Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

	FCC PART 15.247	
Report Reference No	: CTA22061700402 :: 2AY45-TWS-NEKOCAKE	TATESTING
Compiled by	ature): File administrators Kevin Liu	kevim . Lin
Supervised by (position+printed name+signa	ature) ^{Project} Engineer Kevin Liu	Resting Technology
Approved by (position+printed name+signa	ature): RF Manager Eric Wang	Pproved
Date of issue	: Jul. 05, 2022	
	Shenzhen CTA Testing Technology	
Address	Room 106, Building 1, Yibaolai Industr Fuhai Street, Baoʻan District, Shenzhe	ial Park, Qiaotou Community, n, China
Applicant's name	Chengdu shuiyueyu technology Co.	,Ltd.
Address	13th Floor, Building B, Building 1, Yuet Project, No.159 Haichuan Road, Wenj Sichuan Province, China	
Test specification	TESTING	
Standard	FCC Part 15.247	
Shenzhen CTA Testing Tech	nnology Co., Ltd. All rights reserved.	TATES
-		
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test	duced in whole or in part for non-commercial p hology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context.	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduc : NEKOCAKE 	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description Trade Mark	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduce 	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduce 	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduce 	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	nology Co., Ltd. is acknowledged as copyright ing Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduce 	d.

		TATES
Report No.: CTA220617004	02	Page 2 of 32
CTATESTING		D T
CTATES	TEST REPO	
	TESIN	
Equipment under Test	: NEKOCAKE	
		GTA CTATESTING
Model /Type	: TWS-NEKOCAKE	
Listed Models	: N/A	
Applicant	Chengdu shuiyueyu te	chaology Co. I td
Approvint		G
Address	: 13th Floor, Building B, B	uilding 1, Yuetiandi Commercial Building
	Project, No.159 Haichua Sichuan Province, China	n Road, Wenjiang District, Chengdu City,
	Sichuar Province, China	
Manufacturer	: Chengdu shuiyueyu te	chnology Co.,Ltd.
Address		gdu Strait Liang'an Technology Industry
CTATE	Kallayuan, wenjiang Dis	trict, Chengdu, Sichuan, China
Test Res	sult:- TATES	PASS S
		GA CTATES.
	prresponds to the test sample. opy extracts of these test resul	It without the written permission of the
		(C)
laboratory.		
	ESTINC	
	ESI"	
	A	
	GACIN	TEST
CTATESTING		GA CTATEST
A CTATESTING		
CTATESTING		
CTATESTING		
CTATESTING	CTATESTING	GA CTATESTING

Page 3 of 32

Report No.: CTA22061700402

Contents

	Contents	
	TEST STANDARDS	1
CIN	TEST STANDARDS	4
2	SUMMARY	<u>5</u>
	e de la companya de la	CTAILE 5 5
2.1	General Remarks	5
2.2 2.3	Product Description Equipment Under Test	
2.3	Short description of the Equipment under Test (EUT)	556
2.5	EUT operation mode	6
2.6	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
<u>3</u>	TEST ENVIRONMENT	
	CONTAT A	L-
3.1	Address of the test laboratory	-557
3.2	Test Facility	CTATES 7 7 8
3.3	Environmental conditions	C C T
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
<u>4</u>	TEST CONDITIONS AND RESULTS	
4.1 4.2 4.3 4.4 4.5 4.6 4.7	AC Power Conducted Emission Radiated Emissions and Band Edge Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Out-of-band Emissions Antenna Requirement	CTATESTING 10 13 19 20 23 26 31
	TEST SETUP PHOTOS OF THE EUT	
<u>6</u>	PHOTOS OF THE EUT	
		ESTING
Gen C	TA TESTING	GA CTATESTING

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

...G

2 SUMMARY

2.1 General Remarks

2.1 General Remarks				
Date of receipt of test sample		Jun.15, 2022		
Testing commenced on		Jun.15, 2022		
	C TONUL		S.Con Let	
Testing concluded on	:	Jul. 04, 2022	(57)	

2.2 Product Description

2.2 Product Descript	tion
Product Description:	NEKOCAKE
Model/Type reference:	TWS-NEKOCAKE
Power supply:	DC 3.6V From Battery and DC 5V From external circuit
Adapter information (Auxiliary test suppled by test Lab)	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz Output:DC 5V 2A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA220617004-1# (Engineer sample) CTA220617004-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	FPC antenna
Antenna gain:	0.50 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under	Test						
Power supply system u	tilised						
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	-51	
		0	12 V DC	0	24 V DC	TATES	
			Other (specified in bla	ank below)	<u> </u>	

DC 3.60V From Battery and DC 5V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a NEKOCAKE

For more details, refer to the user's manual of the EUT. CTATES

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels TESTING provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	Channel	Frequency (MHz)	
	00	2402	
	01	2404	20
	02	2406	
	TING	:	1
TATE	19	2440	
5.	TESTIN	:]
	37	G 2476	
	38	2478	
	39	2480	3
	2.6 Block Diagram of Test Setup	CA UTATESTIN	
		GTA C ''	

2.6 Block Diagram of Test Setup

EUT	

DC 5V from A	Adapter

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, CTATE Subpart C Rules.

