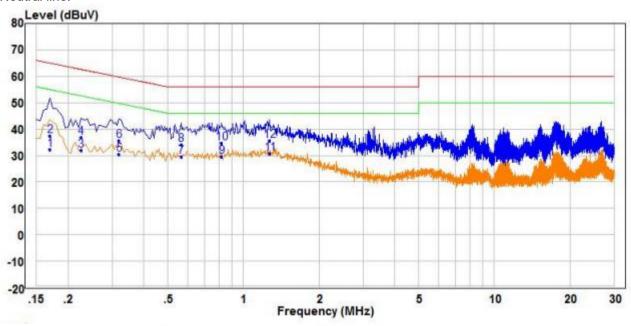
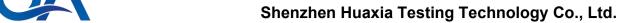


1#

Live line:

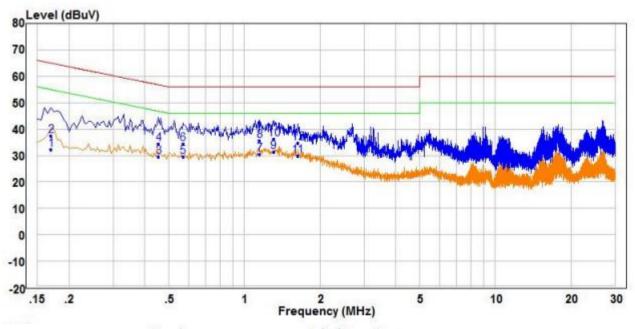


		Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
	-	MHz	dBuV	dB	dBuV	dBuV	dB		
1 2		0.170	21.59	10.66	32.25	54.96	-22.71	Average	Line
		0.170	26.73	10.66	37.39	64.96	-27.57	QP	Line
3		0.190	21.66	10.63	32.29	54.04	-21.75	Average	Line
4		0.190	26.66	10.63	37.29	64.04	-26.75	QP	Line
4 5 6 7		0.315	19.88	10.51	30.39	49.84	-19.45	Average	Line
6		0.315	25.03	10.51	35.54	59.84	-24.30	QP	Line
		0.460	18.63	10.67	29.30	46.69	-17.39	Average	Line
8		0.460	23.66	10.67	34.33	56.69	-22.36	QP	Line
9		0.735	18.56	10.88	29.44	46.00	-16.56	Average	Line
10		0.735	23.52	10.88	34.40	56.00	-21.60	QP	Line
11	PP	0.975	19.01	10.72	29.73	46.00	-16.27	Average	Line
12	QP	0.975	23.99	10.72	34.71	56.00	-21.29	QP	Line


Neutral line:

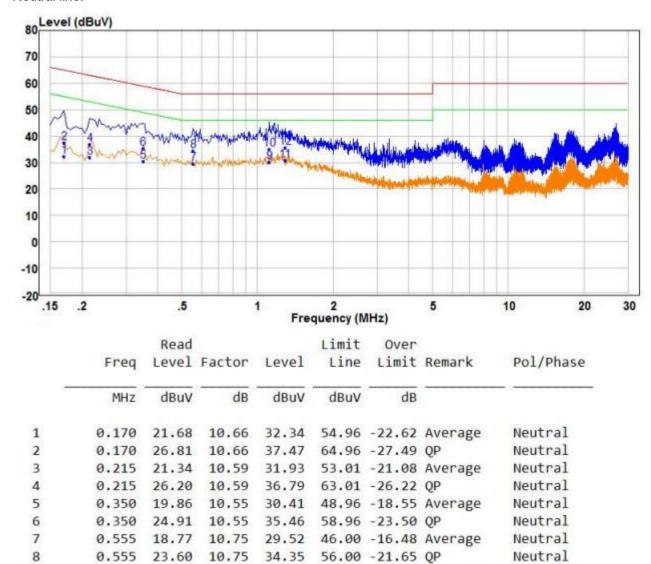
		Fnee	Read	Factor	tousl	Limit	Over	Domanie	pel/phase
		Freq	rever	Factor	Level	Line	LIMIT	Remark	Pol/Phase
	5	MHz	dBuV	dB	dBuV	dBuV	dB		- 22
1		0.170	21.64	10.66	32.30	54.96	-22.66	Average	Neutral
2		0.170	26.69	10.66	37.35	64.96	-27.61	QP	Neutral
3		0.225	21.35	10.57	31.92	52.63	-20.71	Average	Neutral
4		0.225	26.31	10.57	36.88	62.63	-25.75	QP	Neutral
5		0.320	20.04	10.51	30.55	49.71	-19.16	Average	Neutral
6		0.320	25.04	10.51	35.55	59.71	-24.16	QP	Neutral
7		0.565	18.80	10.76	29.56	46.00	-16.44	Average	Neutral
8		0.565	23.48	10.76	34.24	56.00	-21.76	QP	Neutral
9		0.820	18.82	10.82	29.64	46.00	-16.36	Average	Neutral
10		0.820	23.77	10.82	34.59	56.00	-21.41	QP	Neutral
11 F	PP	1.275	19.93	10.71	30.64	46.00	-15.36	Average	Neutral
12 (QP	1.275	25.04	10.71	35.75	56.00	-20.25	QP	Neutral

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

Live line:

		Read			Limit	Over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
_	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.170	21.70	10.66	32.36	54.96	-22.60	Average	Line
2	0.170	26.89	10.66	37.55	64.96	-27.41	QP	Line
3	0.455	18.98	10.66	29.64	46.78	-17.14	Average	Line
4	0.455	23.72	10.66	34.38	56.78	-22.40	QP	Line
5	0.570	18.82	10.77	29.59	46.00	-16.41	Average	Line
6	0.570	23.57	10.77	34.34	56.00	-21.66	QP	Line
7	1.150	19.51	11.09	30.60	46.00	-15.40	Average	Line
8	1.150	24.44	11.09	35.53	56.00	-20.47	QP	Line
9 PP	1.305	19.86	11.45	31.31	46.00	-14.69	Average	Line
10 QP	1.305	24.81	11.45	36.26	56.00	-19.74	QP	Line
11	1.630	17.88	12.07	29.95	46.00	-16.05	Average	Line
12	1.630	22.67	12.07	34.74	56.00	-21.26	QP	Line


Neutral

Neutral

Neutral

Neutral

Neutral line:

Notes:

9

10

11 PP

12 QP

1.115

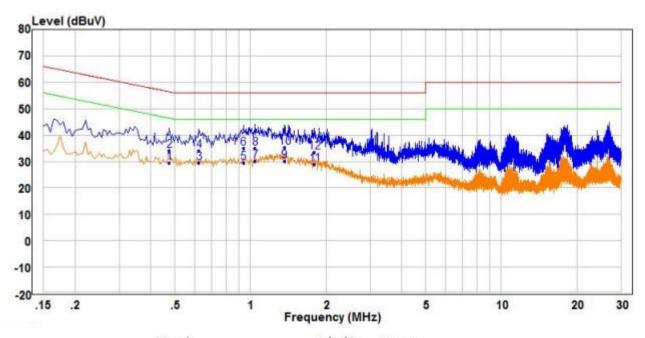
1. The following Quasi-Peak and Average measurements were performed on the EUT:

1.115 19.44 10.71 30.15 46.00 -15.85 Average

1.290 20.04 10.71 30.75 46.00 -15.25 Average

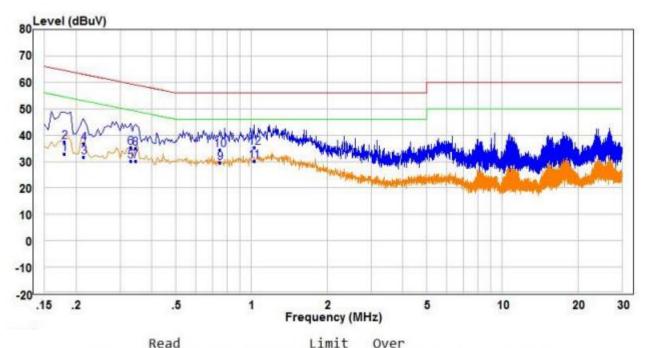
1.290 24.97 10.71 35.68 56.00 -20.32 QP

24.45 10.71 35.16 56.00 -20.84 QP


- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

3#

Live line:

