

Test Report

Report No.: MTi210224007-03E1

Date of issue: Apr. 23, 2021

Applicant: YFW Technology Co., Ltd.

Product name: 3 in 1 wireless charging stand

Model(s): YFWW004

FCC ID: 2AY3K-YFWW004

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- The report shall not be partially reproduced without the written consent of the laboratory;
- The test results of this report are only responsible for the samples submitted;
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization:
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of Contents

1	GENE	RAL INFORMATION	5
	1.1 FE	ATURE OF EQUIPMENT UNDER TEST (EUT)	5
	1.2 TE	ST MODE	5
	1.3 EU	IT test setup	5
	1.4 AN	CILLARY EQUIPMENT	5
2	SUMI	MARY OF TEST RESULT	6
	2.1 OP	PERATION CHANNEL LIST	6
	2.2 TE	ST CHANNEL	6
3	TEST	FACILITIES AND ACCREDITATIONS	7
	3.1 TES	ST LABORATORY	7
	3.2 EN	VIRONMENTAL CONDITIONS	7
	3.3 Mi	EASUREMENT UNCERTAINTY	7
4	LIST	OF TEST EQUIPMENT	•
		•	
5	TEST	RESULTS	9
	5.1 AN	ITENNA REQUIREMENT	9
	5.1.1	Standard requirement	9
	5.1.2	EUT Antenna	9
	5.2 Co	NDUCTED EMISSION	10
	5.2.1	Limits	
	5.2.2	Test Procedures	
	5.2.3	Test Setup	10
	5.2.4	Test Result	10
	5.3 RA	DIATED EMISSION	15
	5.3.1	Limits	
	5.3.2	Test Procedures	16
	5.3.3	Test Setup	17
	5.3.4	Test Result	17
	5.4 00	CUPIED BANDWIDTH	21
	5.4.1	Test method	21
	5.4.2	Test result	21
Pŀ	HOTOGRA	NPHS OF THE TEST SETUP	22
Pŀ	HOTOGRA	NPHS OF THE EUT	24

TEST RESULT CERTIFICATION						
Applicant's name YFW Technology Co., Ltd.						
Address	Address					
Manufacturer's Name:	YFW Tech	nology Co., Ltd.				
Address		uilding 2, Guangxi Industrial Zone, Longhua Industrial d, Shenzhen City, Guangdong Province, China				
Product description						
Product name:	3 in 1 wire	less charging stand				
Trademark:	N/A					
Model Name:	YFWW004	Į.				
Serial Model	N/A					
Standards:	FCC Part	15C				
Test procedure:	ANSI C63.	10-2013				
Date of Test		,				
Date (s) of performance of tests	s:	Mar. 10, 2021 ~Apr. 20, 2021				
Test Result	:					
show that the equipment under	This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.					
Testing Engineer	:	Danny An				
		(Danny Xu)				
Technical Manager	:	Leo Su				
		(Leo Su)				
Authorized Signatory	:	Tom Xue				
		(Tom Xue)				

1 GENERAL INFORMATION

1.1 Feature of equipment under test (EUT)

in 1 wireless charging stand		
3 in 1 wireless charging stand		
′FWW004		
J/A		
J/A		
15–205 kHz		
ASK		
OW		
Coil Antenna		
OC 9V from adapter AC 120V/60Hz		
I/A		
I/A		
//Ti210224007-03-S0001		

1.2 Test mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test mode	Description		
Mode 1	TX		

Note:

1: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, and its test data was showed.

2: EUT is tested under full load.

1.3 EUT test setup

See photographs of the test setup in the report for the actual setup and connections between EUT and support equipment.

1.4 Ancillary equipment

Equipment	Model	S/N	Manufacturer
Adapter	HW-090200CH0	/	Huizhou BYD Electronics Co., Ltd.
Mobile phone	S9+	/	SAMSUNG

2 Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	FCC PART 15.203	Antenna requirement	Pass
2	FCC PART 15.207	Conducted emission	Pass
3	FCC PART 15.209 Radiated emission		Pass
4	FCC Part 15.215	20dB bandwidth	Pass

2.1 Operation channel list

Channel	Frequency (kHz)
Low	115
Middle	118
High	205

2.2 Test channel

Channel	Frequency (kHz)		
Middle	118		

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd
Location	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.
FCC Registration No.:	448573