Modifications 2.8

No modifications were implemented to meet testing criteria. CTATESTING

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission

25 ° C
TES
45 %
950-1050mbar

AC Main Conducted testing:

_	5	
Т	Temperature:	25 ° C
	NG	
T	Humidity:	46 %
)[2	5
A	Atmospheric pressure:	950-1050mbar

TATE	
Conducted testing:	
Temperature:	25 ° C
Construction of the second sec	City City
Humidity:	44 %
	Constant of the second s
Atmospheric pressure:	950-1050mbar

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	BLE 1Mpbs 2 Mpbs	└ Lowest │ Middle │ Highest	complies
	§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	Lowest	BLE 1Mpbs 2 Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
TATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.205 Band edge radiated		BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	BLE 1Mpbs 2 Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	ING -/-	BLE 1Mpbs	-/-	complies
		ement uncertainty is Il test mode and reco		n the test result. se in report	- ctP	TESTING	

3.4 Summary of measurement results

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

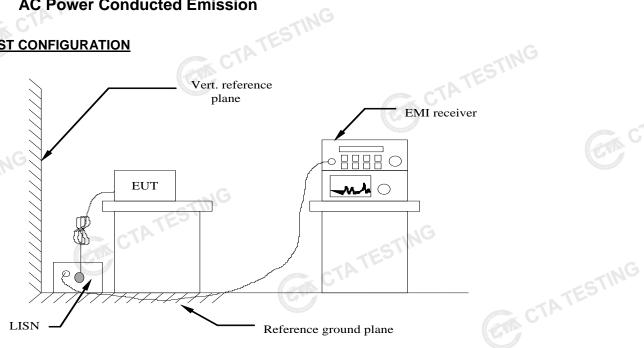
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% CTA CTA confidence level using a coverage factor of k=2. CTATEST

Equipments Used during the Test 3.6

			. 6			
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
CTATE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
0.1	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
G	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
TE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
CTA	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
G	Note: The Cal.Interval	was one year.	Ge cu	<u>.</u>	CA CT	ATESTIN

TATES !!


TATE

Page 9 of 32

TEST CONDITIONS AND RESULTS 4

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

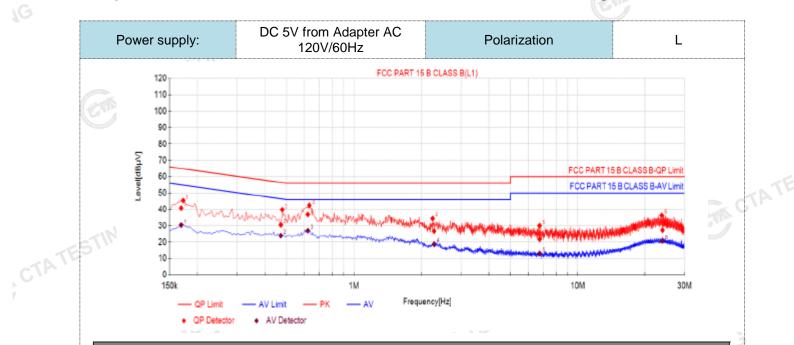
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequer	ncy				

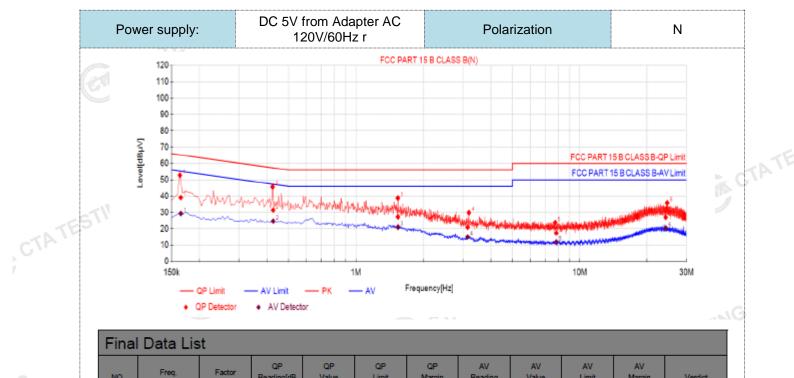

TEST RESULTS

Remark:

- 1. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result 1. of 120 VAC, 60 Hz was reported as below:.

Page 11 of 32

CTATE

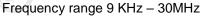


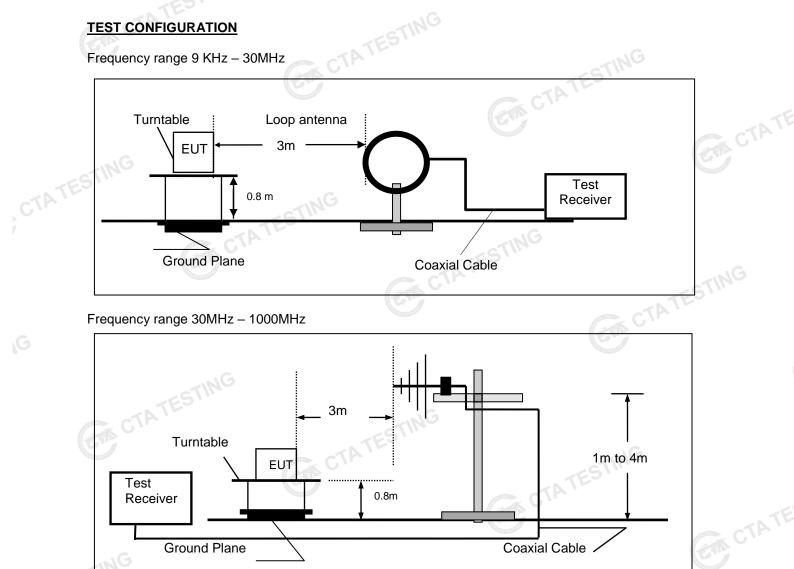
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1690	10.50	30.26	40.76	65.01	24.25	19.86	30.36	55.01	24.65	PASS
2	0.4711	10.50	20.00	30.50	56.49	25.99	13.45	23.95	46.49	22.54	PASS
3	0.6222	10.50	26.39	36.89	56.00	19.11	16.50	27.00	46.00	19.00	PASS
4	2.2794	10.50	16.26	26.76	56.00	29.24	8.34	18.84	46.00	27.16	PASS
5	6.7574	10.50	11.22	21.72	60.00	38.28	2.52	13.02	50.00	38.98	PASS
6	23.9226	10.50	16.83	27.33	60.00	32.67	10.31	20.81	50.00	29.19	PASS
Fact QPN	.QP Value or (dB)=ins /argin(dB) /argin(dB)	sertion los = QP Lin	ss of LISM nit (dBµV)	N (dB) + () - QP Va	Cable los llue (dBµ	or (dB) s (dB) V) /)	(et	CTP	TEST		