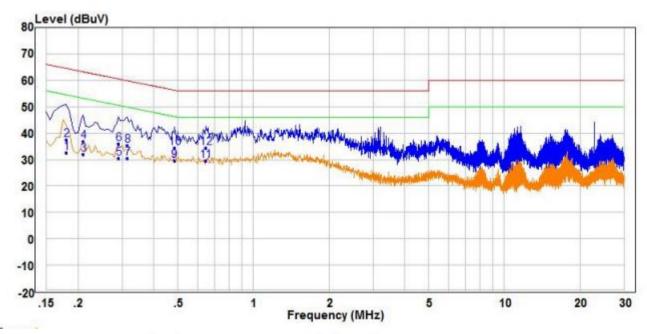


		Read			Limit	Over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
27	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.475	18.81	10.68	29.49	46.43	-16.94	Average	Line
2	0.475	23.50	10.68	34.18	56.43	-22.25	QP	Line
3	0.625	18.69	10.83	29.52	46.00	-16.48	Average	Line
4	0.625	23.31	10.83	34.14	56.00	-21.86	QP	Line
	0.940	18.88	10.74	29.62	46.00	-16.38	Average	Line
6	0.940	24.15	10.74	34.89	56.00	-21.11	QP	Line
7	1.045	19.29	10.82	30.11	46.00	-15.89	Average	Line
8	1.045	24.26	10.82	35.08	56.00	-20.92	QP	Line
9 PP	1.365	18.68	11.57	30.25	46.00	-15.75	Average	Line
10 QP	1.365	23.69	11.57	35.26	56.00	-20.74	QP	Line
11	1.800	16.50	12.35	28.85	46.00	-17.15	Average	Line
12	1.800	21.22	12.35	33.57	56.00	-22.43	OP	Line

Neutral line:

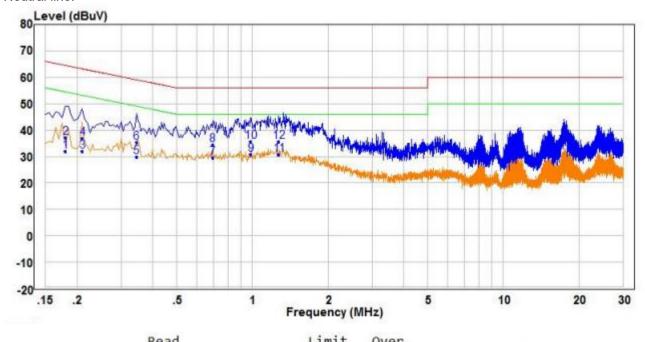
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
· -	MHz	dBuV	dB	dBuV	dBuV	dB	\ <u></u>	->
1	0.180	22.12	10.64	32.76	54.49	-21.73	Average	Neutral
2	0.180	26.81	10.64	37.45	64.49	-27.04	QP	Neutral
3	0.215	21.09	10.59	31.68	53.01	-21.33	Average	Neutral
4	0.215	26.26	10.59	36.85	63.01	-26.16	QP	Neutral
5	0.330	19.79	10.52	30.31	49.45	-19.14	Average	Neutral
6	0.330	24.89	10.52	35.41	59.45	-24.04	QP	Neutral
7	0.345	19.47	10.54	30.01	49.08	-19.07	Average	Neutral
8	0.345	24.62	10.54	35.16	59.08	-23.92	QP	Neutral
9	0.750	18.62	10.87	29.49	46.00	-16.51	Average	Neutral
10	0.750	23.55	10.87	34.42	56.00	-21.58	QP	Neutral
11 PP	1.025	19.44	10.70	30.14	46.00	-15.86	Average	Neutral
12 QP	1.025	24.63	10.70	35.33	56.00	-20.67	QP	Neutral

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

4#

Live line:

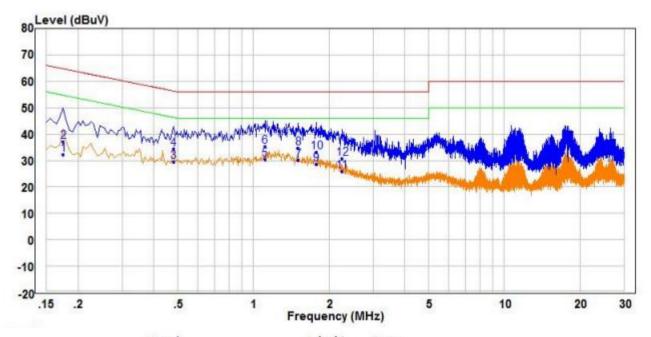


		Read			Limit	Over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.180	22.01	10.64	32.65	54.49	-21.84	Average	Line
2 3	0.180	26.72	10.64	37.36	64.49	-27.13	QP	Line
	0.210	21.39	10.60	31.99	53.21	-21.22	Average	Line
4	0.210	26.23	10.60	36.83	63.21	-26.38	QP	Line
5	0.290	20.07	10.50	30.57	50.52	-19.95	Average	Line
6	0.290	25.52	10.50	36.02	60.52	-24.50	QP	Line
6 7 8 9	0.315	19.90	10.51	30.41	49.84	-19.43	Average	Line
8	0.315	24.86	10.51	35.37	59.84	-24.47	QP	Line
9	0.485	18.87	10.69	29.56	46.25	-16.69	Average	Line
10 QP	0.485	23.87	10.69	34.56	56.25	-21.69	QP	Line
11 PP	0.645	18.71	10.85	29.56	46.00	-16.44	Average	Line
12	0.645	23.42	10.85	34.27	56.00	-21.73	QP	Line

Neutral line:

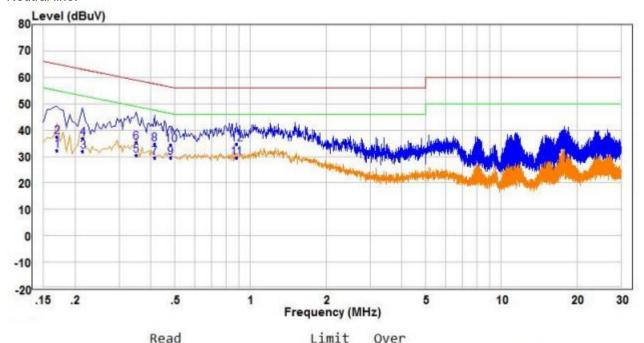
		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
		MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.180	21.33	10.64	31.97	54.49	-22.52	Average	Neutral
2		0.180	26.47	10.64	37.11	64.49	-27.38	QP	Neutral
3		0.210	21.44	10.59	32.03	53.21	-21.18	Average	Neutral
4		0.210	26.36	10.59	36.95	63.21	-26.26	QP	Neutral
5		0.345	19.38	10.54	29.92	49.08	-19.16	Average	Neutral
6		0.345	24.71	10.54	35.25	59.08	-23.83	QP	Neutral
7		0.695	18.67	10.89	29.56	46.00	-16.44	Average	Neutral
8		0.695	23.51	10.89	34.40	56.00	-21.60	QP	Neutral
9		0.985	19.94	10.71	30.65	46.00	-15.35	Average	Neutral
10		0.985	25.01	10.71	35.72	56.00	-20.28	QP	Neutral
11	PP	1.275	20.03	10.71	30.74	46.00	-15.26	Average	Neutral
12	QP	1.275	25.05	10.71	35.76	56.00	-20.24	QP	Neutral

