		maximum value of the field s	
	and vertical polarizations	of the antenna are set to ma	ake the measurement.
Anb. K 150te	d. For each suspected e	mission, the EUT was arrang	ed to its worst case
	and then the antenna wa	is tuned to heights from 1 me	eter to 4 meters (for the
	test frequency of below 3	BOMHz, the antenna was tun	ed to heights 1 meter)
	and the rotatable table w	as turned from 0 degrees to	360 degrees to find the
	maximum reading.		
	e. The test-receiver syste	em was set to Peak Detect F	unction and Specified
Procedure:	Bandwidth with Maximur		
		the EUT in peak mode was	
		ng could be stopped and the	
	LOAN" AO	wise the emissions that did	15/2
And	01 08	y one using peak or average	method as specified
. aboten And	and then reported in a da		
Di.		west channel, the middle cha	nnel, the Highest
	channel.		
		ements are performed in X, Y	
	Transmitting mode, and	found the X axis positioning v	which it is the worst
	case.	Anbo	
	i. Repeat above procedu	res until all frequencies mea	sured was complete.
	Remark:	All botek	Anbo
	1. Level= Read Level+ C	able Loss+ Antenna Factor-	Preamp Factor
		0GHz, the disturbance abov	· ///
1	2/2	your plate are the highest on	- A1 N

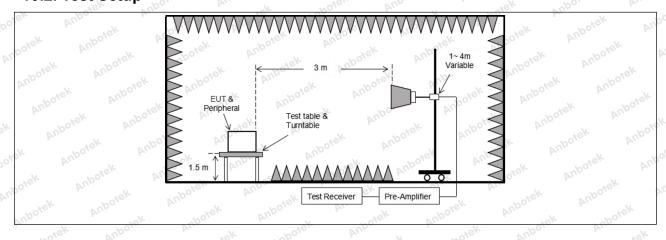
The points marked on above plots are the highest emissions could be found

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 32 of 48

when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation


Operating Environment:

- 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
- 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

10.2. Test Setup

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 33 of 48

10.3. Test Data

Temperature: 25.7 °C	Humidity: 44 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

N. N.					. N		
			TM	1 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.99	15.99 And	52.98	68.20	-15.22	Mysek H	Peak
5150.00	39.06	15.99	55.05	68.20	-13.15	, V	Peak
5150.00	26.92	15.99	42.91	54.00	-11.09	And Hick	AVG
5150.00	28.98	15.99	44.97	54.00	-9.03	Vub.	AVG
		,	TM′	1 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.43	16.43	53.86	68.20	-14.34	H	Peak
5350.00	40.38	16.43	56.81	68.20	-11.39	Aup Aug	Peak
5350.00	28.76	16.43	45.19	54.00	-8.81	Pull Hurd	AVG
5350.00	29.65	16.43	46.08	54.00	-7.92	N/poles	AVG

Remark: 1. Result=Reading + Factor

*	iek abo		V		-	1/s.	
			TM	2 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.93	15.99	51.92	68.20	-16.28	Hotek	Peak
5150.00	37.33	15.99	53.32	68.20	-14.88	A Not	Peak
5150.00	26.65	15.99	42.64	54.00	-11.36 ^{loo}	H	AVG AND
5150.00	27.64	15.99	43.63	54.00	50° 10.37 pm	OLO. A.	AVG
			TM2	2 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.75	16.43	54.18	68.20	-14.02	H water	Peak
5350.00	38.79	16.43	55.22	68.20	-12.98	VARIA	Peak
5350.00	27.79	16.43	44.22	54.00	-9.78	Otok H Ant	AVG
5350.00	29.24	16.43	45.67	54.00	-8.33	votel V	AVG
			-73-				

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan 802.11n SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 34 of 48