CTATESTING

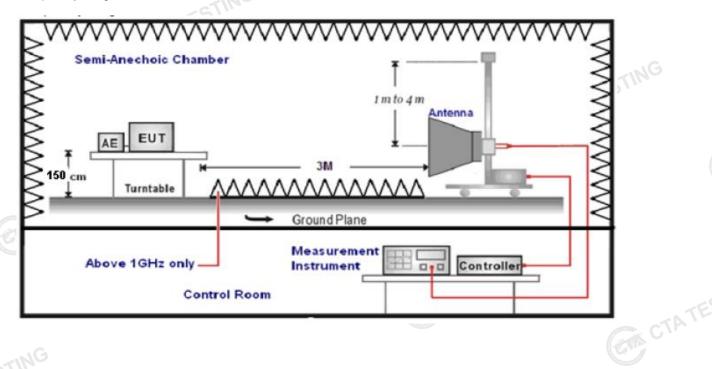
4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATESTING

GA CTATE


NO.	Freq. [MHz]	Factor [dB]	QP Reading(dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1650	10.50	28.53	39.03	65.21	26.18	18.78	29.28	55.21	25.93	PASS
2	0.4269	10.50	20.92	31.42	57.31	25.89	14.16	24.66	47.31	22.65	PASS
3	1.5410	10.50	16.81	27.31	56.00	28.69	10.47	20.97	46.00	25.03	PASS
4	3.1533	10.50	10.37	20.87	56.00	35.13	4.51	15.01	46.00	30.99	PASS
5	7.8554	10.50	6.93	17.43	60.00	42.57	1.38	11.88	50.00	38.12	PASS
6	24.2379	10.50	16.54	27.04	60.00	32.96	9.95	20.45	50.00	29.55	PASS
). Facto). QPM	QP Value (or (dB)=ins largin(dB) = argin(dB) =	ertion los = QP Lim	ss of LISN hit (dBµV)	I (dB) + (- QP Va	Cable los lue (dΒμ'	s (dB) V)		CTP	TEST		


4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATESTING

CTA TESTIN


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and 2. rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. 6.

•	The distance between test a	antenna and EUT as following tabl	e states:
	Test Frequency range	Test Antenna Type	Test Distance
	9KHz-30MHz	Active Loop Antenna	3
	30MHz-1GHz	Ultra-Broadband Antenna	3
	1GHz-18GHz	Double Ridged Horn Antenna	3
6	18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

15	Setting test receiver/spectrum as following table states.							
	Test Frequency range	Detector						
	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto 150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto		QP					
	150KHz-30MHz	QP						
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP					
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak					

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

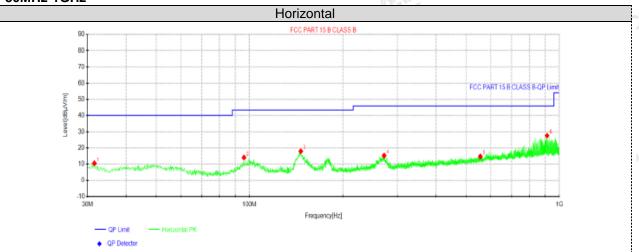
Where FS = Field Strength	CL = Cable Attenuation Factor	(Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		A Descent and
ansd=AF +CL-AG		
ATION LIMIT		

CTATESTING Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

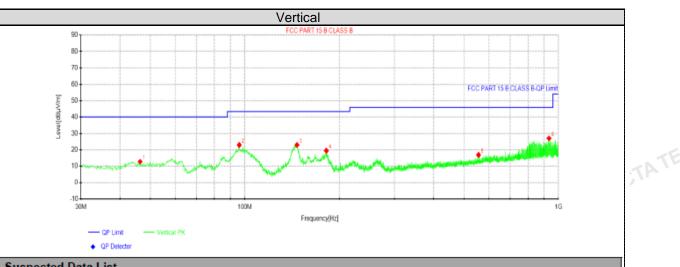

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	
TING		04.0		

Remark:

