

Address

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 1 of 37

FCC Test Report

Applicant : Revopoint 3D Technologies Inc

Office 902, 9/F, Tinno Building, Tongfa South

: Rd, Xili Street, Nanshan District, Shenzhen,

518000, P.R.China.

Product Name : INSPIRE 3D Scanner

Report Date : Sept. 27, 2023

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 2 of 37

Contents

1 Outek II oupon ii Air.					W.
1. General Information	_*ek		Nupo _{te} .	~olek	Artent
1.1. Client Information		b.,		Anc.	
1.2. Description of Device (EUT)		400		K Kuporo	A
1.3. Auxiliary Equipment Used D	uring Test		ie. William		ek nob
1.4. Operation channel list	, ore 1.00°	<u> </u>	work Anto	Δ''	
1.5. Description of Test Modes	Otek At	^U PO48br	.ek	aborek Ar	9 !
1.0. Measurement Oncertainty	V1407	notek	AUPOL	"tek	nborok
1.8. Description of Test Facility	Mpole	bu.	opo _{tek}	Aup.	
1.9. Disclaimer	notek.	Pupor	Pri.	stpo _{fer}	Anb
1.10. Test Equipment List			^{co} 0/1/4		1:
2. Conducted Emission at AC power	line		ek vupo _{te} ,	YUD.	
2.1 FUT Operation			'd' 46.		ρ.··
2.1. EUT Operation	(g)	rojek An		iek a	001005
2.3. Test Data	Anbore Arr		Jorek A	upo.	atel 14
1.8. Description of Test Facility 1.9. Disclaimer	botek	Anbor	Di.	Anborer	And sek 1
5. Duty Cycle	-rek	nborek.	Arion -k	hotek	Anbore
3.1. EUT Operation	100, V		anbois	A.	10
3.2. Test Setup				Ariaei	10
3.5. Test Data		ek	p,0V	tek subote	,K
4. Maximum conducted output power	2012	19.5	046/r 120/00	, bv.	
4.1. EUT Operation		00, VI.		ipoter And	1
4.2. Test Setup	VII.	oter	Np		
4.3. Test Data	Kupo,	r.	Whote.	VU.	18
5.1. EUT Operation	pote	AUD.	atek	····**********************************	19
5.1. EUT Operation	k botek	Anbor	W.	Anboter	20
5.2. Test Setup	VI		Anbe		20
5.3 Test Data					- 50
6. Emission bandwidth and occupied 6.1. EUT Operation	bandwidth	oter And	alt	potek Yup,	2
6.1 FUT Operation	YUD SK				upoter 2
6.2. Test Setup	Aupol	-1e/-	oppore	VUDA	22
7 Rand edge emissions (Radiated)					Anbo,
7. Dand edge emissions (reduced)	AME	k hotel	Anbo	, atek	, nbote
7.1. EUT Operation		24	iek "bok	3/	29
7.2. Test Setup	'dr. 494	Olek Wile.	11	otek Anbo	2i
7.0. Tost Data	nbo	otek o	ipole Ani	40.	hotek of
6.3. Test Data	/ 1GHz)	,do	hotel		28
8.1. EUT Operation	bu.		VUr.		
8.2. Test Setup			Vyo,	Air.	3
8.3. Test Data	Antois			Kapo	3
9. Undesirable emission limits (above	e 1GHz)	Aupo,		kkpo _{ter.}	An. 3
9.1. EUT Operation	b	tek Npoi	is. Vup.	, v v v v	ek A'3

Report No.: 18220WC30172801	FCC ID: 2AY/J-INSPIRE	Page 3 of 37
9.2. Test Setup	An Anboten And	ek nobotek 35
9.3. Test Data	Punn Punn	
APPENDIX I TEST SETUP PHOTOGRAPH	e Auga ok potek Auju	
APPENDIX II EXTERNAL PHOTOGRAPH		b ^{otel} 37
APPENDIX III INTERNAL PHOTOGRAPH		" \" \" \" \" \" \" \" \" \" \" \" \" \"

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 4 of 37

TEST REPORT

Applicant : Revopoint 3D Technologies Inc

Manufacturer : Revopoint 3D Technologies Inc

Product Name : INSPIRE 3D Scanner

Test Model No. : INSPIRE

Reference Model No. : N/A

Trade Mark : N/A

Rating(s) : Input: 5V--1A

Test Standard(s) : 47 CFR Part 15E

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Aug. 15, 2023
	tek vupotek Hupote Aug
Date of Test: Aug	g. 17, 2023 to Sept. 26, 2023
	Illa Liang
Prepared By:	abotek Anboy K. Lotek Ar
	(Ella Liang)
	Idward pan
Approved & Authorized Signer:	atek anbore. And ak borek
	(Edward Pan)

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 5 of 37

Revision History

	Report Version	Description	Issued Date		
	Anbore R00 potek An	Original Issue.	Sept. 27, 2023		
9,	Anbotek Anbotek	Anbotek Anbotek Anbotek	Anbotek Anbotek Ant		
10	or Anbotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anbotek		