3.2 Environmental conditions

Temperature:	15°C~35°C
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	±5%

4 List of test equipment

Equipmen t No.	Equipment Name	Manufact urer	Model	Serial No.	Calibration date	Due date
MTI-E043	EMI Test Receiver	Rohde≻ hwarz	ESCI7	101166	2020/06/04	2021/06/03
MTI-E044	TRILOG Broadband Antenna	schwarab eck	VULB 9163	9163-133 8	2020/06/05	2021/06/04
MTI-E047	Amplifier	Hewlett-P ackard	8447F	3113A061 50	2020/06/04	2021/06/03
MTI-E089	ESG Vector Signal Generator	Agilent	N5182A	MY49060 455	2020/06/03	2021/06/02
MTI-E058	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051 240	2020/07/03	2021/07/04
MTI-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2020/06/04	2021/06/03
MTI-E066	MXA Signal Analyzer	Agilent	N9020A	MY50143 483	2020/06/04	2021/06/03
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2020/06/04	2021/06/03
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2020/06/04	2021/06/03
MTI-E021	EMI Test Receiver	Rohde≻ hwarz	ESCS30	100210	2020/06/04	2021/06/03
MTI-E022	Pulse Limiter	Schwarzb eck	VSTD 9561-F	00679	2020/06/03	2021/06/02
MTI-E023	Artificial mains network	Schwarzb eck	NSLK 8127	NSLK 8127 #841	2020/06/04	2021/06/03
MTI-E046	Active Loop Antenna	Schwarzb eck	FMZB 1519 B	00044	2020/06/05	2021/06/04
MTI-E048	Amplifier	Agilent	8449B	3008A024 00	2020/07/03	2021/07/04
MTI-E072	Thermometer Clock Humidity Monitor	-	HTC-1	/	2020/06/07	2021/06/06
MTI-E090	Test Loop Antenna	DATETEK	LA-001	77140963 4	2020/06/05	2021/06/04

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

5 Test Results

5.1 Antenna requirement

5.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2 EUT Antenna

The EU	Γ antenna	is Coil Antenna.	It comply with th	e standard	requirement.	In case of	replacement
of broke	n antenna	the same anten	na type must be	used.			

5.2 Conducted emission

5.2.1 Limits

For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 μ H/50 ohms line impedance stabilization network (LISN).

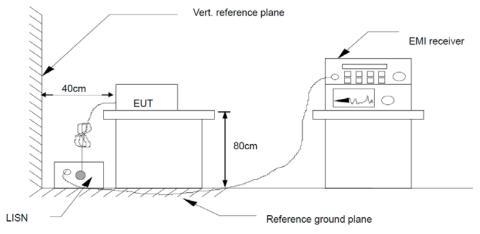
Frequency	Conducted limit (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.5 -5	56	46		
5 -30	60	50		

Note:

the limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.2.2 Test Procedures

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.


Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item – photographs of the test setup.

5.2.3 Test Setup

5.2.4 Test Result

EUT: 3 in 1 wireless charging stand		Model Name:	YFWW004	
ressure:	101kPa	Phase:	L	
est voltage:	DC 9V from adapter AC 120V/60Hz	Test mode:	Mode 1	
80.0 dBuV				
70				
60		FCCPart15 ClassB AC	Conduction(QP)	
50	7 9 ×	FCCPart15 ClassB AC	Conduction(AVG)	
40	A			
30 \$ 4	The way and the same of the sa			
20	W V Why way approximate the control of the	1,574104/1/Offbyddydd wyddiaidd yr	AVG	
10				
0				
-10				
-20 0.150	0.500 0.800 (MI	Hz) 5.000	30.000	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1516	34.72	10.99	45.71	65.91	-20.20	QP
2	0.1516	19.35	10.99	30.34	55.91	-25.57	AVG
3	0.2180	32.29	10.98	43.27	62.89	-19.62	QP
4	0.2180	20.53	10.98	31.51	52.89	-21.38	AVG
5	0.3860	33.38	10.99	44.37	58.15	-13.78	QP
6	0.3860	30.11	10.99	41.10	48.15	-7.05	AVG
7	0.8980	33.86	13.02	46.88	56.00	-9.12	QP
8 *	0.8980	30.01	13.02	43.03	46.00	-2.97	AVG
9	1.1580	33.76	13.61	47.37	56.00	-8.63	QP
10	1.1580	8.77	13.61	22.38	46.00	-23.62	AVG
11	10.3700	37.17	11.58	48.75	60.00	-11.25	QP
12	10.3700	33.72	11.58	45.30	50.00	-4.70	AVG