CTATES

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspected Data List										
Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delarity		
[MHz] [dBµV] [dBµV/m] [d	[dB/m] [] [dBµV/m]	[dB]	[cm]	[°]	Polanty				
31.5762	28.96	10.48	-18.48	40.00	29.52	100	213	Horizontal		
95.96	33.14	14.15	-18.99	43.50	29.35	100	67	Horizontal		
146.4	39.82	18.05	-21.77	43.50	25.45	100	237	Horizontal		
271.893	33.03	15.34	-17.69	46.00	30.66	100	319	Horizontal		
555.497	28.32	14.83	-13.49	46.00	31.17	100	285	Horizontal		
912.093	36.82	27.61	-9.21	46.00	18.39	100	10	Horizontal	T	
e:1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m)										
	Freq. [MHz] 31.5762 95.96 146.4 271.893 555.497 912.093 evel (dBµ	Freq. Reading [MHz] [dBµV] 31.5762 28.96 95.96 33.14 146.4 39.82 271.893 33.03 555.497 28.32 912.093 36.82 evel (dBµV/m)= Read	Freq. Reading Level [MHz] [dBµV] [dBµV/m] 31.5762 28.96 10.48 95.96 33.14 14.15 146.4 39.82 18.05 271.893 33.03 15.34 555.497 28.32 14.83 912.093 36.82 27.61	Freq. Reading Level Factor [MHz] [dBμV] [dBμV/m] [dBμ] 31.5762 28.96 10.48 -18.48 95.96 33.14 14.15 -18.99 146.4 39.82 18.05 -21.77 271.893 33.03 15.34 -17.69 555.497 28.32 14.83 -13.49 912.093 36.82 27.61 -9.21	Freq. Reading Level Factor Limit [MHz] [dBμV] [dBμV/m] [dBμV/m] [dBμ/m] [dBμV/m] 31.5762 28.96 10.48 -18.48 40.00 95.96 33.14 14.15 -18.99 43.50 146.4 39.82 18.05 -21.77 43.50 271.893 33.03 15.34 -17.69 46.00 555.497 28.32 14.83 -13.49 46.00 912.093 36.82 27.61 -9.21 46.00	Freq.Reading [dBµV]Level [dBµV/m]Factor [dB/m]Limit [dBµV/m]Margin [dB] 31.5762 28.96 10.48 -18.48 40.00 29.52 95.96 33.14 14.15 -18.99 43.50 29.35 146.4 39.82 18.05 -21.77 43.50 25.45 271.893 33.03 15.34 -17.69 46.00 30.66 555.497 28.32 14.83 -13.49 46.00 31.17 912.093 36.82 27.61 -9.21 46.00 18.39 evel (dBµV/m)= Reading (dBµV)+ Factor (dB/m)	Freq.ReadingLevelFactorLimitMarginHeight[MHz] $[dB\muV]$ $[dB\muV/m]$ $[dB\mu/m]$ $[dB/m]$ $[dB\mu/m]$ $[dB]$ $[cm]$ 31.576228.9610.48-18.4840.0029.5210095.9633.1414.15-18.9943.5029.35100146.439.8218.05-21.7743.5025.45100271.89333.0315.34-17.6946.0030.66100555.49728.3214.83-13.4946.0031.17100912.09336.8227.61-9.2146.0018.39100	Freq.Reading [dBμV]LevelFactorLimitMargin [dBμV/m]HeightAngle [°]31.576228.9610.48-18.4840.0029.5210021395.9633.1414.15-18.9943.5029.3510067146.439.8218.05-21.7743.5025.45100237271.89333.0315.34-17.6946.0030.66100319555.49728.3214.83-13.4946.0031.17100285912.09336.8227.61-9.2146.0018.3910010	Freq. Reading [MHz] Level [dBμV] Factor [dBμV/m] Limit [dB/m] Margin [dB] Height [cm] Angle [°] Polarity 31.5762 28.96 10.48 -18.48 40.00 29.52 100 213 Horizontal 95.96 33.14 14.15 -18.99 43.50 29.35 100 67 Horizontal 146.4 39.82 18.05 -21.77 43.50 25.45 100 237 Horizontal 271.893 33.03 15.34 -17.69 46.00 30.66 100 319 Horizontal 912.093 36.82 27.61 -9.21 46.00 18.39 100 10 Horizontal evel (dBµV/m)= Reading (dBµV)+ Factor (dB/m) -9.21 46.00 18.39 100 10 Horizontal	

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m) 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Page 16 of 32

CTA TESTING

COM CTATE

Suspe	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty		
1	46.3688	29.21	12.87	-16.34	40.00	27.13	100	116	Vertical		
2	95.96	41.93	22.94	-18.99	43.50	20.56	100	0	Vertical		
3	146.642	44.74	22.97	-21.77	43.50	20.53	100	269	Vertical		
4	181.805	39.98	19.55	-20.43	43.50	23.95	100	164	Vertical		
5	555.982	30.50	17.03	-13.47	46.00	28.97	100	301	Vertical		
6	931.978	36.04	27.07	-8.97	46.00	18.93	100	277	Vertical		

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

JG

CTATES

For 1GHz to 25GHz

		1G		GFSK (abo	ve 1GHz)				
Freque	ncy(MHz)	:	24	2402 Polarity:		HORIZONTAL			
Frequency (MHz)	_	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	62.18	PK	74 G	11.82	66.45	32.33	5.12	41.72	-4.27
4804.00	46.21	AV	54	7.79	50.48	32.33	5.12	41.72	-4.27
7206.00	55.21	PK	74	18.79	55.73	36.6	6.49	43.61	-0.52
7206.00	44.14	AV	54	9.86	44.66	36.6	6.49	43.61	-0.52
				•		Contraction of the second second			
Freque	ncy(MHz)	•	24	02	Pola	arity:		VERTICAL	

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.12	PK	~ 574	15.88	62.39	32.33	5.12	41.72	-4.27
4804.00	42.15	AV	54	11.85	46.42	32.33	5.12	41.72	-4.27
7206.00	51.15	PK	74	22.85	51.67	36.6	6.49	43.61	-0.52
7206.00	40.08	AV	54	13.92	40.60	36.6	6.49	43.61	-0.52
				arts					STIL

Freque	ncy(MHz)):	2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.68	PK	74	12.32	65.56	32.6	5.34	41.82	-3.88
4880.00	47.09	AV	54	6.91	50.97	32.6	5.34	41.82	-3.88
7320.00	54.71	PK	74	19.29	54.82	36.8	6.81	43.72	-0.11
7320.00	44.46	AV	54	9.54	44.57	36.8	6.81	43.72	-0.11
- CAN	•	•		TEST	•	-		-	•