	481 VUD		- A-	10, by	2.4	764
		TM3	3 / L			
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
36.94	15.99	52.93	68.20	-15.27	AH LON	Peak
38.69	15.99	54.68	68.20	-13.52	Nupp.	Peak
26.56	15.99	42.55 AV	54.00	-11.45	otek H Anbo	AVG
28.76	15.99	44.75	54.00	-9.25	nbotek V Ar	AVG
		ТМЗ	8 / H			
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
37.88	16.43	54.31	68.20	-13.89	Hup	Peak
38.13	16.43	54.56	68.20	-13.64	yek V Aupo	Peak
27.79	16.43	44.22	54.00	-9.78	notek H An	AVG A
28.36	16.43	44.79	54.00	-9.21	Y	AVG
	(dBuV) 36.94 38.69 26.56 28.76 Reading (dBuV) 37.88 38.13 27.79	(dBuV) (dB/m) 36.94 15.99 38.69 15.99 26.56 15.99 28.76 15.99 Reading (dBuV) Factor (dB/m) 37.88 16.43 38.13 16.43 27.79 16.43	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 36.94 15.99 52.93 38.69 15.99 54.68 26.56 15.99 42.55 28.76 15.99 44.75 TM3 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 37.88 16.43 54.31 38.13 16.43 54.56 27.79 16.43 44.22	(dBuV) (dB/m) (dBuV/m) (dBuV/m) 36.94 15.99 52.93 68.20 38.69 15.99 54.68 68.20 26.56 15.99 42.55 54.00 TM3 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 37.88 16.43 54.31 68.20 38.13 16.43 54.56 68.20 27.79 16.43 44.22 54.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 36.94 15.99 52.93 68.20 -15.27 38.69 15.99 54.68 68.20 -13.52 26.56 15.99 42.55 54.00 -11.45 28.76 15.99 44.75 54.00 -9.25 TM3 / H Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 37.88 16.43 54.31 68.20 -13.89 38.13 16.43 54.56 68.20 -13.64 27.79 16.43 44.22 54.00 -9.78	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 36.94 15.99 52.93 68.20 -15.27 H 38.69 15.99 54.68 68.20 -13.52 V 26.56 15.99 42.55 54.00 -11.45 H 28.76 15.99 44.75 54.00 -9.25 V TM3 / H Reading (dBuV) Result (dBuV/m) Cover limit (dBuV/m) Antenna Pol. 37.88 16.43 54.31 68.20 -13.89 H 38.13 16.43 54.56 68.20 -13.64 V 27.79 16.43 44.22 54.00 -9.78 H

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan 802.11ac SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

-10	k upo	r.	-K 2011	V.L.		ick "upo	A.,
			TM4	4 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.89	15.99	51.88	68.20	-16.32	Hek.	Peak
5150.00	36.33	15.99	52.32	68.20	-15.88	Votek	Peak
5150.00	26.08	15.99	42.07	54.00	-11.93	H Jose	AVG
5150.00	26.81	15.99	42.80	54.00	-11.20 ¹⁰⁰	V V	NO AVG
			TM ²	1 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.04	16.43	54.47	68.20	-13.73	Hotek	Peak
5350.00	37.18	16.43	53.61	68.20	-14.59	V otel	Peak
5350.00	27.49	16.43	43.92	54.00	-10.08°	HAUPS	AVG
5350.00	27.48	16.43	43.91	54.00	-10.09	otek V Anbe	AVG

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan 802.11ax SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 35 of 48

11. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	And the abotek	Aupor Air
Anbotek Anbote	Unwanted emissions belo strength limits set forth in	w 1 GHz must comply with th § 15.209.	e general field
tek Anbotek A	intentional radiator shall n	here in this subpart, the emis ot exceed the field strength le	
hotek Anbore	following table:	Field Strength Work	Magauramant
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30 orek
	30-88	100 ** Mor	3 Ambo
Test Limit:	88-216	150 **	stek 3 subores
	216-960	200 **	3 Rek
	Above 960	500	abote 3 And
	sections of this part, e.g., In the emission table above The emission limits shown employing a CISPR quasi 90 kHz, 110–490 kHz and	these frequency bands is pe §§ 15.231 and 15.241. ve, the tighter limit applies at a in the above table are based -peak detector except for the above 1000 MHz. Radiated sed on measurements employ	the band edges. d on measurements frequency bands 9– emission limits in
Test Method:	ANSI C63.10-2020, section	on 12.7.4, 12.7.5	Aupo, stek
otek Anbotek	meters above the ground was rotated 360 degrees to be The EUT was set 3 or 1 antenna, which was mound countries. The antenna height is viground to determine the mand vertical polarizations of the countries. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading.	JT was placed on the top of a at a 3 meter semi-anechoic of to determine the position of the 0 meters away from the intersted on the top of a variable-haried from one meter to four naximum value of the field stroof the antenna are set to make its interstellar to heights from 1 meters turned to heights from 1 meters turned from 0 degrees to 30 m was set to Peak Detect Furnian and the set of the description.	chamber. The table the highest radiation. If the highest radiation, ference-receiving the highest antenna tower, meters above the ength. Both horizontate the measurement, do to its worst case for to 4 meters (for the dot to heights 1 meter) to degrees to find the
	The state of the s	าเอเน Mode. he EUT in peak mode was 10	Anbo