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

5#

Live line:



		Read			Limit	Over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.175	21.65	10.65	32.30	54.72	-22.42	Average	Line
2	0.175	26.63	10.65	37.28	64.72	-27.44	QP	Line
3	0.480	18.77	10.68	29.45	46.34	-16.89	Average	Line
4	0.480	23.68	10.68	34.36	56.34	-21.98	QP	Line
5 PP	1.110	19.52	11.00	30.52	46.00	-15.48	Average	Line
6 QP	1.110	24.33	11.00	35.33	56.00	-20.67	QP	Line
7	1.510	18.30	11.86	30.16	46.00	-15.84	Average	Line
8	1.510	22.94	11.86	34.80	56.00	-21.20	QP	Line
9	1.780	16.23	12.32	28.55	46.00	-17.45	Average	Line
10	1.780	20.91	12.32	33.23	56.00	-22.77	QP	Line
11	2.250	13.39	12.40	25.79	46.00	-20.21	Average	Line
12	2.250	18.43	12.40	30.83	56.00	-25.17	QP	Line

Neutral line:

		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	15	MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.170	21.50	10.66	32.16	54.96	-22.80	Average	Neutral
2		0.170	26.72	10.66	37.38	64.96	-27.58	QP	Neutral
3		0.215	21.38	10.59	31.97	53.01	-21.04	Average	Neutral
4		0.215	26.36	10.59	36.95	63.01	-26.06	QP	Neutral
5		0.350	19.83	10.55	30.38	48.96	-18.58	Average	Neutral
6		0.350	24.87	10.55	35.42	58.96	-23.54	QP	Neutral
7		0.415	18.87	10.62	29.49	47.55	-18.06	Average	Neutral
8		0.415	24.02	10.62	34.64	57.55	-22.91	QP	Neutral
9		0.480	18.85	10.68	29.53	46.34	-16.81	Average	Neutral
10		0.480	23.71	10.68	34.39	56.34	-21.95	QP	Neutral
11	PP	0.880	18.81	10.78	29.59	46.00	-16.41	Average	Neutral
12	QP	0.880	23.96	10.78	34.74	56.00	-21.26	QP	Neutral

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

Report No.: CQASZ20231202343E-04

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 1CUz	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average				
Test Procedure:	Below 1GHz test procedu a. The EUT was placed or at a 3 meter semi-anecdetermine the position of the EUT was set 3 meters was mounted on the top of the antenna height is well determine the maximum polarizations of the antenna was turned from 0 degres. The test-receiver system Bandwidth with Maximum for Place a marker at the effequency to show combands. Save the spectra for lowest and highest of the semi-area o	re as below: In the top of a rot hoic camber. The of the highest raters away from the proof of a variable-horaried from one representation are set to real are set to real are set to real are set to proof of the field was set to Peaum Hold Mode. In the definition of the restrict pliance. Also meaum analyzer plot	tating table te table wa diation. he interfer eight anter meter to fo eld strength make the n was arran 1 meter to ees to find ak Detect l ted band ce	e 0.8 meters rotated 3 ence-receinna tower. ur meters n. Both horneasurement ged to its value at the maxim function a losest to the emissions	rs above the graditions and the rotata and Specified the transmit in the restrict of the restr	whi und und dertica d the ble			
	 Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre). h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete. 								
Limit:	Frequency	Limit (dBµV/n	m @3cm)	Rer	mark				
	30MHz-88MHz	40.0		Quasi-pe	eak Value				
	88MHz-216MHz	43.5		· ·	eak Value				
	216MHz-960MHz	46.0		· ·	eak Value				
	960MHz-1GHz	54.0		· ·	eak Value				
		54.0		· ·	je Value				
	Above 1GHz	74.0		Peak					

Report No.: CQASZ20231202343E-04

Test plot as follows:

Worse case	mode:	802.11a(6Mbps)		Test channe	el:	36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5150.00	56.61	-3.63	52.98	74	-21.02	peak	Н
5150.00	42.63	-3.63	39.00	54	-15.00	AVG	Н
5150.00	56.91	-3.63	53.28	74	-20.72	peak	V
5150.00	43.79	-3.63	40.16	54	-13.84	AVG	V

Worse case i	mode:	802.11a(6Mbps)		Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	58.62	-3.59	55.03	74	-18.97	peak	Н
5350.00	41.76	-3.59	38.17	54	-15.83	AVG	Н
5350.00	57.20	-3.59	53.61	74	-20.39	peak	V
5350.00	44.31	-3.59	40.72	54	-13.28	AVG	V

Worse case	mode:	802.11a(6Mbps)		Test chann	el:	149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	56.5	-3.44	53.06	74	-20.94	peak	Н
5725	45.97	-3.44	42.53	54	-11.47	AV	Н
5725	56.66	-3.44	53.22	74	-20.78	peak	V
5725	45.54	-3.44	42.1	54	-11.9	AV	V

Worse case i	mode:	802.11a(6Mbps)		Test chann	el:	165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	58.52	-3.42	55.1	74	-18.9	peak	Н
5850	47.99	-3.42	44.57	54	-9.43	AV	Н
5850	52.36	-3.42	48.94	74	-25.06	peak	V
5850	43.24	-3.42	39.82	54	-14.18	AV	V

Worse case	mode:	802.11n(HT20)(6.5MI	ops)	Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	57.58	-3.63	53.95	74	-20.05	peak	Н
5150.00	42.07	-3.63	38.44	54	-15.56	AVG	Н
5150.00	57.34	-3.63	53.71	74	-20.29	peak	V
5150.00	42.12	-3.63	38.49	54	-15.51	AVG	V

Worse case	mode:	802.11n(HT20)(6.5MI	bps)	Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.84	-3.59	52.25	74	-21.75	peak	Н
5350.00	43.90	-3.59	40.31	54	-13.69	AVG	Н
5350.00	57.99	-3.59	54.40	74	-19.60	peak	V
5350.00	43.13	-3.59	39.54	54	-14.46	AVG	V

Worse case	mode:	802.11n(HT20)(6.5M	bps)	Test channel:		149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	57.16	-3.44	53.72	74	-20.28	peak	Н
5725	46.63	-3.44	43.19	54	-10.81	AV	Н
5725	50.58	-3.44	47.14	74	-26.86	peak	V
5725	41.46	-3.44	38.02	54	-15.98	AV	V

Worse case	mode:	802.11n(HT20)(6.5MI	bps)	Test chann	el:	165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	58.52	-3.42	55.1	74	-18.9	peak	Н
5850	47.99	-3.42	44.57	54	-9.43	AV	Н
5850	51.94	-3.42	48.52	74	-25.48	peak	V
5850	42.82	-3.42	39.4	54	-14.6	AV	V

Worse case	mode:	802.11n(HT40)(13.5N	/lbps)	Test chann	el:	38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	58.51	-3.63	54.88	74	-19.12	peak	Н
5150	41.73	-3.63	38.10	54	-15.90	AVG	Н
5150	56.04	-3.63	52.41	74	-21.59	peak	V
5150	44.04	-3.63	40.41	54	-13.59	AVG	V

Worse case	mode:	802.11n(HT40)(13.5N	Mbps) Test channel:			46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	57.27	-3.59	53.68	74	-20.32	peak	Н
5350.00	44.11	-3.59	40.52	54	-13.48	AVG	Н
5350.00	55.79	-3.59	52.20	74	-21.80	peak	V
5350.00	41.99	-3.59	38.40	54	-15.60	AVG	V

Worse case	mode:	802.11n(HT40)(13.5N	/lbps)	Test chann	el:	151	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	57.41	-3.44	53.97	74	-20.03	peak	Н
5725	46.88	-3.44	43.44	54	-10.56	AV	Н
5725	50.83	-3.44	47.39	74	-26.61	peak	V
5725	41.71	-3.44	38.27	54	-15.73	AV	V