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 6 of 37

1. General Information

1.1. Client Information

	V Uh.	V-	No. No. No. No. No.
	Applicant	:	Revopoint 3D Technologies Inc
76	Address		Office 902, 9/F, Tinno Building, Tongfa South Rd, Xili Street, Nanshan District, Shenzhen, 518000, P.R.China.
70	Manufacturer	:	Revopoint 3D Technologies Inc
- Control of the Cont	Address		Office 902, 9/F, Tinno Building, Tongfa South Rd, Xili Street, Nanshan District, Shenzhen, 518000, P.R.China.
	Factory	:	Zhejiang Revopoint Optoelectronics Technology Co., Ltd
	Address		2F, Building 7, No.1, Weizhong Road, Weitang Street, Jiashan County, Jiaxing city, Zhejiang Province

1.2. Description of Device (EUT)

Product Name	:	INSPIRE 3D Scanner
Test Model No.	:	INSPIRE AND TEK ADDOTES AND THE MAN AND THE AN
Reference Model No.	:	N/Aporek Anborek Anborek Anborek Anborek Anborek
Trade Mark	:	N/Ahrbor Ar hotek Anbotes Anbotek Anbotek Anbotek
Test Power Supply	:	DC 5V via PC
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/Ak Anborek Anborek Anborek
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HE20): 5180MHz to 5240MHz; 802.11n(HT40)/ac(VHT40)/ax(HE40): 5190MHz to 5230MHz; 802.11ac(VHT80)/ax(HE80): 5210MHz
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HE20): 4; 802.11n(HT40)/ac(VHT40)/ax(HE40): 2; 802.11ac(VHT80)/ax(HE80): 1
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	ANT1/ ANT2: 2.39dBi
Directional antenna gain	:	5.40dBi Anbotek Anbotek Anbotek Anbotek Anbotek

Remark

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 7 of 37

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 8 of 37

1.4. Operation channel list

Mode	Channel	Frequency (MHz)	Channel	Frequency (MHz)
802.11a/n(HT20)/ac(VHT20)/ax(HE20)	Anbo 36	5180	otek 44 Anbo	5220
802.11a/11(1120)/ac(VH120)/ax(HE20)	40	5200	nbotek 48 Anbo	5240
802.11n(HT40)/ac(VHT40)/ax(HE40)	4 38,01el	5190	46	5230
802.11ac(VHT80)/ax(HE80)	42	5210	Anbe	- Note Anh

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anborek TM1 Anborek	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
nbotek Anbotek Anbotek	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM3 Anbotek	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
horek Anborek Anborek	Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Conducted Output Power	0.76dB
Occupied Bandwidth	925Hz
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB
The measurement uncertainty and decision risk	evaluated according to AB/WI-RF-F-032.

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 9 of 37

1.7. Test Summary

Test Modes	Status
Mode1,2,3,4	P
Mode1,2,3,4	P _{Vup}
Mode1,2,3,4	P
Mode1,2,3,4	upor Br
Mode1,2,3,4	Anbon P
Mode1,2,3,4	P
Mode1,2,3,4	P _{VUpp}
Mode1,2,3,4	P
	Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4

N: N/A, not applicable

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 10 of 37

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518128

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 11 of 37

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupr	k abotel	Anbore	W. Otok
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2022-10-23	2023-10-22
2 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2022-10-13	2023-10-12
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	rek /Anborek	Anborek

Duty Cycle Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

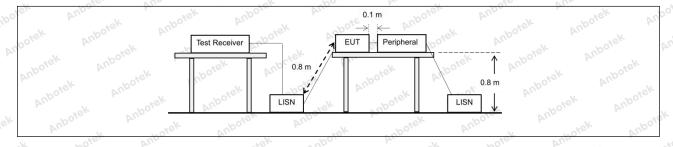
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 Anb	MXG RF Vector Signal Generator	Agilent	N5182A	MY481806 56	2022-10-13	2023-10-12
2	Power Meter	Agilent	N1914A	MY500011 02	2022-10-26	2023-10-25
3	DC Power Supply	IVYTECH	IV3605	1804D360 510	2022-10-22	2023-10-21
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
5	Oscilloscope	Tektronix	MDO3012	C020298	2022-10-19	2023-10-18

	edge emissions (Ra sirable emission limi		or Au	potek Ant	otek Anb	otek Anbotel
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2022-10-23	2023-10-22
Anborer 2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2022-10-13	2023-10-12
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A Ant	N/A	nbotek / Anbi	orek / Ans
° [₹] 5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2022-10-23	2023-10-22
nb6tek	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
17 ¹⁰⁰	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 12 of 37

Unde	sirable emission limi	ts (below 1GHz)	Anboro	Aur	Anborek	Vupo, otek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2022-10-23	2023-10-22
2	Pre-amplifier	SONOMA	310N	186860	2022-10-23	2023-10-22
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
nb4ek	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Aupoter	Andorek