Frequency(MHz):		2440		Polarity:		VERTICAL		
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
57.62	PK	74	16.38	61.50	32.6	5.34	41.82	-3.88
43.03	AV	54	10.97	46.91	32.6	5.34	41.82	-3.88
50.65	PK	74	23.35	50.76	36.8	6.81	43.72	-0.11
40.40	AV	54	13.60	40.51	36.8	6.81	43.72	-0.11
	Emis Lev (dBu 57.62 43.03 50.65	Emission Level (dBuV/m) 57.62 PK 43.03 AV 50.65 PK	Emission Level (dBuV/m) Limit (dBuV/m) 57.62 PK 74 43.03 AV 54 50.65 PK 74	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 57.62 PK 74 16.38 43.03 AV 54 10.97 50.65 PK 74 23.35	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) 57.62 PK 74 16.38 61.50 43.03 AV 54 10.97 46.91 50.65 PK 74 23.35 50.76	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dB/m) 57.62 PK 74 16.38 61.50 32.6 43.03 AV 54 10.97 46.91 32.6 50.65 PK 74 23.35 50.76 36.8	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dB) Antenna Factor (dBuV) Cable Factor (dB/m) 57.62 PK 74 16.38 61.50 32.6 5.34 43.03 AV 54 10.97 46.91 32.6 5.34 50.65 PK 74 23.35 50.76 36.8 6.81	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw (dB) Antenna Factor (dBuV) Cable Factor (dB/m) Pre- amplifier (dB) 57.62 PK 74 16.38 61.50 32.6 5.34 41.82 43.03 AV 54 10.97 46.91 32.6 5.34 41.82 50.65 PK 74 23.35 50.76 36.8 6.81 43.72

			GIN						
Frequency(MHz):		:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.56	PK	74	12.44	64.64	32.73	5.66	41.47	-3.08
4960.00	46.61	AV	54	7.39	49.69	32.73	5.66	41.47	-3.08
7440.00	56.42	PK	74	17.58	55.97	37.04	7.25	43.84	0.45
7440.00	45.21	PK	54	8.79	44.76	37.04	7.25	43.84	0.45

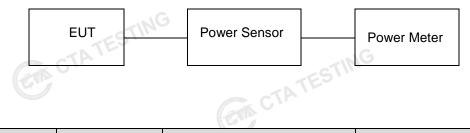
Freque	ncy(MHz)	:	24	80	2480 Polarity: VERT			VERTICAL	ΓICAL	
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	57.50	PK	74	16.50	60.58	32.73	5.66	41.47	-3.08	
4960.00	42.55	AV	54	11.45	45.63	32.73	5.66	🥏 41.47	-3.08	
7440.00	52.36	PK	74	21.64	51.91	37.04	7.25	43.84	0.45	
7440.00	41.15	PK	54	12.85	40.70	37.04	7.25	43.84	0.45	
REMARKS: 1. 2.			im) =Raw Value (d /m) = Antenna Fac			re-amplifier			CTP CTP	

- Margin value = Limit value- Emission level. 3.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Fre	equency((MHz):	:	240	02	Pola	arity:	F	IORIZONT/	AL.
Frequenc (MHz)	су	Emiss Lev (dBu\	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00) 62	2.51	PK	74	11.49	72.93	27.42	4.31	42.15	-10.42
2390.00) 45	5.05	AV	54	8.95	55.47	27.42	4.31	42.15	-10.42
Fre	equency((MHz):	:	240	02	Pola	arity:		VERTICAL	
Frequence (MHz)	су	Emiss Lev (dBu\	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00) 58	3.45	PK	~ 574	15.55	68.87	27.42	4.31	42.15	-10.42
2390.00	D 40).99	AV	54	13.01	51.41	27.42	4.31	42.15	-10.42
Fre	Frequency(MHz):		:	248	2480 P olarity:		arity:	F	IORIZONT	AL.
Frequenc (MHz)	су	Emis: Lev (dBu\	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	D 61	.98	PK	74	12.02	72.09	27.7	4.47	42.28	-10.11
2483.50) 43	3.52	AV	54	10.48	53.63	27.7	4.47	42.28	-10.11
Fre	equency((MHz):	:	248	30	Pola	arity:		VERTICAL	
Frequence (MHz)	cy	Emis: Lev (dBu\	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50) 57	7.92	PK	74	16.08	68.03	27.7	4.47	42.28	-10.11
2483.50) 39	9.46	AV	54	14.54	49.57	27.7	4.47	42.28	-10.11
) 39 KS: 1. En 2. Co 3. Ma	7.92 9.46 mission le prrection argin value	PK AV evel (dBuV/r Factor (dB/ ue = Limit va		14.54 BuV)+Correction tor (dB/m)+Cable el.	68.03 49.57 Factor (dB/m) Factor (dB)- Pi	27.7 27.7	4.47 4.47	42.28	-10

4.3 **Maximum Peak Output Power**


Limit CTA

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

CTATESTING CTATE Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration CTATES

Test Results

		Output power		16
Туре	Channel	(dBm)	Limit (dBm)	Result
	00	5.45		
GFSK 1Mbps) 19	5.67	30.00	Pass
TATESI	39	5.39		
C II	00	3.86		
GFSK 2Mbps	19	3.33	30.00 G	Pass
	39	3.79	TEST	