Worse case	mode:	802.11n(HT40)(13.5N	/lbps)	Test channel:		159	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	56.81	-3.42	53.39	74	-20.61	peak	Н
5850	46.28	-3.42	42.86	54	-11.14	AV	Н
5850	50.23	-3.42	46.81	74	-27.19	peak	V
5850	41.11	-3.42	37.69	54	-16.31	AV	V

Worse case	mode:	802.11ac(HT20)(6.5M	1bps)	Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	56.70	-3.63	53.07	74	-20.93	peak	Н
5150.00	44.17	-3.63	40.54	54	-13.46	AVG	Н
5150.00	58.57	-3.63	54.94	74	-19.06	peak	V
5150.00	44.64	-3.63	41.01	54	-12.99	AVG	V

Worse case i	mode:	802.11ac(HT20)(6.5N	/lbps)	Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	56.20	-3.59	52.61	74	-21.39	peak	Н
5350.00	43.43	-3.59	39.84	54	-14.16	AVG	Н
5350.00	57.43	-3.59	53.84	74	-20.16	peak	V
5350.00	44.46	-3.59	40.87	54	-13.13	AVG	V

Worse case	Worse case mode: 802.11ac(HT20)(6.5Mbps)		Test channel:		149		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	56.43	-3.44	52.99	74	-21.01	peak	Н
5725	45.9	-3.44	42.46	54	-11.54	AV	Н
5725	49.85	-3.44	46.41	74	-27.59	peak	V
5725	40.73	-3.44	37.29	54	-16.71	AV	V

Worse case	Worse case mode: 802.11ac(HT20)(6.5Mbps)		Test chann	el:	165		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	55.38	-3.42	51.96	74	-22.04	peak	Н
5850	44.85	-3.42	41.43	54	-12.57	AV	Н
5850	48.8	-3.42	45.38	74	-28.62	peak	V
5850	39.68	-3.42	36.26	54	-17.74	AV	V

Worse case	Worse case mode: 802.11ac(VHT40)(13.5Mbps)		Test channel:		38		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	56.00	-3.63	52.37	74	-21.63	peak	Н
5150.00	44.50	-3.63	40.87	54	-13.13	AVG	Н
5150.00	56.97	-3.63	53.34	74	-20.66	peak	V
5150.00	43.52	-3.63	39.89	54	-14.11	AVG	V

Worse case	Worse case mode: 802.11ac(VHT40)(13.5Mbps)		Test channel:		46		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	58.65	-3.59	55.06	74	-18.94	peak	Н
5350.00	44.57	-3.59	40.98	54	-13.02	AVG	Н
5350.00	56.40	-3.59	52.81	74	-21.19	peak	V
5350.00	42.38	-3.59	38.79	54	-15.21	AVG	V

Worse case	mode:	802.11ac(VHT40)(13.5Mbps)		Test channel:		151	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	58.24	-3.44	54.8	74	-19.2	peak	Η
5725	47.71	-3.44	44.27	54	-9.73	AV	Н
5725	51.66	-3.44	48.22	74	-25.78	peak	V
5725	42.54	-3.44	39.1	54	-14.9	AV	V

Worse case	Worse case mode: 802.11ac(VHT40)(13.5Mbps)		Test channel:		159		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
5850	56.49	-3.42	53.07	74	-20.93	Туре	Н
5850	45.96	-3.42	42.54	54	-11.46	AV	Н
5850	49.91	-3.42	46.49	74	-27.51	peak	V
5850	40.79	-3.42	37.37	54	-16.63	AV	V

Report No.: CQASZ20231202343E-04

Worse case	mode:	802.11ac(VHT80)(29	.3Mbps)	Test chann	el:	42	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	58.63	-3.63	55.00	74	-19.00	peak	Н
5150.00	43.71	-3.63	40.08	54	-13.92	AVG	Н
5150.00	56.98	-3.63	53.35	74	-20.65	peak	V
5150.00	41.82	-3.63	38.19	54	-15.81	AVG	V
5350.00	56.44	-3.59	52.85	74	-21.15	peak	Н
5350.00	42.82	-3.59	39.23	54	-14.77	AVG	Н
5350.00	57.55	-3.59	53.96	74	-20.04	peak	V
5350.00	44.16	-3.59	40.57	54	-13.43	AVG	V

Worse case	mode:	802.11ac(VHT80)(29	.3Mbps)	Test chann	el:	155	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	58.69	-3.44	55.25	74	-18.75	peak	Н
5725	48.16	-3.44	44.72	54	-9.28	AV	Н
5725	52.11	-3.44	48.67	74	-25.33	peak	V
5725	42.99	-3.44	39.55	54	-14.45	AV	V
5850	57.44	-3.42	54.02	74	-19.98	peak	Н
5850	46.91	-3.42	43.49	54	-10.51	AV	Н
5850	50.86	-3.42	47.44	74	-26.56	peak	V
5850	41.74	-3.42	38.32	54	-15.68	AV	V

Note:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, Only the worst case is recorded in the report.

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20231202343E-04

Appendix J): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

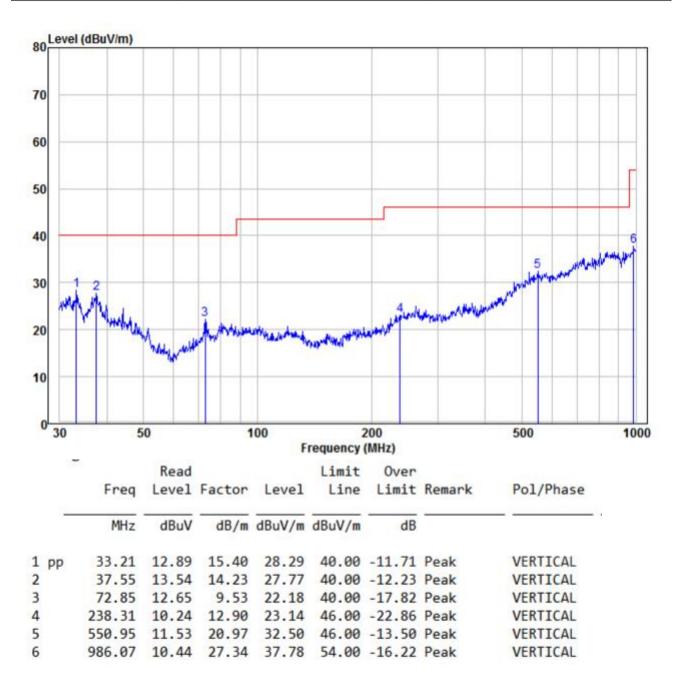
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

:		:1.
ш	m	HT.

Frequency	Field strength Limit (microvolt/meter) (dBµV/cm)		Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

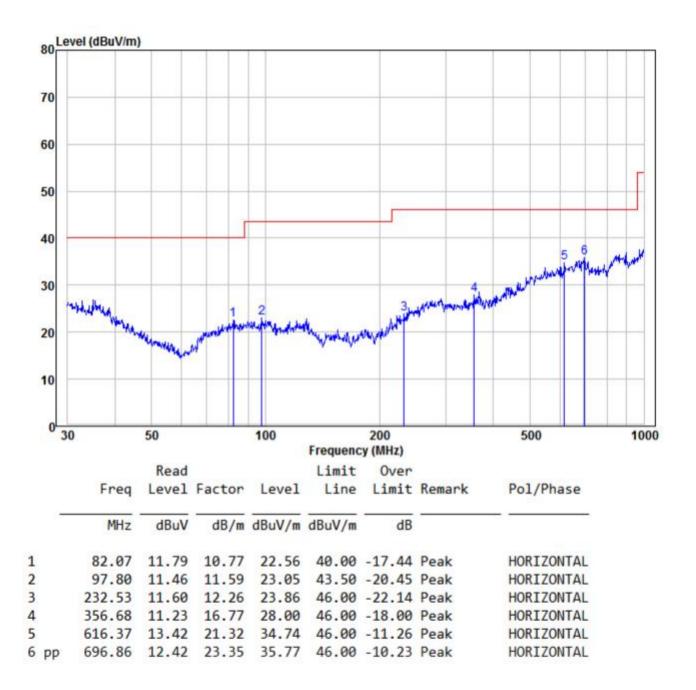
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test result: PASS