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 36 of 48

would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 37 of 48

below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

Operating Environment: 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a

modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the

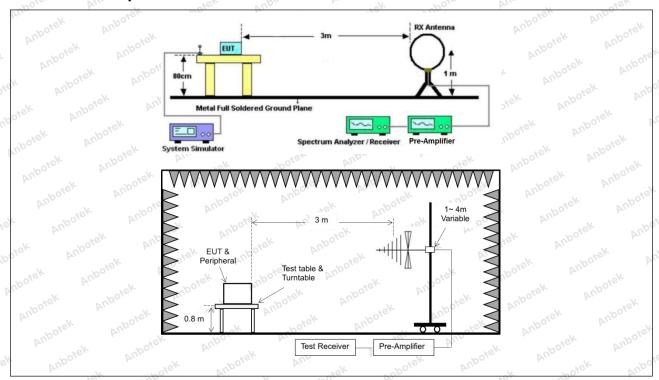
report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate. © MCS0 is the worst case. Only the data of worst case is recorded in the

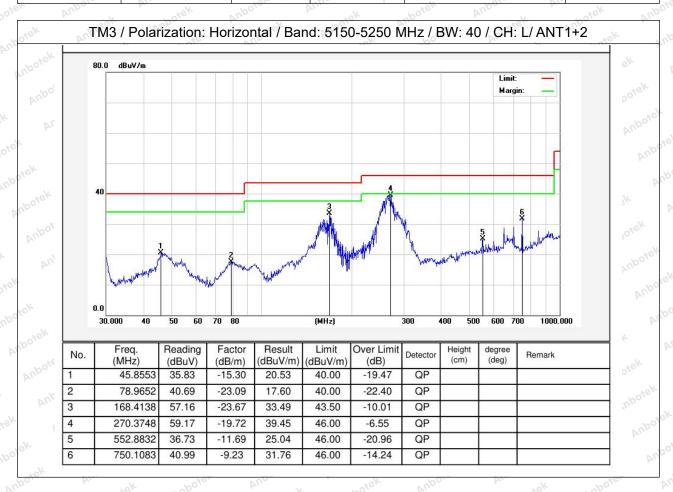
rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 38 of 48