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 13 of 37

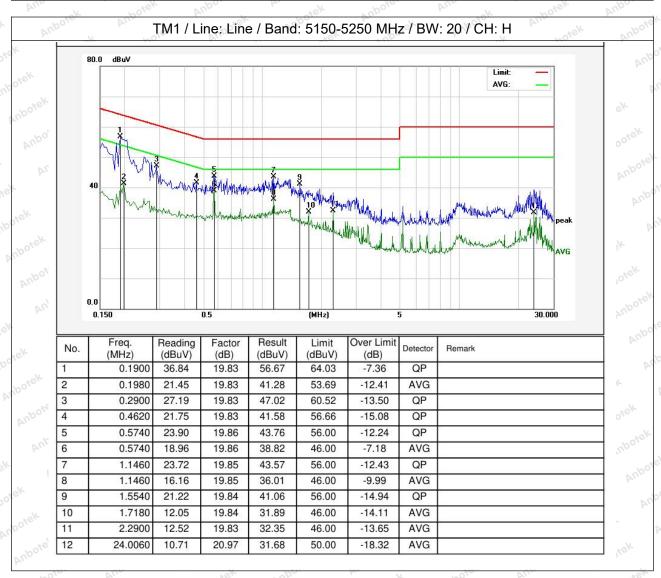

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
Ans sek abotek	Frequency of emission (MHz)	Conducted limit (dBµV) boten Anbo
Anbo, Ai,	AND ANDONE	Quasi-peak	Average
K botek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And 1	56	46 300 tell
otek Anbore A	5-30 And And	60 Potek Wupo,	50
otek Anbotek	*Decreases with the logarithm of the	ne frequency.	Anbo
Test Method:	Refer to ANSI C63.10-2013 section line conducted emissions from unli		

2.1. EUT Operation

Operating Envi	ronment: Anbote Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
nbotek Anbotek Anbotek Anbotek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax
	modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

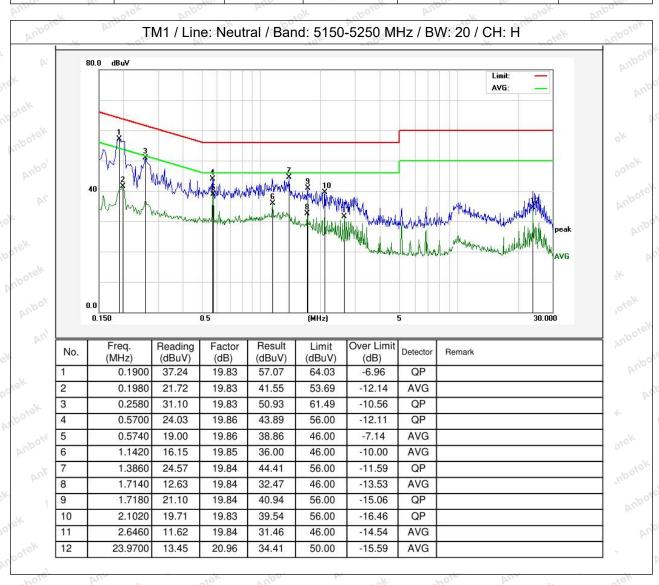
2.2. Test Setup



Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 14 of 37

2.3. Test Data

Temperature: 25.5 °C Humidity: 50 % Atmospheric Pressure: 101 kPa

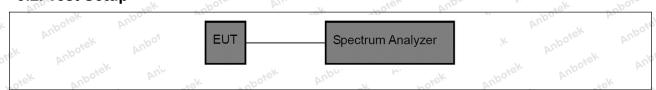


Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 15 of 37

Temperature: 25.5 °C Humidity: 50 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data (802.11n(HT20) MIMO: High CH) in the report.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 16 of 37


3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW.
otek Anbotek Anb	iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	ronment: Andorek Andorek Andorek Andorek Andorek
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ek Anbotek ootek Anbotek	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature:	23.9 °C	Humidity:	48.8 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------

Please Refer to Appendix for Details.

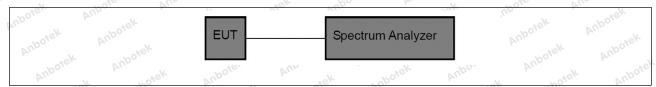
Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 17 of 37

4. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2013, section 12.3
Anbotek Anbotek Anbotek Anbotek	Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz. d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin
	spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto. f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
Anbotek Anbot	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
ek Anbotek An	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,
	then the trigger shall be set to "free run." h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal
	using the instrument's band power measurement function, with band limits set equal to the
	EBW or OBW band edges. If the instrument does not have a band power function, then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
	OBW of the spectrum.

4.1. EUT Operation

Operating Envi	ronment: On All Jorek Anbores Anbores Anbores Anbores
Test mode:	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac



Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 18 of 37

modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature	e: 23.9 °C	Humidity:	48.8 %	Atmospheric Pressure:	101 kPa	P
-------------	------------	-----------	--------	-----------------------	---------	---

Please Refer to Appendix for Details.