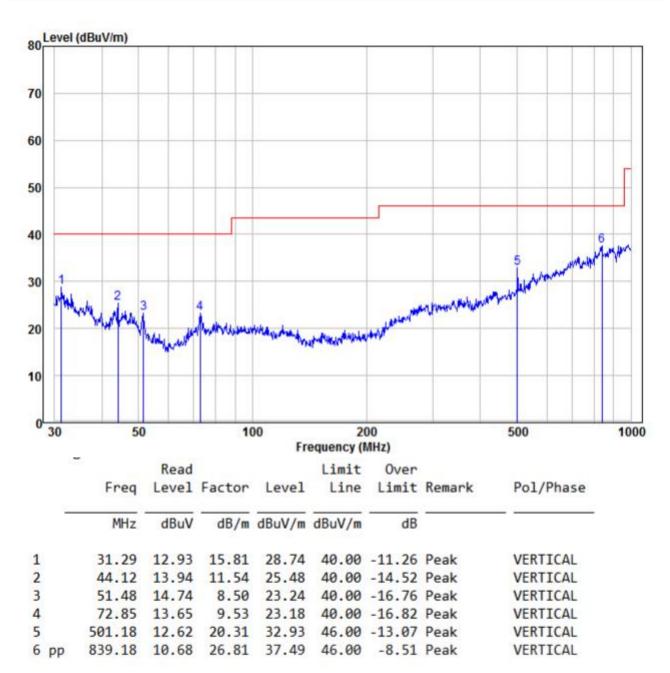

Report No.: CQASZ20231202343E-04

Test Data:

Radiated Emission below 1GHz


1#

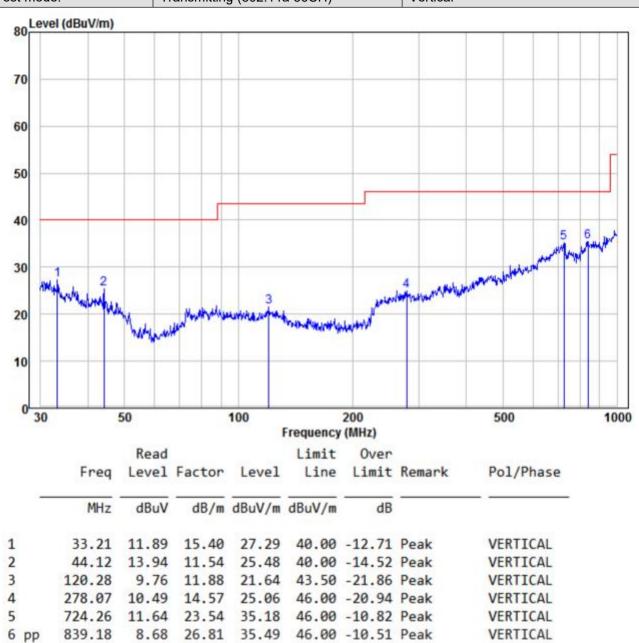
30MHz~1GHz		
Test mode:	Transmitting (802.11a 36CH)	Vertical



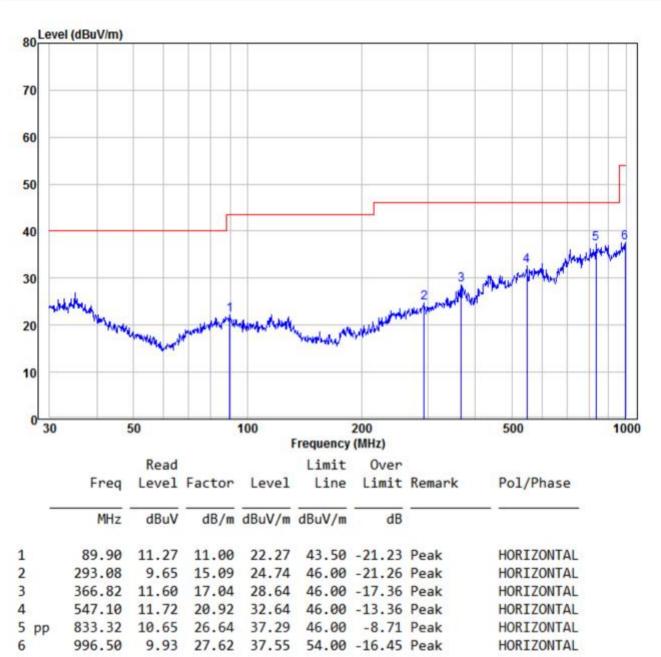
Test mode:	Transmitting (802.11a 36CH)	Horizontal
------------	-----------------------------	------------

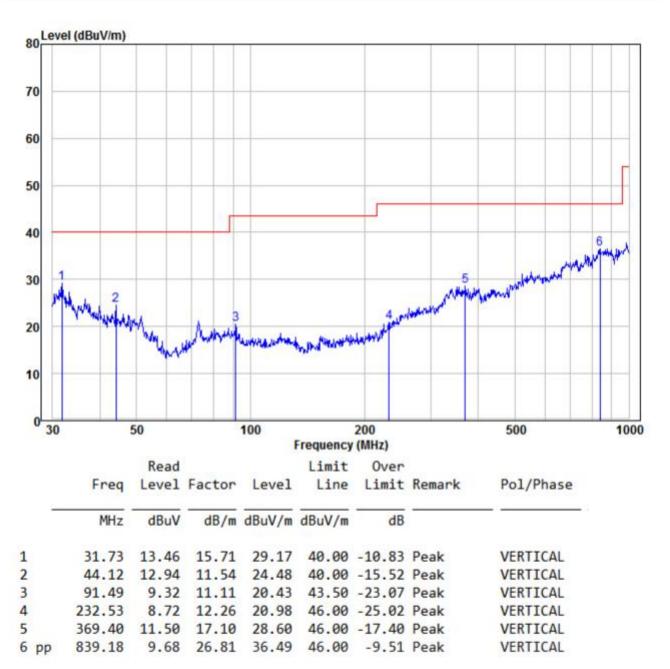
30MHz~1GHz		
Test mode:	Transmitting (802.11a 149CH)	Vertical

Report No.: CQASZ20231202343E-04

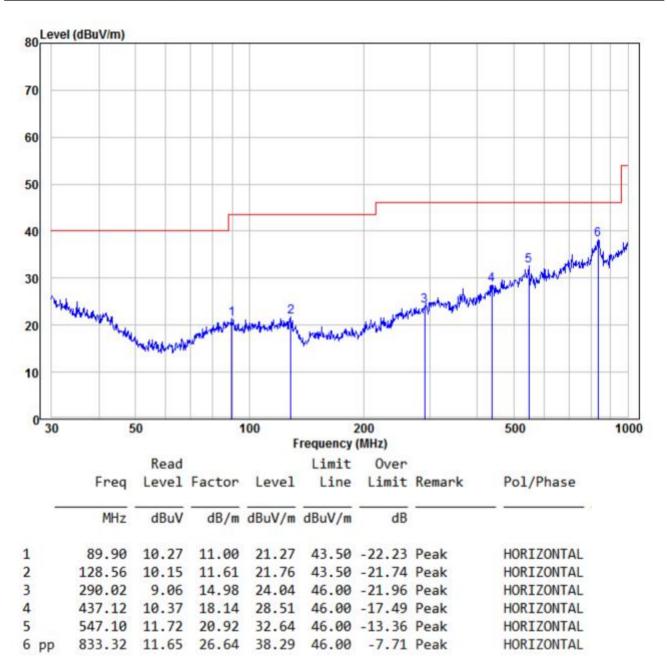

Transmitting (802.11a 149CH) Horizontal Test mode: 80 Level (dBuV/m) 70 60 50 40 30 20 10 30 100 200 50 500 1000 Frequency (MHz) Read Limit Over