UT: 3 in 1 wireless charging stand		Model Name:	YFWW004	
ressure:	101kPa	Phase:	N	
est voltage:	DC 9V from adapter AC 120V/60Hz	Test mode:	Mode 1	
80.0 dBuV				
70				
60		FCCPart15 ClassB AC	Conduction(QP)	
50 3 5	7 9	FCCPart15 ClassB AC	Conduction(AVG)	
40	The second secon	Mary - Janka Land Land Land Land Land Land Land		
30			peal	
10	V	7 "4011	AVG	
0				
-10				
-20				

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2220	32.79	10.92	43.71	62.74	-19.03	QP
2	0.2220	26.06	10.92	36.98	52.74	-15.76	AVG
3	0.2940	36.23	10.92	47.15	60.41	-13.26	QP
4	0.2940	22.89	10.92	33.81	50.41	-16.60	AVG
5	0.4420	38.64	10.90	49.54	57.02	-7.48	QP
6	0.4420	28.49	10.90	39.39	47.02	-7.63	AVG
7	0.5740	35.90	10.97	46.87	56.00	-9.13	QP
8	0.5740	23.80	10.97	34.77	46.00	-11.23	AVG
9	1.1420	32.81	13.52	46.33	56.00	-9.67	QP
10	1.1420	19.31	13.52	32.83	46.00	-13.17	AVG
11	11.3020	35.37	11.56	46.93	60.00	-13.07	QP
12 *	11.3020	31.05	11.56	42.61	50.00	-7.39	AVG

EUT: 3 in 1 wireless charging stand		Model Name:	YFWW004	
ressure:	101kPa	Phase:	L	
est voltage:	DC 9V from adapter AC 240V/60Hz	Test mode:	Mode 1	
80.0 dBuV				
70				
60		FCCPart15 ClassB AC	Conduction(QP)	
50 3	5 7 9	FCCPart15 ClassB AC	Conduction(AVG)	
40 3	STORESTONE			
30	The state of the s			
20	A M. M. M. A. M. M.		peak	
10	V		AVG	
0				
-10				
-20				

No. N	Mk. Freq	Reading . Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2179	33.63	10.98	44.61	62.90	-18.29	QP
2	0.2179	25.94	10.98	36.92	52.90	-15.98	AVG
3	0.2979	36.85	11.00	47.85	60.30	-12.45	QP
4	0.2979	26.92	11.00	37.92	50.30	-12.38	AVG
5	0.4460	39.62	11.03	50.65	56.95	-6.30	QP
6	0.4460	30.25	11.03	41.28	46.95	-5.67	AVG
7	0.8860	38.09	13.00	51.09	56.00	-4.91	QP
8 '	* 0.8860	30.24	13.00	43.24	46.00	-2.76	AVG
9	1.1419	37.80	13.58	51.38	56.00	-4.62	QP
10	1.1419	28.46	13.58	42.04	46.00	-3.96	AVG
11	8.7538	3 40.71	11.60	52.31	60.00	-7.69	QP
12	8.7538	34.13	11.60	45.73	50.00	-4.27	AVG

EUT:	3 in 1 wireless charging stand	Model Name:	YFWW004	
Pressure:		Phase:	N	
est voltage:	DC 9V from adapter AC 240V/60Hz	Test mode:	Mode 1	
80.0 dBuV				
70				
60		FCCPart15 ClassB AC	Conduction(QP)	
50	5 7	FCCPart15 ClassB AC	Conduction(AVG)	
40				
30 2			peal	
20	Valent (million biological proposition for the second seco		AVG	
10	A code April 1. decoulting 1.11		71.1.11.11.11	
0				
-10				
-20				