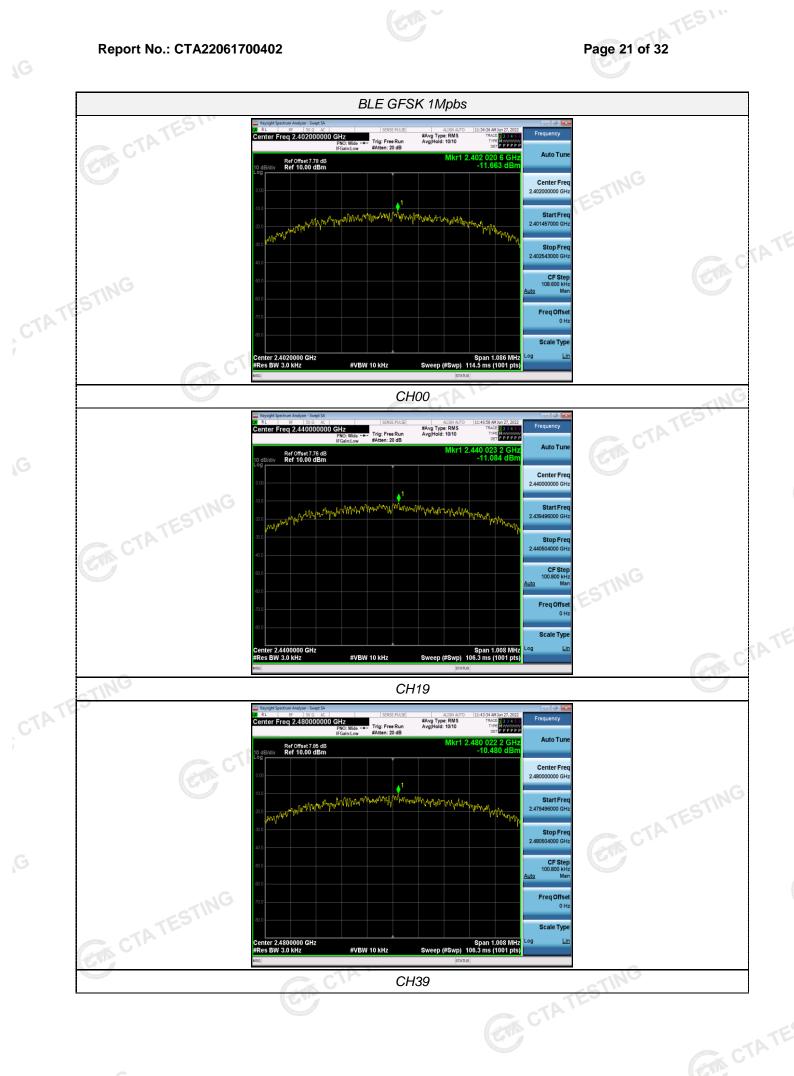
Power Spectral Density 4.4

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

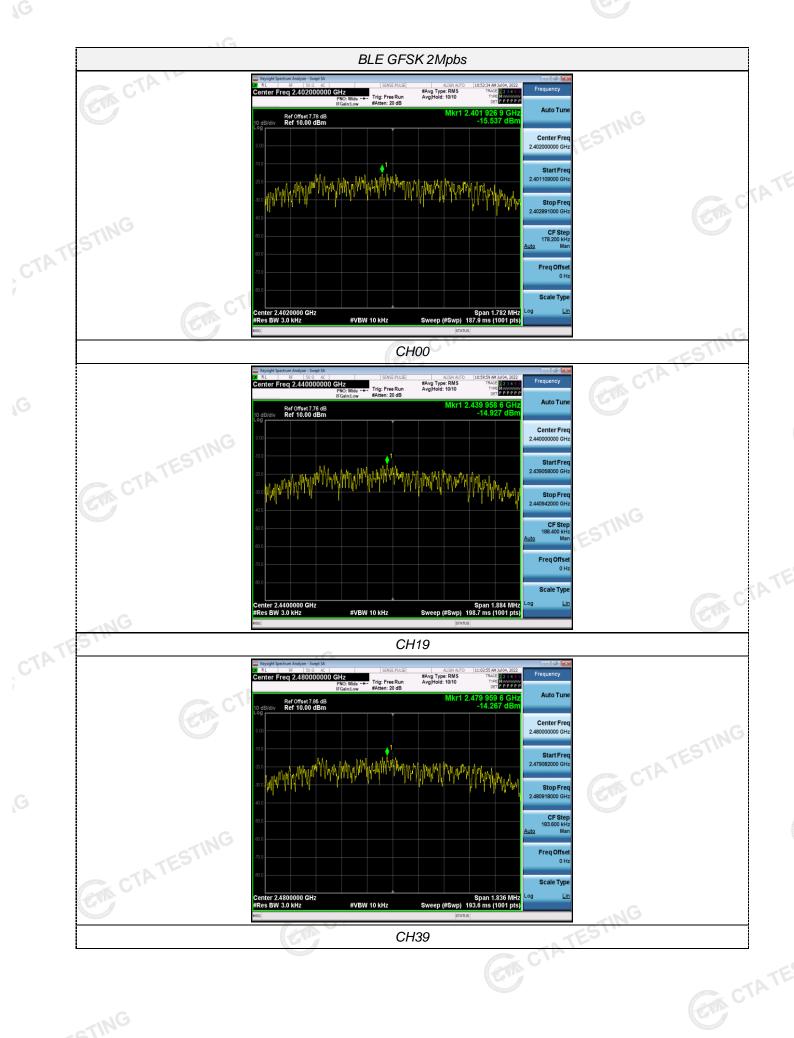
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth. CTATESTING
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