	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	-	
1	129.92	11.32	11.56	22.88	43.50	-20.62	Peak	HORIZONTAL
2	239.99	11.02	13.10	24.12	46.00	-21.88	Peak	HORIZONTAL
3	437.12	9.37	18.14	27.51	46.00	-18.49	Peak	HORIZONTAL
4	599.32	10.99	21.03	32.02	46.00	-13.98	Peak	HORIZONTAL
5	714.17	11.01	23.49	34.50	46.00	-11.50	Peak	HORIZONTAL
6 pp	860.04	9.74	26.80	36.54	46.00	-9.46	Peak	HORIZONTAL


30MHz~1GHz		
Test mode:	Transmitting (802.11a 36CH)	Vertical

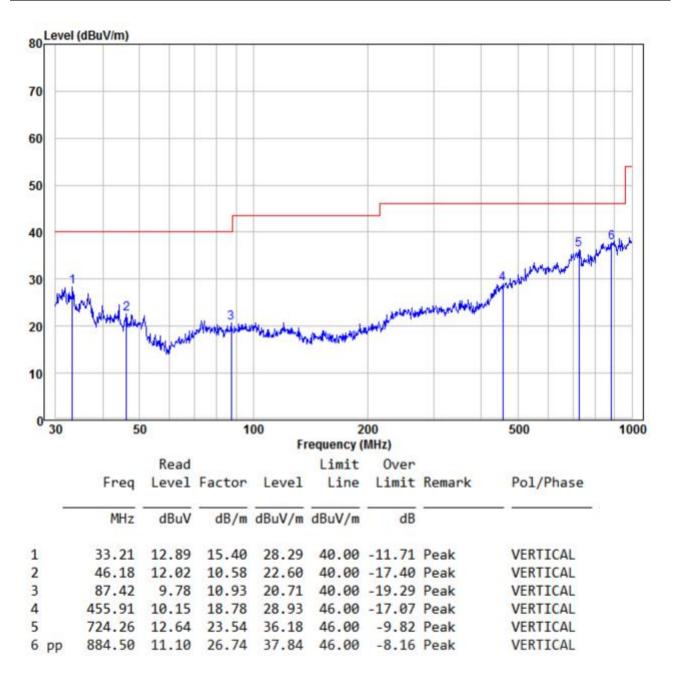

Report No.: CQASZ20231202343E-04

Test mode: Transmitting (802.11a 36CH) Horizontal

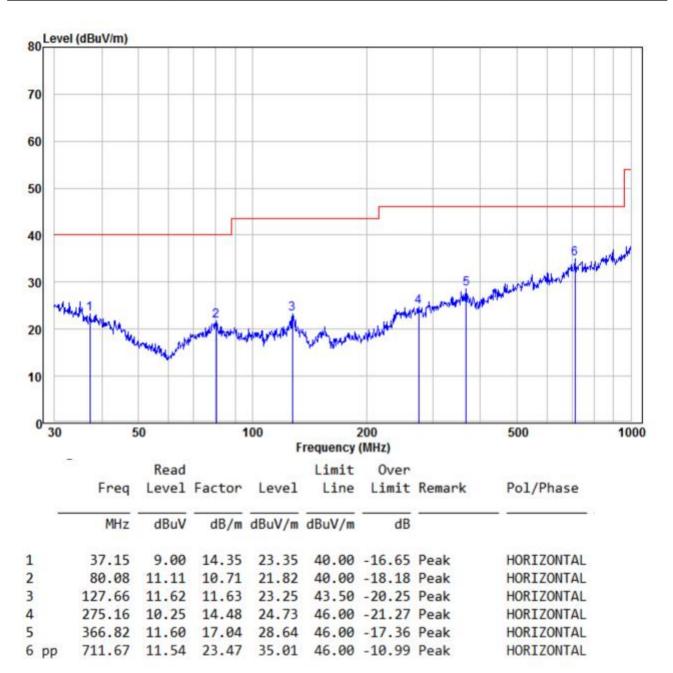


30MHz~1GHz		
Test mode:	Transmitting (802.11a 149CH)	Vertical

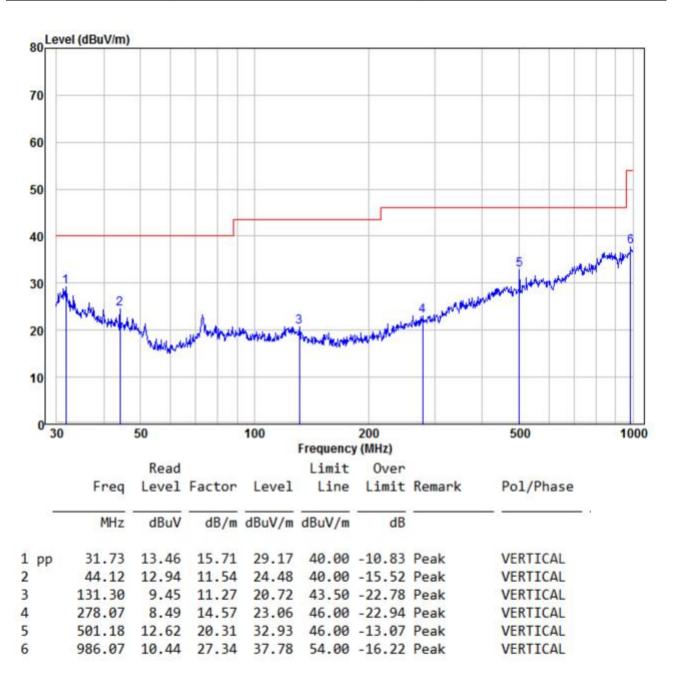
Test mode:	Transmitting (802.11a 149CH)	Horizontal
------------	------------------------------	------------