No. M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2100	31.91	10.91	42.82	63.21	-20.39	QP
2	0.2100	18.41	10.91	29.32	53.21	-23.89	AVG
3	0.3860	34.29	10.88	45.17	58.15	-12.98	QP
4	0.3860	29.58	10.88	40.46	48.15	-7.69	AVG
5	0.6419	34.23	11.03	45.26	56.00	-10.74	QP
6	0.6419	29.63	11.03	40.66	46.00	-5.34	AVG
7	1.1539	30.93	13.53	44.46	56.00	-11.54	QP
8	1.1539	25.85	13.53	39.38	46.00	-6.62	AVG
9	2.9460	35.23	11.38	46.61	56.00	-9.39	QP
10 *	2.9460	31.54	11.38	42.92	46.00	-3.08	AVG
11	9.8579	36.44	11.53	47.97	60.00	-12.03	QP
12	9.8579	31.00	11.53	42.53	50.00	-7.47	AVG

5.3 Radiated emission

5.3.1 Limits

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)		
FREQUENCT (MH2)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

The limit for radiated test was performed according to FCC PART 15C.

The tighter limit applies at the band edges.

Emission level (dBuV/m)=20log Emission level (uV/m).

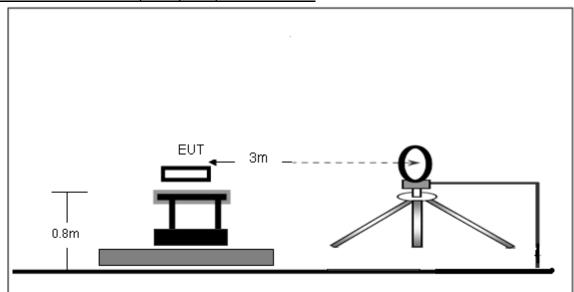
FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

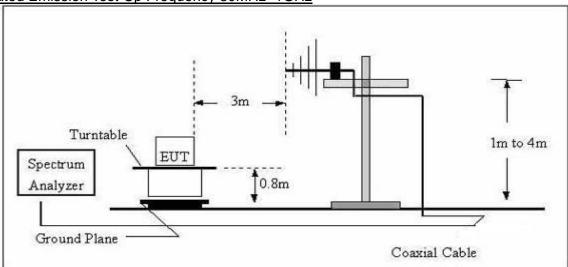
Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.3.2 Test Procedures


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- h. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

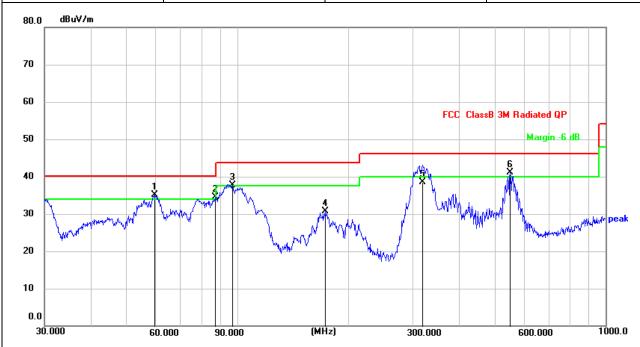


5.3.3 Test Setup

Radiated Emission Test-Up Frequency Below 30MHz

Radiated Emission Test-Up Frequency 30MHz~1GHz

5.3.4 Test Result


Frequency range (9kHz - 30MHz) 3 in 1 wireless charging EUT: Model Name: YFWW004 stand Pressure: 101kPa Test mode: Mode 1 DC 9V from adapter AC 120V/60Hz Test voltage: dBuV/m 130.0 120 110 100 90 80 FCC 15C Radiation Below 1GHz 70 60 50 40 30 20 10.0 0.009 30.000 (MHz) 0.200 5.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.1454	43.94	21.84	65.78	104.35	-38.57	QP
2	0.4347	19.78	21.73	41.51	94.84	-53.33	QP
3 *	1.5660	11.50	22.28	33.78	63.74	-29.96	QP
4	4.7196	9.04	21.78	30.82	69.50	-38.68	QP
5	7.3733	7.46	21.83	29.29	69.50	-40.21	QP
6	20.3246	8.03	21.81	29.84	69.50	-39.66	QP

Frequency range (30MHz - 1GHz)

EUT:	3 in 1 wireless charging stand	Model Name:	YFWW004
Pressure:			Vertical
Test voltage:	DC 9V from adapter AC 120V/60Hz	Test mode:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1!	59.8588	47.78	-12.68	35.10	40.00	-4.90	QP
2!	87.1117	49.23	-14.64	34.59	40.00	-5.41	QP
3 !	97.1148	50.65	-12.98	37.67	43.50	-5.83	QP
4	173.2050	44.46	-13.80	30.66	43.50	-12.84	QP
5	318.8170	47.25	-8.65	38.60	46.00	-7.40	QP
6 *	550.9480	45.62	-4.43	41.19	46.00	-4.81	QP