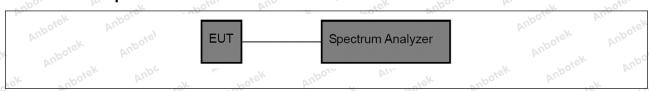
Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 19 of 37

5. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
Test Limit:	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that
itek Anbore An	the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2013, section 12.5
ek społek	a) Create an average power spectrum for the EUT operating mode being
	tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using
	a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1,
	SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled
	"Compute And
	power" (This procedure is required even if the maximum conducted output
	power at the power and the power at the powe
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the
	spectrum.
Ande	c) Make the following adjustments to the peak value of the spectrum, if
	applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is
	the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of
Procedure:	12.3.2.7, add
	1 dB to the final result to compensate for the difference between linear
	averaging and
W. sek	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz
	resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
indo I in otek	authorities.This
	requirement also permits use of resolution bandwidths less than 1 MHz
	"provided that the
	measured power is integrated to show the total power over the measuremer
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution
	bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 × RBW].
	3) Care shall be taken such that the measurements are performed during a
	period of continuous transmission or are corrected upward for duty cycle.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 20 of 37

5.1. EUT Operation


Operating Environment: 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data

rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature:	23.9 °C	Humidity:	48.8 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------

Please Refer to Appendix for Details.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 21 of 37

6. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
Anbo	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
potek Anbo	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the
	peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and
	repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Lotek Anbore An tek abotek Anot kindek
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel cente
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and
	5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise
	specified by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
Procedure:	from exceeding the
Procedure.	maximum input mixer level for linear operation. In general, the peak of the
Anbo	spectral envelope
aboten Anb	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
	in 4.1.5.2. notes And
	d) Step a) through step c) might require iteration to adjust within the
	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection an
up, k kolek	single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
Vi. Jek "Upoter	stabilizes) shall be
	used. nbore And k horek Anbor Ar tek
	f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are
*ek abotek	recovered and directly summed in linear power terms. The recovered
	amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of
	the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated
	until 99.5% of the

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 22 of 37

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

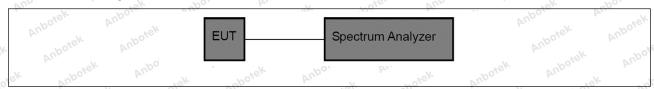
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

6.2. Test Setup

6.3. Test Data

Temperature: 23.9 °C Humidity: 48.8 % Atmospheric Pressure: 101 kPa	Temperature:	23.9 °C	Humidity:	48.8 %	Atmospheric Pressure:	101 kPa	
---	--------------	---------	-----------	--------	-----------------------	---------	--

Please Refer to Appendix for Details.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 23 of 37

7. Band edge emissions (Radiated)

est Requirement:	47 CFR Part 15.407(b) 47 CFR Part 15.407(b)			
Anbors Ant	For transmitters operate of the 5.15-5.35 GHz b			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
otek Anbotek	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
k anbotek A	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
est Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41	And	niek ant	DO. DI.
	¹ Until February 1, 1999 ² Above 38.6	9, this restricted band	I shall be 0.490-	0.510 MHz.
botek Anbotek Anbotek Anbotek Anbotek Anbot	The field strength of er not exceed the limits si 1000 MHz, compliance using measurement indetector. Above 1000 M 15.209shall be demonsterissions. The provision	hown in § 15.209. At with the limits in § 1 strumentation employ MHz, compliance with strated based on the	frequencies equ 5.209shall be do ying a CISPR qu the emission li average value o	ual to or less tha emonstrated uasi-peak mits in § of the measured
	Except as provided els intentional radiator sha following table:	Ill not exceed the field	d strength levels	specified in the
	Frequency (MHz)	Field strength	AU	Measurement
	Aupo, Waller Walo	(microvolts/met	Aupore P	distance (meters)
	0.009-0.490 0.490-1.705	(microvolts/meto 2400/F(kHz) 24000/F(kHz)	Anborek A	