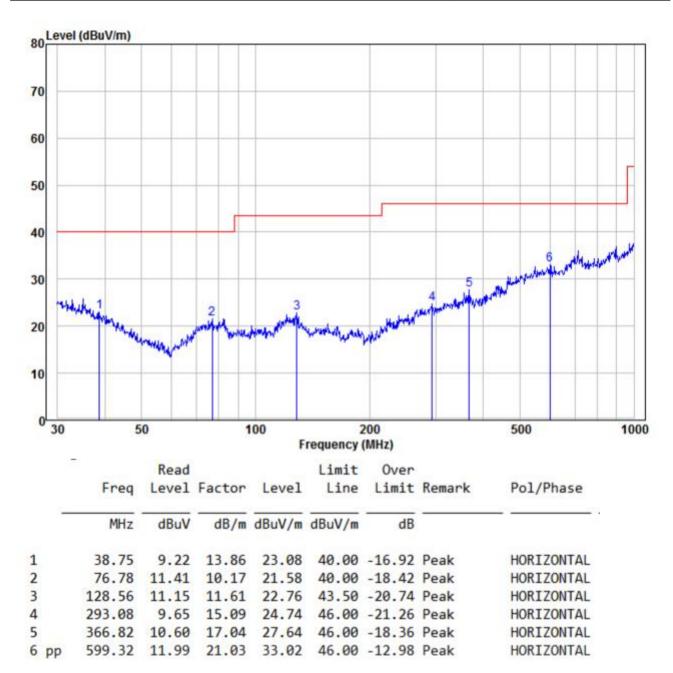
Report No.: CQASZ20231202343E-04


3#

30MHz~1GHz		
Test mode:	Transmitting (802.11a 36CH)	Vertical

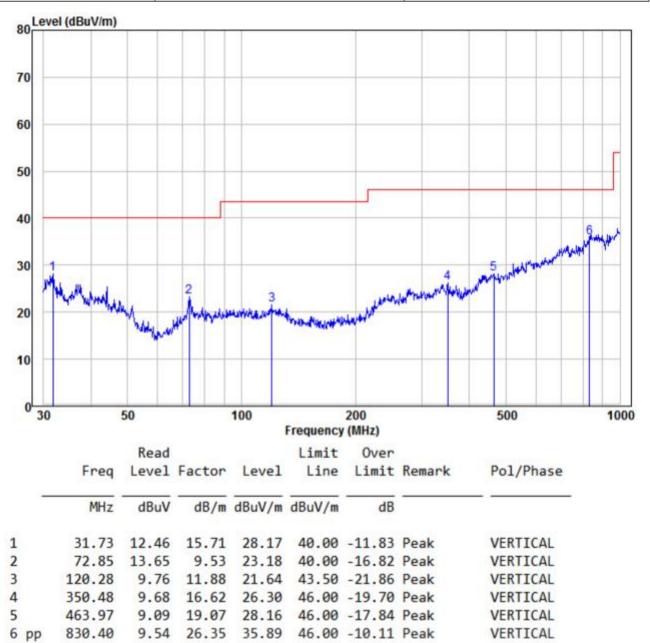


Test mode:	Transmitting (802.11a 36CH)	Horizontal
------------	-----------------------------	------------

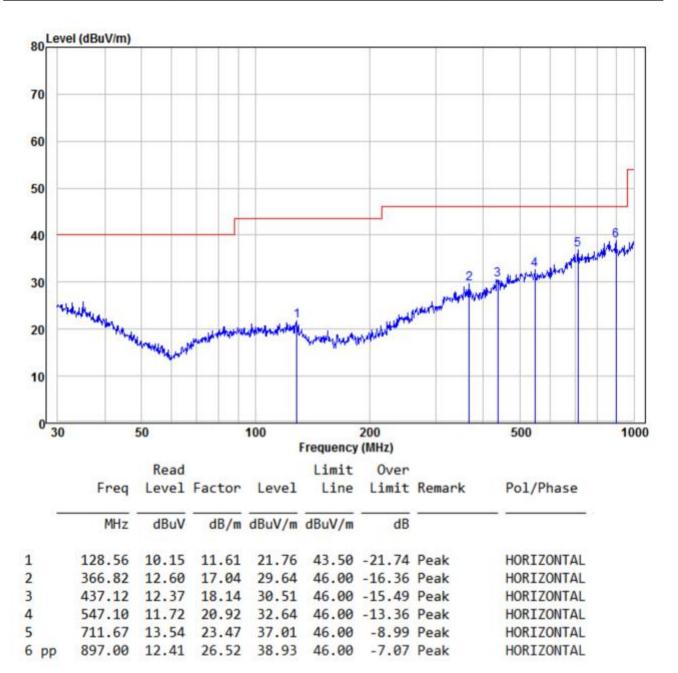


30MHz~1GHz		
Test mode:	Transmitting (802.11a 149CH)	Vertical

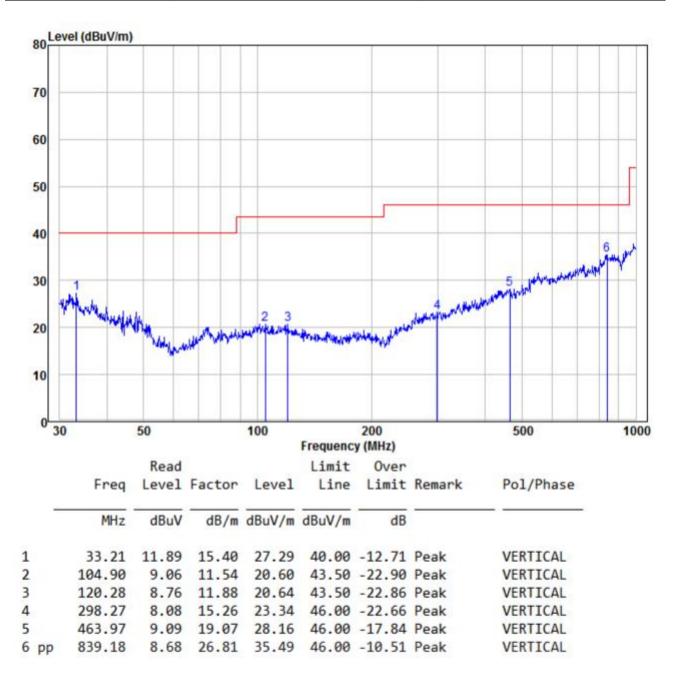
Test mode:	Transmitting (802.11a 149CH)	Horizontal
------------	------------------------------	------------



Report No.: CQASZ20231202343E-04


4#

30MHz~1GHz		
Test mode:	Transmitting (802.11a 36CH)	Vertical



Test mode:	Transmitting (802.11a 36CH)	Horizontal
------------	-----------------------------	------------

30MHz~1GHz		
Test mode:	Transmitting (802.11a 149CH)	Vertical

3

4

5

6 pp

463.97

897.00 10.41

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20231202343E-04

HORIZONTAL

HORIZONTAL

HORIZONTAL

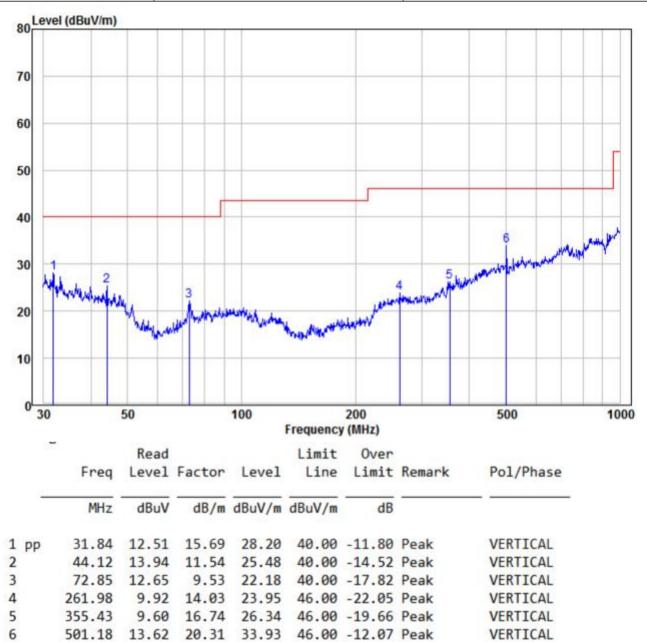
HORIZONTAL

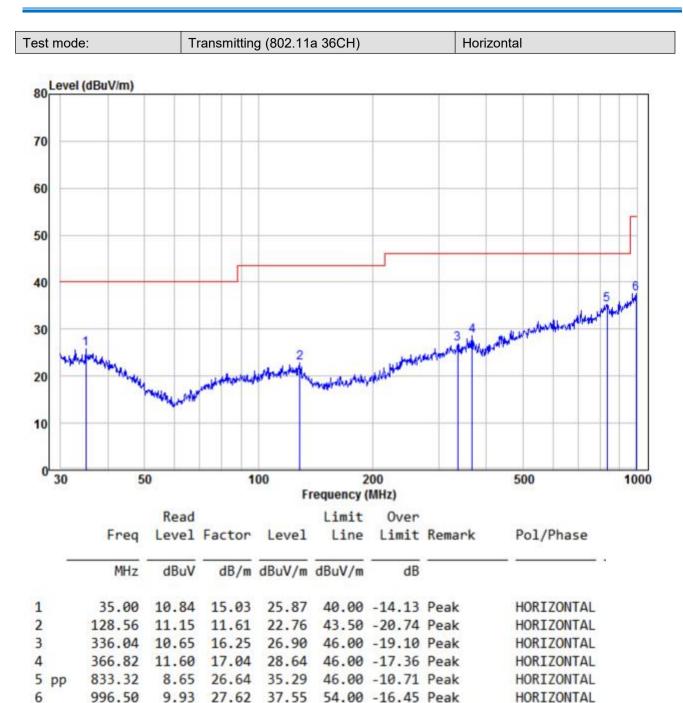
Transmitting (802.11a 149CH) Horizontal Test mode: 80 Level (dBuV/m) 70 60 50 40 30 20 10 30 50 100 200 500 1000 Frequency (MHz) Read Limit 0ver Pol/Phase Freq Level Factor Level Line Limit Remark MHz dBuV dB/m dBuV/m dBuV/m 1 35.00 10.84 15.03 25.87 40.00 -14.13 Peak HORIZONTAL 2 103.81 10.66 11.60 22.26 43.50 -21.24 Peak HORIZONTAL