11.2. Test Setup

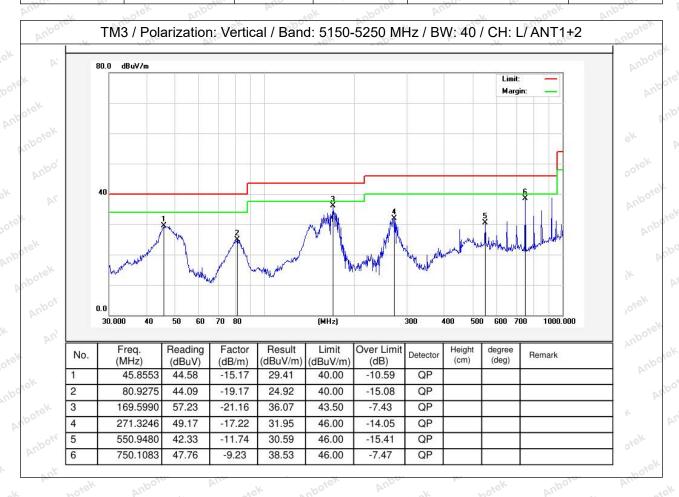


Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 39 of 48

11.3. Test Data

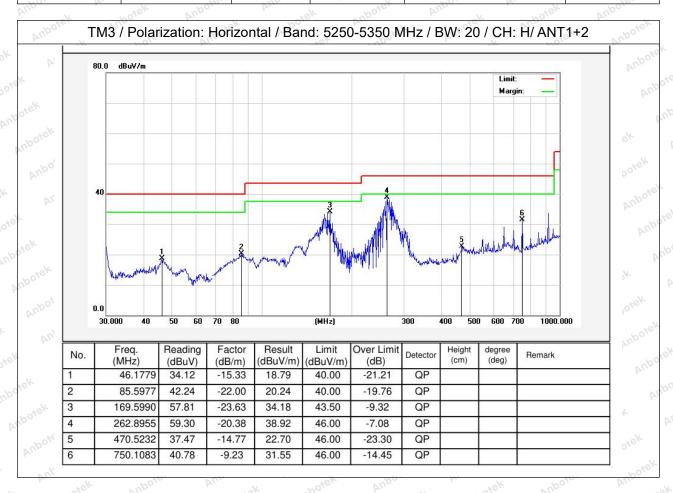
The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 23.5 °C Humidity: 55 % Atmospheric Pressure:	: 101 kPa	heric Pressure:	Atmos	55 %	Humidity:	DUK	23.5 °C	Temperature:
---	-----------	-----------------	-------	------	-----------	-----	---------	--------------



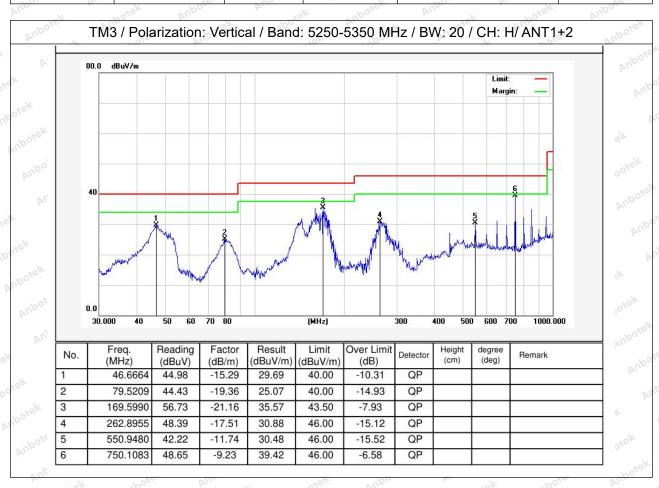
Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 40 of 48

Temperature: 23.5 °C Humidity: 55 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 41 of 48

Temperature: 23.5 °C Humidity: 55 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 42 of 48

Temperature: 23.5 °C Humidity: 55 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 43 of 48

12. Undesirable emission limits (above 1GHz)

st Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b 47 CFR Part 15.407(b)(2)	Anbotek Anbr	upotek Anbo
Anbotek Anbo	For transmitters opera of the 5.15-5.35 GHz to			
tek Anbotek	For transmitters opera of the 5.15-5.35 GHz b			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
st Limit:	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
rek abover	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
All.	12.57675-12.57725	322-335.4	3600-4400	(2) or
	13.36-13.41	ing of Polick	Anbo.	b. Siek
	¹ Until February 1, 1999 ² Above 38.6			
	The field strength of er not exceed the limits s 1000 MHz, compliance using measurement in	hown in § 15.209. At with the limits in § 1 strumentation employ	frequencies equ 5.209shall be de ring a CISPR qu	ual to or less that emonstrated uasi-peak
	detector. Above 1000 I 15.209shall be demon emissions. The provisi	strated based on the	average value o	of the measured
	Except as provided els intentional radiator sha following table:			
	Frequency (MHz)	Field strength (microvolts/met	Pupo,	Measurement distance