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 24 of 37

ek shotek	1.705-30.0	30	30
	30-88	100 **	3 ok
	88-216	150 **	3
	216-960	200 **	ok 3 novek Amber
Anbore. And	Above 960	500 stek Milbe	3
Test Method:	ANSI C63.10-2013,	section 12.7.4, 12.7.5, 12.7.6	hbotek Anbot A
v hotek	Above 1GHz:	Spotek Anbo	Sotek Anbore Ar
oten And	a. For above 1GHz,	the EUT was placed on the to	op of a rotating table 1.5
otek Anbore	meters above the gr	ound at a 3 meter fully-anech	oic chamber. The table was
	rotated 360 degrees	to determine the position of t	he highest radiation.
abotek Anbe	b. The EUT was set	3 meters away from the inter	ference-receiving antenna,
		on the top of a variable-heigh	
Aupo. W.		nt is varied from one meter to	
r spotek An		the maximum value of the fie	
Vu.		tions of the antenna are set to	
otek Anbore		ed emission, the EUT was arr	
ak hotek		a was tuned to heights from 1	
abotel And	test frequency of bel	ow 30MHz, the antenna was	tuned to heights 1 meter)
" otek anboten	and the rotatable tab	ole was turned from 0 degrees	s to 360 degrees to find the
Anboren Anb	maximum reading.		
botek Anbo.	e. The test-receiver	system was set to Peak Dete	ct Function and Specified
Yun ok	Bandwidth with Maxi	imum Hold Mode.	
Anbore All		el of the EUT in peak mode w	
-k hotek		esting could be stopped and	
Yer And		Otherwise the emissions that o	
stek anbote.		ne by one using peak or aver	age method as specified
100 P. Otek	and then reported in		
Procedure:		e lowest channel, the middle	channel, the Highest
All sek above	channel.		k abotek Anbo
Aupor Ar.		surements are performed in .	
botek Anb		and found the X axis positioni	ng which it is the worst
Ann	case.	Stek Anbore, Ant	
ek Vupoje b	-0-	cedures until all frequencies n	neasured was complete.
v -otek	Remark:	Spoter And	-otek _ Anbote A
poter Anbe		el+ Cable Loss+ Antenna Fac	
riek anboien		to 40GHz, the disturbance a	
Aupo, W.		n above plots are the highes	
botek Anbo.		y above points had been disp	
Vu.	/ · * **	rom the radiator which are at	tenuated more than 20dB
Anbore And	below the limit need		or All
k hotek of		ection, for frequencies above	
Anu		average limits. However, the p	
otek vupoter		ceed the maximum permitted	
po, k.		20 dB under any condition of	
sporek Aupo.		ak level is lower than the ave	rage limit, only the peak
Yun Potek	measurement is sho	/	potek Anbo
Anbore Ans		bove 18GHz were very low a	
stek Anbo	highest point could b	e found when testing, so only	y the above harmonics had

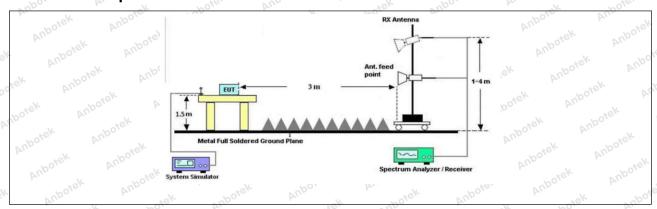
been displayed.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 25 of 37

7.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

7.2. Test Setup

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 26 of 37

7.3. Test Data

Temperature: 23.9 °C	Humidity: 48.8 %	Atmospheric Pressure:	101 kPa
----------------------	------------------	-----------------------	---------

Y.							
			TM	1 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.01	15.99 And	53.00	68.20	-15.20	notek H	Peak
5150.00	39.09	15.99	55.08	68.20	-13.12	, V	Peak
5150.00	26.94	15.99	42.93	54.00	-11.07	And Hek	AVG
5150.00	29.00	15.99	44.99	54.00	-9.01	AND STEK	AVG
			TM′	I / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.45	16.43	53.88	68.20	-14.32	H	Peak
5250.00	40.41	16.43	56.84	68.20	-11.36	And Vick	Peak
5250.00	28.78	16.43	45.21	54.00	-8.79	Anh ak	AVG
5250.00	29.67	16.43	46.10	54.00	-7.90	Wpoyer	AVG

Remark: 1. Result=Reading + Factor

	iek ioo		V			Yo.	
			TM	2 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.95	15.99	51.94	68.20	-16.26	Hotek	Peak
5150.00	37.35	15.99	53.34	68.20	-14.86	Y V	Peak
5150.00	26.67	15.99 ₀ 00 ¹	42.66	54.00	-11.34 · · · · ·	HAM	otek AVG AND
5150.00	27.65	15.99 _M	43.64 And	54.00	10.36 M	Open V Am	AVG
			TM2	2 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.77	16.43	54.20	68.20	-14.00	H note	Peak
5250.00	38.81	16.43	55.24	68.20	-12.96	Ayun	Peak No
5250.00	27.81	16.43	44.24 M	54.00	-9.76	otek H And	AVG
5250.00	29.27	16.43	45.70	54.00	-8.30	obotekV p	AVG

Remark: 1. Result=Reading + Factor

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 27 of 37

1010 VIII		10h	P.	1/4	POLO VIII		" top
			TM	3 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.97	15.99	52.96	68.20	-15.24	H	Peak
5150.00	38.72	15.99	54.71	68.20	-13.49	N ^u po.	Peak
5150.00	26.58	15.99	42.57 And	54.00	11.43 nb	otek H Anbo	AVG
5150.00	28.78	15.99	44.77	54.00	-9.23	nbotek V Ar	AVG
			TM3	3 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.90	16.43	54.33	68.20	-13.87	Hup	Peak
5250.00	38.14	16.43	54.57 no	68.20	-13.63	isk A Vupo,	Peak
5250.00	27.81	16.43	44.24	54.00 M	-9.76	Notek H An	AVG A
5250.00	28.39	16.43	44.82	54.00	-9.18	V	AVG
2/2	No	Pro -		V L. L.		Mo.	Pro-