239.99 10.02 13.10 23.12 46.00 -22.88 Peak

547.10 10.72 20.92 31.64 46.00 -14.36 Peak

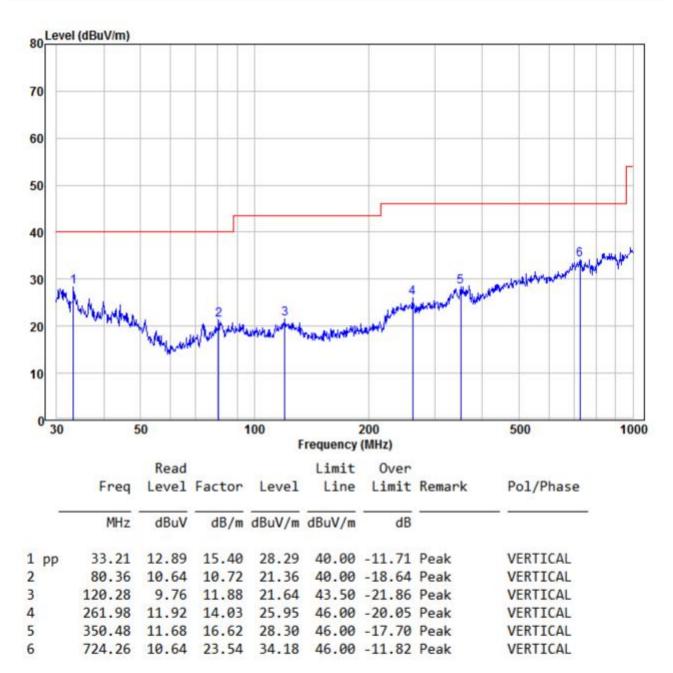
9.49 19.07 28.56 46.00 -17.44 Peak

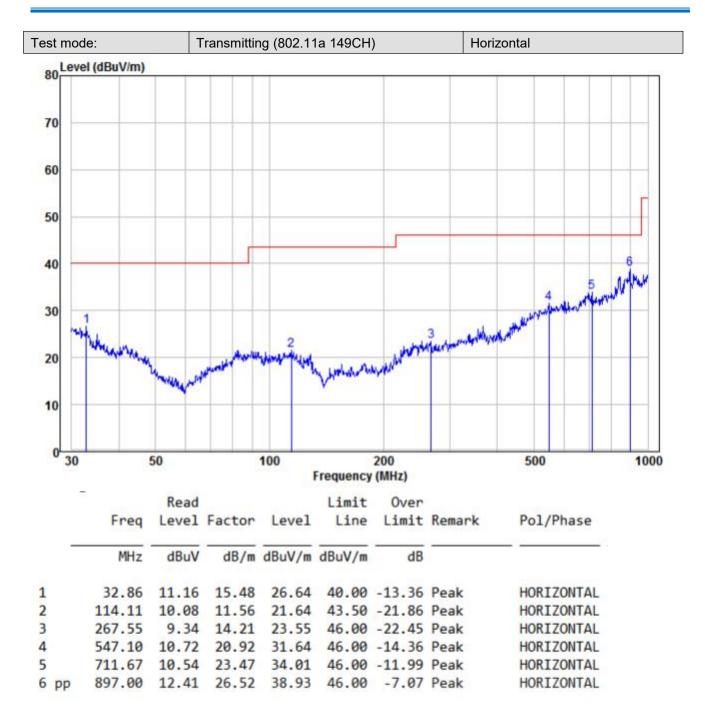

26.52 36.93 46.00 -9.07 Peak


Report No.: CQASZ20231202343E-04

5#

30MHz~1GHz		
Test mode:	Transmitting (802.11a 36CH)	Vertical





30MHz~1GHz		
Test mode:	Transmitting (802.11a 149CH)	Vertical

Report No.: CQASZ20231202343E-04

Transmitter Emission above 1GHz

Transmitter Emission above 1912								
Test mode:	802.11a(6Mbps)			Test channel:		36 CH		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V	
10360	51.089	2.26	53.349	74	-20.651	peak	Н	
10360	42.429	2.26	44.689	54	-9.311	AVG	Н	
15540	53.63	3.75	57.38	74	-16.62	peak	Н	
15540	41.74	3.75	45.49	54	-8.51	AVG	Н	
10360	49.619	2.26	51.879	74	-22.121	peak	V	
10360	41.799	2.26	44.059	54	-9.941	AVG	V	
15540	51.839	3.75	55.589	74	-18.411	peak	V	
15540	42.509	3.75	46.259	54	-7.741	AVG	V	

Test mode:	802.11a(6Mbps)			Test chann	el:	48 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10480	50.24	2.31	52.55	74	-21.45	peak	Н
10480	30.08	2.31	32.39	54	-21.61	AVG	Н
15720	49.92	3.79	53.71	74	-20.29	peak	Н
15720	29.58	3.79	33.37	54	-20.63	AVG	Н
10480	48.97	2.31	51.28	74	-22.72	peak	V
10480	30.81	2.31	33.12	54	-20.88	AVG	V
15720	50.49	3.79	54.28	74	-19.72	peak	V
15720	30.51	3.79	34.30	54	-19.70	AVG	V

Report No.: CQASZ20231202343E-04

Test mode:	802.11a(6Mbps)			Test channel:		149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11490	47.36	2.54	49.9	68.2	-18.3	peak	Н
11490	38.66	2.54	41.2	54	-12.8	AVG	Н
17235	49.49	3.94	53.43	68.2	-14.77	peak	Н
17235	39.33	3.94	43.27	54	-10.73	AVG	Н
11490	49.29	2.54	51.83	68.2	-16.37	peak	V
11490	41.48	2.54	44.02	54	-9.98	AVG	V
17235	48.11	3.94	52.05	68.2	-16.15	peak	V
17235	38.78	3.94	42.72	54	-11.28	AVG	V

Test mode:	802.11a(6Mbps)			Test channel:		165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11650	49.15	2.58	51.73	68.2	-16.47	peak	Н
11650	39.66	2.58	42.24	54	-11.76	AVG	Н
17475	52.02	4.02	56.04	68.2	-12.16	peak	Н
17475	40.41	4.02	44.43	54	-9.57	AVG	Н
11650	49.59	2.58	52.17	68.2	-16.03	peak	V
11650	40.88	2.58	43.46	54	-10.54	AVG	V
17475	49.28	4.02	53.3	68.2	-14.9	peak	V
17475	39.63	4.02	43.65	54	-10.35	AVG	V

Remark:

- 1) The 802.11a 6Mbps of rate is the worst case, only the worst data recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

8 Photographs - EUT Test Setup

8.1 Radiated Spurious Emission



8.2 Conducted Emission

Report No.: CQASZ20231202343E-04

9 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20231202343E-01.

*** END OF REPORT ***