UT	TESTIN	SPECTRUM
	CTA	ANALYZER

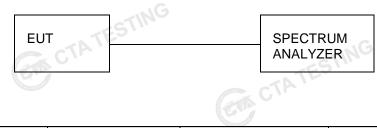
Test Results


GIA U	EUT	SPECT ANALY		
Test Results			CTATES CTATES	
Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
-ING	00	-11.66		
GFSK 1Mbps	19	-11.08	8.00	Pass
	39	-10.48		
	00	-15.54		
GFSK 2Mbps	19	-14.93	8.00	Pass
	39	-14.27	GING	
Test plot as follow	WS:	GA CTATE		CTATESTING

. 4

Page 22 of 32

4.5 6dB Bandwidth


Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz TESTING

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

est Results		CTA .		TEST
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.724		
GFSK 1Mbps	3 19	0.672	≥500	Pass
-ESTIN-	39	0.672	1	
ATATA	00	1.188		
GFSK 2Mbps	19	1.256	≥500	Pass
and the second se	39	1.224	-IN	G
Test plot as follows:	(cm)		CTATEST	<u>.</u>

Page 24 of 32

- NC

Page 25 of 32

4.6 **Out-of-band Emissions**

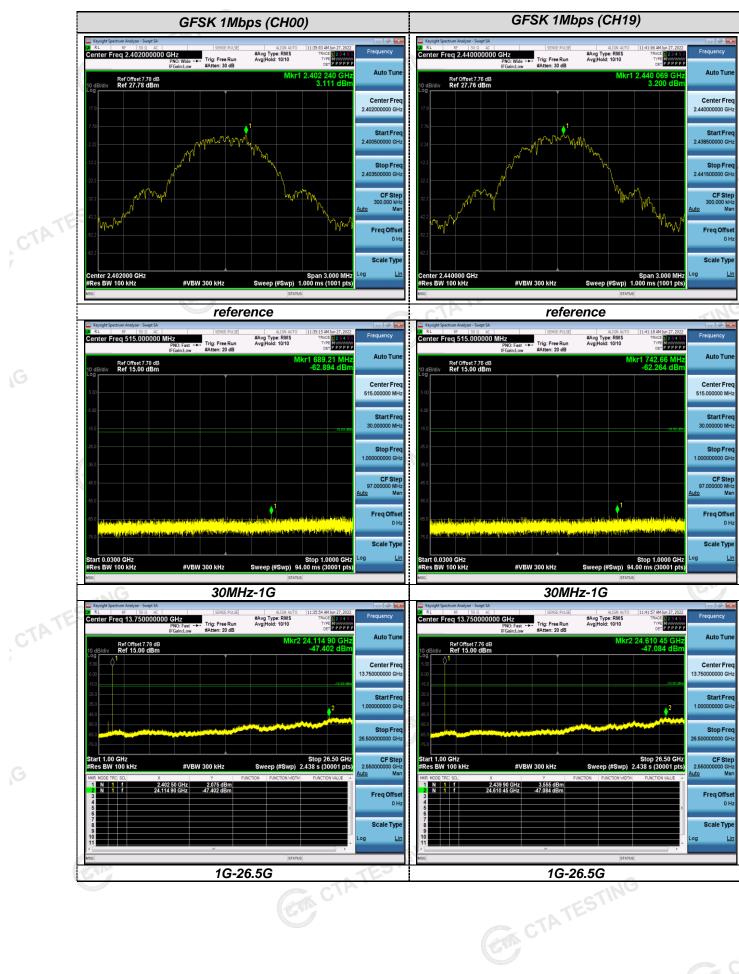
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

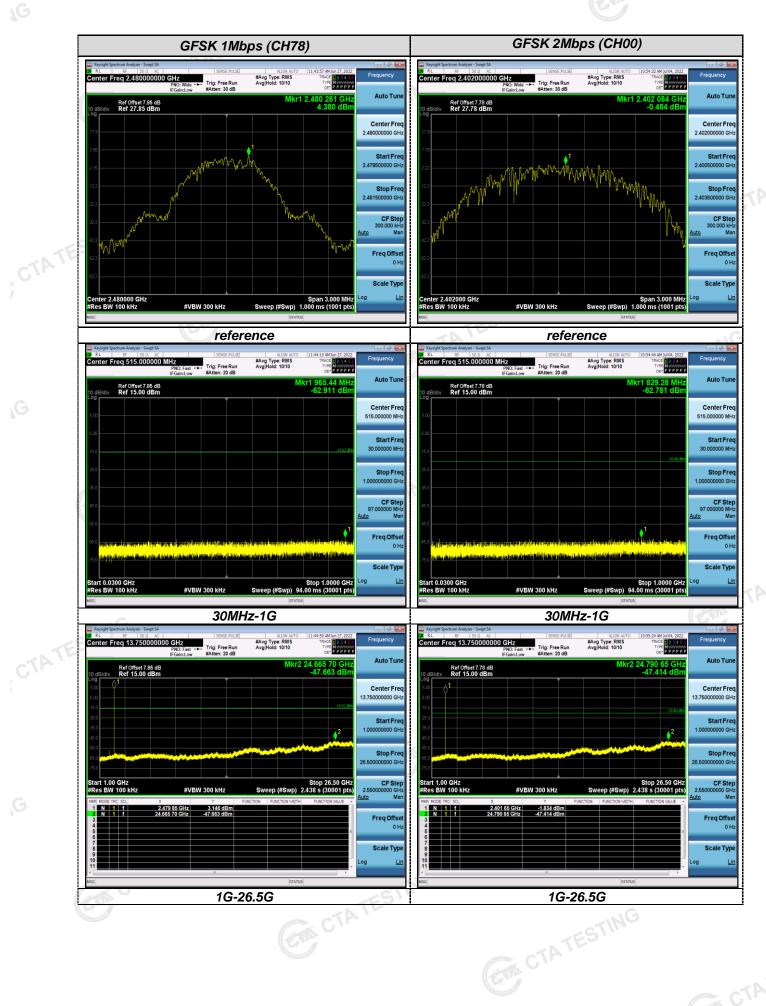
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are **GA** CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