Remark: 1. Result=Reading + Factor

	- V		0/1.		~~~	V.	1.07
			TM4	4 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.45	15.99	53.44	68.20	-14.76	poten H Ant	Peak
5150.00	39.58	15.99	55.57	68.20	-12.63	Aupotek	Peak
5150.00	26.79	15.99	42.78	54.00	-11.22	AnbAick	AVG
5150.00	30.71	15.99	46.70	54.00	-7.30	Notok	AVG
			TM4	1 / H	,		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.27	16.43	54.70	68.20	-13.50	Anbote H	Peak
5250.00	38.68	16.43	55.11	68.20	-13.09	nb V	Peak
5250.00	30.06	16.43	46.49	54.00	-7.51	Hotek	AVG
5250.00	29.46	16.43	45.89	54.00	-8.11	V otel	AVG

Remark: 1. Result=Reading + Factor

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 28 of 37

8. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)) And botek	Anbore Ans
Anbotek Anbote	Unwanted emissions belo	ow 1 GHz must comply with t § 15.209.	he general field
	Event as provided alsow	where in this subpart, the emi	acione from an
		not exceed the field strength	
aborek Anbo	Frequency (MHz)	Field strength	Measurement
Test Limit:	Ambotek Ambotek	(microvolts/meter)	distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30/poils And
	1.705-30.0	30 Shore And	30 morek
ek abotek A	30-88	100 **	3 And
	88-216	150 **	atel 3 ambores
	216-960	200 **	3 rek
	Above 960	500	3 Anb
Test Method:	ANSI C63.10-2013, section	- N NO3	Anbotes Anbotes
Auporen Aupo	Below 1GHz:	All Anborek	Aupo Pho
		EUT was placed on the top of	a rotating table 0.8
Ambo		at a 3 meter semi-anechoic	
sk apolen A		to determine the position of t	
		10 meters away from the inte	
		nted on the top of a variable-	
		varied from one meter to four	
		maximum value of the field st	
		of the antenna are set to ma	
	- W	nission, the EUT was arrange	
		s tuned to heights from 1 me	
k hotek an		0MHz, the antenna was tune	
And		as turned from 0 degrees to 3	
	maximum reading.	700, by	360 degrees to find the
			360 degrees to find the
		em was set to Peak Detect Fu	Jose - Aug
Procedure:		em was set to Peak Detect Fu n Hold Mode.	John Aur
Procedure:	e. The test-receiver syste Bandwidth with Maximum		inction and Specified
Procedure:	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of	n Hold Mode.	unction and Specified OdB lower than the
Procedure:	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin	n Hold Mode. the EUT in peak mode was 1	unction and Specified OdB lower than the Deak values of the EU
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other	n Hold Mode. the EUT in peak mode was 1 ig could be stopped and the p	unction and Specified OdB lower than the Deak values of the EU ot have 10dB margin
Procedure:	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth	unction and Specified OdB lower than the beak values of the EU ot have 10dB margin
Procedure:	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data sh	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and
Procedure: Anborek Anborek Anborek Anborek Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data sh	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet.	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and
Procedure: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data streng. Test the EUT in the low channel.	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet.	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and onel, the Highest
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data structure g. Test the EUT in the low channel. h. The radiation measure	n Hold Mode. Ithe EUT in peak mode was 1 It g could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet. west channel, the middle char	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and and onel, the Highest Z axis positioning for
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data structure g. Test the EUT in the low channel. h. The radiation measure	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet. west channel, the middle char ments are performed in X, Y,	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and and onel, the Highest Z axis positioning for
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data sh g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and for	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet. west channel, the middle char ments are performed in X, Y,	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and annel, the Highest Z axis positioning for which it is the worst
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data sh g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and for	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet. vest channel, the middle char ments are performed in X, Y, ound the X axis positioning w	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and annel, the Highest Z axis positioning for which it is the worst
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data sh g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and for case. i. Repeat above procedur Remark:	n Hold Mode. the EUT in peak mode was 1 ag could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet. vest channel, the middle char ments are performed in X, Y, ound the X axis positioning w res until all frequencies meas	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and onel, the Highest Z axis positioning for which it is the worst or which was complete.
Procedure: Anborek	e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other would be re-tested one by then reported in a data sh g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and for case. i. Repeat above procedur Remark: 1. Level= Read Level+ Ca	n Hold Mode. the EUT in peak mode was 1 ng could be stopped and the p wise the emissions that did n y one using quasi-peak meth neet. vest channel, the middle char ments are performed in X, Y, ound the X axis positioning w	onction and Specified OdB lower than the beak values of the EU ot have 10dB margin od as specified and annel, the Highest Z axis positioning for which it is the worst ured was complete.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 29 of 37

when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

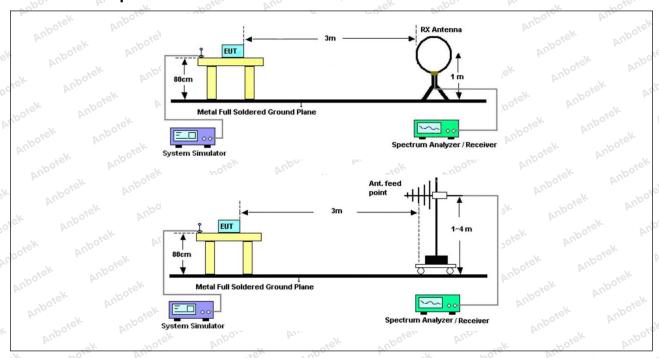
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 30 of 37