UT:				3 in 1 wireless charging stand				Model Name:			١	YFWW004			
ressi	ure:			101kPa Polarization: Horizontal											
est v	oltage:			DC 9V from adapter AC 120V/60Hz Test mode: Mode 1			1								
80.0	dBuV/n	n													\neg
70															
60										FCC	Classi	3M Ra	idiated QI	0	
50													Margin -l		_[
40						į į	2		<u>,</u>	*		. X			
30						production of	X			1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V ⁴ V ₁₀₀₀	/\ <u>6</u>	W _{Makasan} dagan	Mushina	llim ^h peak
20	May may 10 to 10	mark the	part March	فمتحمولها فالمستود	had ^y .		The market of the	\v\/\	Mundel				Influence		
10	Many						p-yi - i								_
0.0	.000		60.0			0.000	 			00.000			00.000		1000.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	94.4284	48.03	-13.40	34.63	43.50	-8.87	QP
2	104.5361	45.96	-12.55	33.41	43.50	-10.09	QP
3 *	318.8170	46.85	-8.65	38.20	46.00	-7.80	QP
4	341.9786	46.78	-8.60	38.18	46.00	-7.82	QP
5	558.7302	40.83	-4.23	36.60	46.00	-9.40	QP
6	582.7425	34.79	-3.61	31.18	46.00	-14.82	QP

5.4 Occupied bandwidth

5.4.1 Test method

Use the following spectrum analyzer settings:

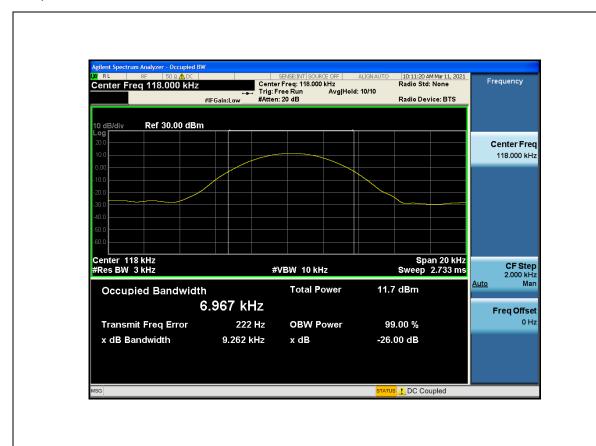
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥1% of the 20 dB bandwidth

VBW ≥RBW

Sweep = auto

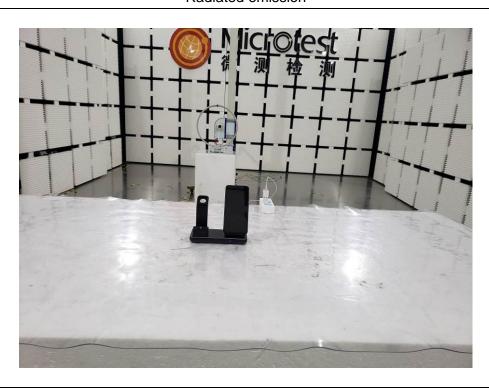
Detector function = peak

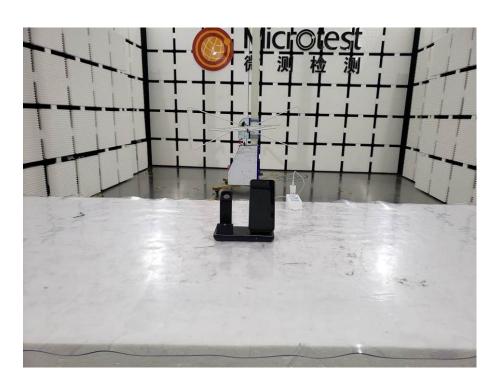

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission.

5.4.2 Test result

Frequency (kHz)	20dB emission bandwidth (kHz)	99% occupied bandwidth (kHz)
118	9.262	6.967


Test plots as below:



Photographs of the Test Setup

Radiated emission

Conducted emission

Photographs of the EUT See the APPENDIX 1- EUT PHOTO. ----END OF REPORT----