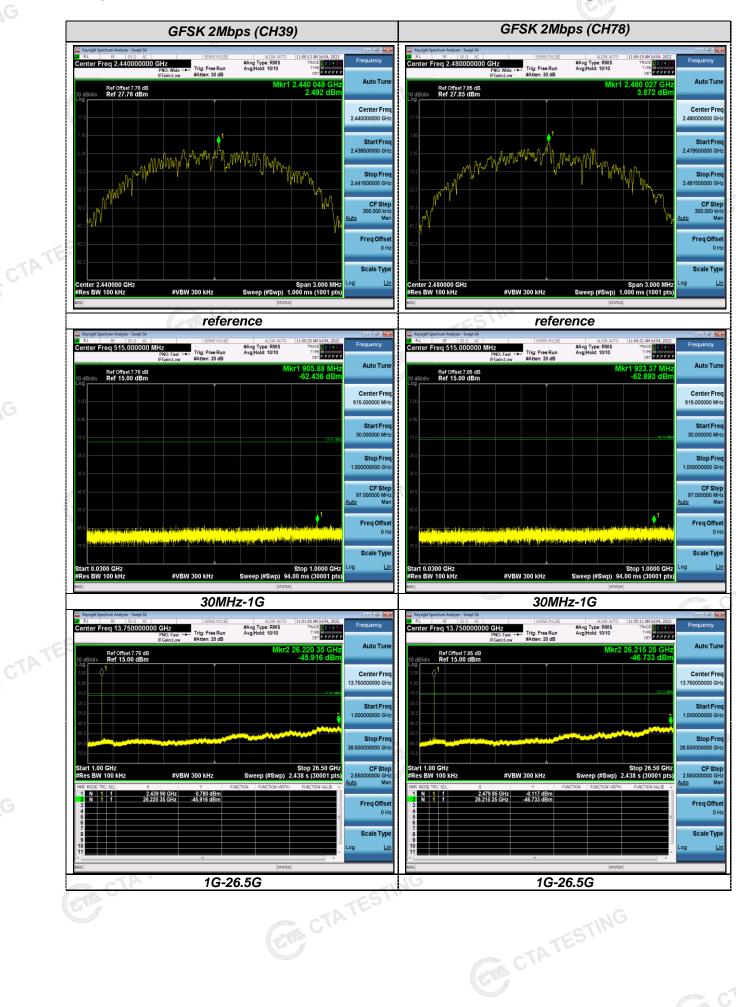


ESTING Test Results

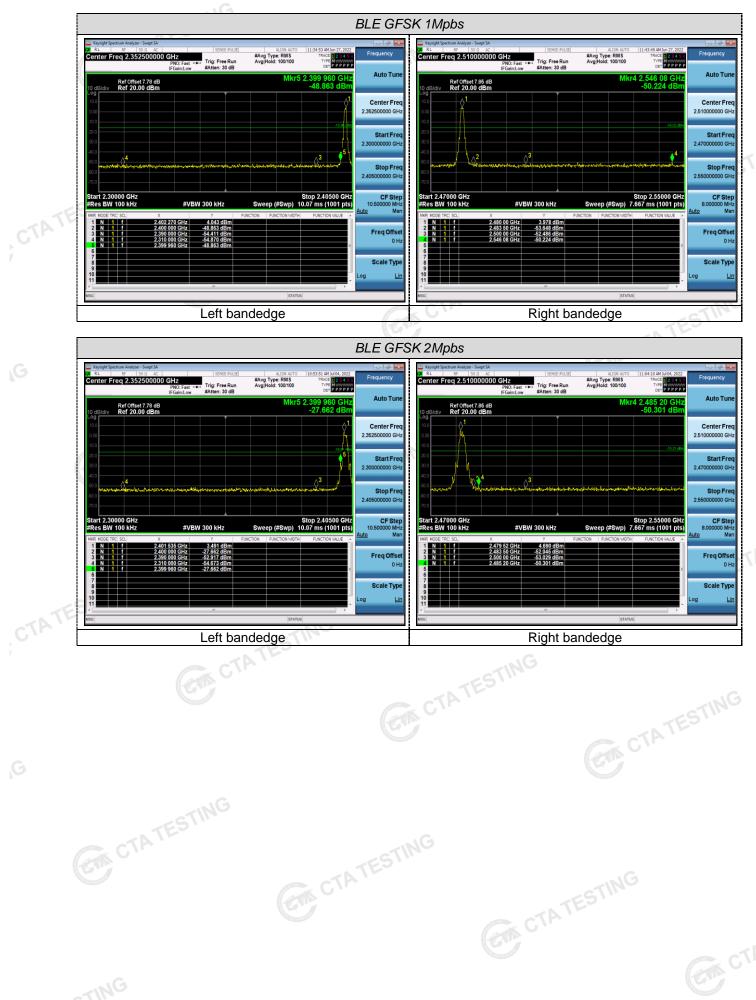

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

Page 27 of 32



Page 28 of 32


. 1

Page 29 of 32

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that CTATES the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.50 dBi. CTATESTING

TING

Test Setup Photos of the EUT 5 CTA TE

CTATESTING CTA TESTIN ring

CTA . Photos of the EUT 6 Reference to the test report No. CTA22061700401