8.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

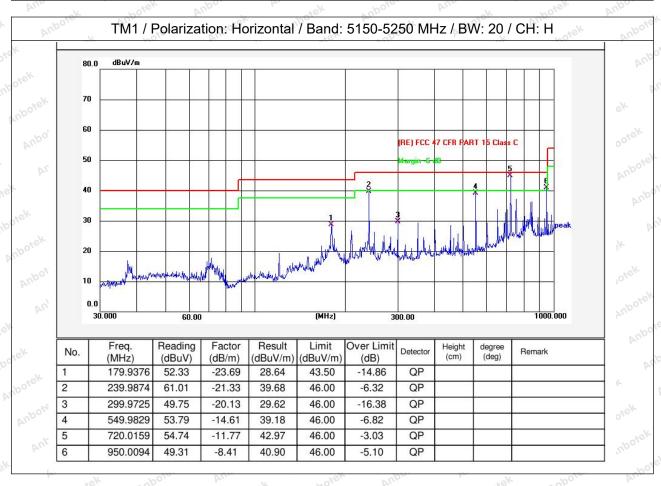

2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

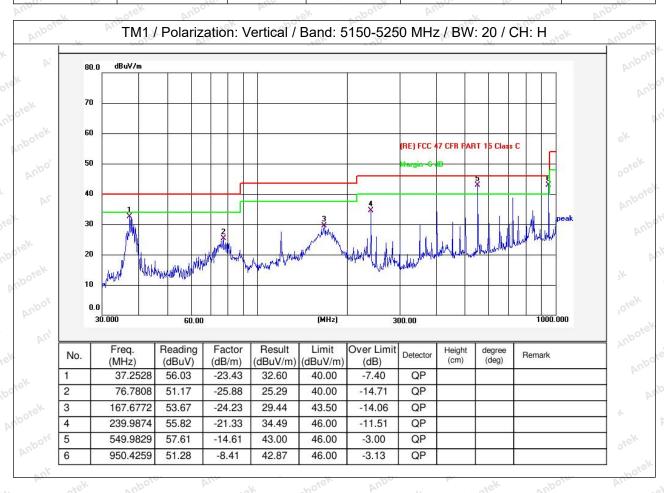
8.2. Test Setup



Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 31 of 37

8.3. Test Data

Temperature: 23.4 °C Humidity: 53.7 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 32 of 37

Temperature: 23.4 °C Humidity: 53.7 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data (802.11n(HT20) MIMO: High CH) in the report.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 33 of 37

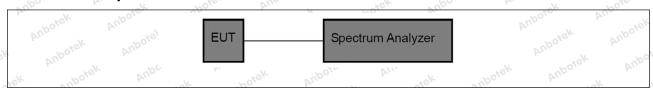
9. Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b) 47 CFR Part 15.407(b)			
Anborek Ambor	For transmitters operate of the 5.15-5.35 GHz b			
	MHz	MHz Anbore	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
potek Anbotek	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
k Anborek An	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
Test Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
upole And	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41	E ANDO	intek an	bos bris
	¹ Until February 1, 1999 ² Above 38.6	9, this restricted band	l shall be 0.490-	0.510 MHz.
	The field strength of er not exceed the limits si 1000 MHz, compliance using measurement indetector. Above 1000 M 15.209shall be demons emissions. The provisions	hown in § 15.209. At with the limits in § 1 strumentation employ MHz, compliance with strated based on the	frequencies equencies equencies of the depth	ual to or less that emonstrated uasi-peak mits in § of the measured
k kniek M	Except as provided els			
	intentional radiator sha following table:	hotek an	DO. 1.	tek anboten
		Field strength (microvolts/mete	er)	Measurement distance (meters)
	following table:	Field strength	er)	distance