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 44 of 48

otek Anbore A	Thotek Doger	ups K hotek An	por A. tek
igh spotek	buper bush	Mportal Anti-	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	Anb 30
	1.705-30.0	30 nbores Arriva	30
	30-88	100 **	3
w. otek vupo	88-216	150 **	3 ports
	216-960	200 **	4 3 5010 N
	Above 960	500	otoli 3 Ambo
	7/2, ///	paragraph (g), fundamental	1/2/
hotek Anbor		rating under this section shal	
		инд индегина зесион знаг ИНz, 76-88 МНz, 174-216 М	
		n these frequency bands is p	
rojek Anbore	sections of this part, e.g.		cimilities under other
And		ove, the tighter limit applies a	t the hand edges
		n in the above table are bas	
	- C/2	si-peak detector except for th	
		d above 1000 MHz. Radiate	
		ased on measurements empl	
	detector.	ased on measurements empi	Cyling all average
- hotek Anboro	Ly. Ok Pole.	Augo K Polek	Aupore All
Test Method:	ANSI C63.10-2020, sect	ion 12.7.4, 12.7.6, 12.7.7	botek Anbore
"Upole" Aur	Above 1GHz:	At a tek	And ak bo
	a. For above 1GHz, the l	EUT was placed on the top o	f a rotating table 1.5
		d at a 3 meter fully-anechoic	
		etermine the position of the I	
		eters away from the interfere	
		ne top of å variable-height ar	
		varied from one meter to fou	
		maximum value of the field s	
	and vertical polarizations	of the antenna are set to ma	ake the measurement.
Anb. K 150te	d. For each suspected e	mission, the EUT was arrang	ed to its worst case
	and then the antenna wa	is tuned to heights from 1 me	eter to 4 meters (for the
	test frequency of below 3	BOMHz, the antenna was tun	ed to heights 1 meter)
	and the rotatable table w	as turned from 0 degrees to	360 degrees to find the
	maximum reading.		
	e. The test-receiver syste	em was set to Peak Detect F	unction and Specified
Procedure:	Bandwidth with Maximur		
		the EUT in peak mode was	
		ng could be stopped and the	
	LONG LANGE	wise the emissions that did	15/2
And	01 08	y one using peak or average	method as specified
. aboten And	and then reported in a da		
Di.		west channel, the middle cha	nnel, the Highest
	channel.		
		ements are performed in X, Y	
	Transmitting mode, and	found the X axis positioning v	which it is the worst
	case.	Anbo	
	i. Repeat above procedu	res until all frequencies mea	sured was complete.
	Remark:	All botek	Anbo
	1. Level= Read Level+ C	able Loss+ Antenna Factor-	Preamp Factor
		0GHz, the disturbance abov	· ///
1	2/2	your plate are the highest on	- A1 N

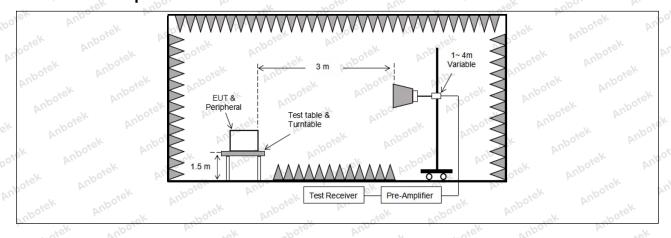
The points marked on above plots are the highest emissions could be found

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 45 of 48

when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

12.1. EUT Operation


Operating Environment:

- 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
- 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

12.2. Test Setup

Report No.: FCC ID: 2AY7J-MIRACO 18220WC30229201 Page 46 of 48

12.3. Test Data

Temperature: 23.5 °C	Humidity:	55 %	Atmospheric Pressure:	101 kPa	
10111001414101	W. I. C. I. I. C.	00 70 pm	, taniespinorie i 1888ans.		70

For WiFi 5.2G:

			TM3 /	CH: L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10380.00	29.59	23.81	53.40	68.20	-14.80	nbote V A	Peak
15570.00	30.89	28.91	59.80	68.20	-8.40	VUPO Ry	Peak
10380.00	30.72	23.81	54.53	68.20	-13.67	Hotek	Peak
15570.00	31.53	28.91	60.44	68.20	-7.76	H North	Peak
10380.00	20.31	23.81	44.12	54.00	-9.88	N _{Up}	AVG
15570.00	20.80	28.91	49.71	54.00	-4.29	otek V Aupo	AVG
10380.00	20.67	23.81	44.48	54.00	-9.52	hotek H Ar	AVG
15570.00	20.95	28.91	49.86	54.00	-4.14	H-	AVG
			TM3 /	CH: H	,		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10460.00	29.93	23.80	53.73	68.20	-14.47	V V	Peak VOO
15690.00	31.11	30.03	61.14	68.20	-7.06 m	V	Peak
10460.00	30.45	23.80	54.25	68.20	-13.95	boten H An	Peak
15690.00	31.68	30.03	61.71	68.20	-6.49	Hrode	Peak
10460.00	20.56	23.80	44.36	54.00	-9.64	, Kek	AVG
15690.00	20.72	30.03	50.75	54.00	-3.25	And Alek	AVG
10460.00	20.48	23.80	44.28	54.00	-9.72	H	AVG
15690.00	20.64	30.03	50.67	54.00	-3.33	ek H Pupou	AVG

Remark:

- 1. Result =Reading + Factor
- 2. During the test, pre-scan the all modulation, only the worst case (802.11ax(HE40) MIMO) is recorded in the report.

Hotline

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 47 of 48

For WiFi 5.3G:

For WiFi 5.3	G: Nek	Vupo,	- ok	-poie.	AUD	n'ek	Vupo.
			TM3 /	CH: L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10520.00	27.81	23.81	51.62	68.20	-16.58	V V	Peak n
15780.00	29.20	30.48	59.68	68.20	otek-8.52 Ant	V M	Peak
10520.00	28.72	23.81	52.53	68.20	-15.67	nboten H P	Peak
15780.00	27.79	30.48	58.27	68.20	-9.93	, oH ^k	Peak
10520.00	17.638	23.81	41.45	54.00	-12.55	Votek	AVG
15780.00	19.361	30.48	49.84	54.00	-4.16	AND STEK	AVG
10520.00	19.125	23.81	42.94	54.00	-11.06	H	AVG
15780.00	18.508	30.48	48.99	54.00	-5.01	itek H Anbo	AVG
			TM3 /	CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10600.00	29.00	23.87	52.87	68.20	-15.33	VUN. Nick	Peak
15900.00	28.25	31.38	59.63	68.20	-8.57	Vootek	Peak
10600.00	28.02	23.87	51.89	68.20	-16.31	H	Peak
15900.00	28.21	31.38	59.59	68.20	30 -8.61 AND	H Ann	Peak
10600.00	18.308	23.87	42.18	54.00	-11.82	botek V An	AVG
15900.00	19.111	31.38	50.49	54.00	-3.51	Voront V	AVG
10600.00	18.405	23.87	42.28	54.00	-11.72	Hek	AVG
15900.00	18.658	31.38	50.04	54.00	-3.96	AND LOK	AVG
			TM3 /	CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10640.00	28.34	23.90	52.24 Aniv	68.20	-15.96	Do. A bu.	Peak
15960.00	27.75	31.83	59.58	68.20	-8.62	Anborev	Peak
10640.00	28.39	23.90	52.29	68.20	-15.91	~ Her	Peak
15960.00	27.77	31.83	59.60	68.20	-8.60	Hotek	Peak
10640.00	17.05	23.90	40.95	54.00	-13.05	V	AVG
15960.00	18.07	31.83	49.90	54.00	ek -4.10,00°	VAUDE	AVG
10640.00	17.58	23.90	ove* 41.48 pm	54.00	-12.52	otek H Anb	AVG
15960.00	18.98	31.83	50.81	54.00	-3.19	notel 1	AVG

Remark:

- 1. Result =Reading + Factor
- During the test, pre-scan the all modulation, only the worst case (802.11ax(HE20) MIMO) is recorded in the report.

Report No.: 18220WC30229201 FCC ID: 2AY7J-MIRACO Page 48 of 48

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