Page 34 of 37 Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE

ck botek	1.705-30.0	30	30 M			
Aupole. Aug	30-88	100 **	3.ek			
	88-216	150 **	or alogo production			
	216-960	200 **	ok 3 otek Anbor			
aboten Anbe	Above 960	500	3 4			
Test Method:	70°	section 12.7.4, 12.7.5, 12.7.	r rote, but			
rest Motilou.	740 VUD.	3000011 12.7.4, 12.7.0, 12.7.	ALIDO K AND			
	Above 1GHz:	the EUT was placed on the	top of a rotating table 1 F			
		a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was				
upoter Aug		to determine the position of				
			rference-receiving antenna,			
		on the top of a variable-heig				
		nt is varied from one meter to				
			ield strength. Both horizontal			
		tions of the antenna are set				
ye. Yup.		ed emission, the EUT was a				
			1 meter to 4 meters (for the			
		test frequency of below 30MHz, the antenna was tuned to heights 1 meter)				
		and the rotatable table was turned from 0 degrees to 360 degrees to find the				
	maximum reading.	siek woodbatta Daak Dat	ast Function and Coastinal			
		system was set to Peak Det	ect Function and Specified			
r otek anb		Bandwidth with Maximum Hold Mode.				
Ando		f. If the emission level of the EUT in peak mode was 10dB lower than the				
rek aboven		limit specified, then testing could be stopped and the peak values of the EUT				
W. Siek		would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified				
			erage method as specified			
Dragadura, spotek	and then reported in		a abanyal the Highest			
Procedure:	channel.	e lowest channel, the middle	e channel, the highest			
	V	oter	V V 7 avia positioning for			
And			X, Y, Z axis positioning for			
anborer And		and found the X axis position	ing which it is the worst			
A. stek	case.	and work and all for an arrange	And And			
ek Aupo.		cedures until all frequencies	measured was complete.			
.ck botek	Remark:	LL Cable Lagar Antonna Ta	- Anbo			
pore Arr		el+ Cable Loss+ Antenna Fa	V			
borek Anbore			above 18GHz was very low.			
Aup. K Motek		n above plots are the highes				
		y above points had been dis				
		rom the radiator which are a	allenualed more than 2008			
	below the limit need		o 1011 the field atropath			
ok spojek Ar		ection, for frequencies abov				
VII.		everage limits. However, the				
otek Anbore		ceed the maximum permitte				
ok hotek		20 dB under any condition o				
upoter And		ak level is lower than the av	erage iimit, only the peak			
w. otek "upoter	measurement is show		and the barmanias was the			
			and the harmonics were the			
Potek Vupo.	nignest point could b	e iouna when testing, so on	lly the above harmonics had			

been displayed.



Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 35 of 37

9.1. EUT Operation

Lipo, K.	ok Baye Vun Otek Vulpa, Iv. Ok Baye.
Operating Envir	onment: And Andrew Andrew
Anbotek Anbotek Anbotek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the
Test mode:	report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbote Anbotek	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 36 of 37

9.3. Test Data

Temperature:	23.7 °C	Humidity:	48 % Mbone	Atmospheric Pressure:	101 kPa	
Tomperature.	P20.1 O	i fulfillalty.	TO 70 p	7 timosphono i ressure.	TOTAL	4

			TMO /	OH: I	- N	-ho,	- Pr.
	l			CH: L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10360.00	31.54	otel 23.81 ph	55.35	68.20	-12.85	V	Peak
15540.00	32.92	28.68	61.60	68.20	-6.60	Nupo, A	Peak
10360.00	32.00	23.81	55.81	68.20	-12.39	PupoH	Peak
15540.00	32.98	28.68	61.66	68.20	-6.54	"Ho _{jer}	Peak
10360.00	20.971	23.81	44.78	54.00	-9.22	Vobořek	AVG
15540.00	22.104	28.68	50.78	54.00	-3.22	V V	AVG N
10360.00	21.193	23.81	45.00	54.00	otek -9.00 prob	H AM	AVG
15540.00	21.639	28.68	50.32	54.00	-3.68	nbotek H Ar	AVG
			TM2 /	CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10400.00	30.90	23.81	54.71	68.20	-13.49	Kupote	Peak
15600.00	32.45	29.13	61.58	68.20	-6.62	ek V nbot	Peak
10400.00	31.49	23.81	55.30	68.20	-12.90	H ,	o ^{ke™} Peak ⋈
15600.00	32.50	29.13	61.63 ^{km}	68.20	-6.57	H bu	Peak
10400.00	21.241	23.81	45.05	54.00	-8.95	Anborev	AVG
15600.00	22.224	29.13	51.35	54.00	-2.65	VIPA SK	AVG
10400.00	21.183	23.81	44.99	54.00	-9.01	Horek	AVG
15600.00	21.719	29.13	50.85	54.00	-3.15	H	[™] AVG [™]
		27	TM2 /	CH: H		1-96	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10480.00	30.47	23.80	54.27	68.20	-13.93	Auga Ak	Peak
15720.00	31.93	30.03	61.96	68.20	-6.24	AUPO,	Peak
10480.00	31.13	23.80	54.93	68.20	-13.27	Hoore	Peak
15720.00	31.41	30.03	61.44	68.20	-6.76	ek Habote	Peak
10480.00	19.91	23.80	43.71	54.00	-10.29	V V	AVG ANG
15720.00	20.98	30.03	51.01 And	54.00	-2.99 M	V Ann	AVG
10480.00	20.39	23.80	44.19	54.00	-9.81	Anbote H P	AVG
15720.00	20.51	30.03	50.54	54.00	-3.46	_bH ^k	AVG

Remark:

- 1. Result =Reading + Factor
- 2. During the test, pre-scan the all modulation, only the worst case(802.11n(HT20) MIMO) is recorded in the report.

Report No.: 18220WC30172801 FCC ID: 2AY7J-INSPIRE Page 37 of 37

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

