

RF EXPOSURE Test Report

Report No.:	MTi210520001-02E3
Date of issue:	July 12, 2021
Applicant:	Shenzhen Times Innovation
	Technology Co., Ltd
Product name:	Baseus SIMU ANC True Wireless
	Earphones
Model(s):	Baseus SIMU S2
FCC ID:	2AY37-S2

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.

Instructions

- 1. The report shall not be partially reproduced without the written consent of the laboratory;
- 2. The test results of this report are only responsible for the samples submitted;
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization;
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

- Page 3 of 6-

Report No.: MTi210520001-02E3

TEST RESULT CERTIFICATION					
Applicant's name	Shenzhen Times Innovation Technology Co., Ltd				
Address	5th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen, China				
Manufacturer's Name	Shenzhen Tim	es Innovation Technology Co., Ltd			
Address	5th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen, China				
Factory:	Dongguan mei	yin technology co., Ltd			
Address :		lding 4, no. 1, zhiquan hi-tech park road, dongkeng town, guangdong province			
Product description	1				
Product name	Baseus SIMU	ANC True Wireless Earphones			
Trademark	Baseus				
Model Name	Baseus SIMU	S2			
Serial Model	N/A				
Standards	N/A				
Test procedure	KDB 447498 D	001 v06			
Date of Test					
Date (s) of performance of	tests:	May 29, 2021 ~ July 05, 2021			
Test Result	:	Pass			
This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.					
Testing Engineer	:	Danny An			
	_	(Danny Xu)			
Technical Manager :		Leo su			
		(Leo Su)			
Authorized Signator	y :	Tom Luc			
		(Tom Xue)			

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.

- Page 4 of 6-

Table of Contents

1.	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	5
2.	SAR TEST EXCLUCSION THRESHOLDS	6

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.

1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition(s), listed below, is (are) satisfied.

These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

The minimum test separation distance defined in 4.1 f) is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander.

To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified, typically in the SAR measurement or SAR analysis report, by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, according to the required published RF exposure KDB procedures.

When no other RF exposure testing or reporting are required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for SAR test exclusion.

When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions.

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, where

- $f_{(GHz)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following (also illustrated in Appendix B):
 - 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
 - {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz
- c) For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):
 - For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by [1 + log(100/f(MHz))]

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.

- 2) For test separation distances ≤ 50 mm, the power threshold determined by the equation in c)
 1) for 50 mm and 100 MHz is multiplied by ½
- 3) SAR measurement procedures are not established below 100 MHz.

When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any SAR test results below 100 MHz to be acceptable.

2. SAR Test Exclucsion Thresholds

We use 5mm as separation distance to calculated. Bluetooth DSS:

	Measured Power	Tune-up power	Max tune- up	Result	1g
Mode	(dBm)	(dBm)	power(dBm)	calculation	SAR
	8.172	8±1	9	2.4622	3
GFSK	8.066	8±1	9	2.4821	3
	6.852	7±1	8	1.9873	3
	8.201	8±1	9	2.4622	3
π/4-DQPSK	8.162	8±1	9	2.4821	3
	6.865	7±1	8	1.9873	3
	8.182	8±1	9	2.4622	3
8DPSK	8.225	8±1	9	2.4821	3
	6.901	7±1	8	1.9873	3
· · · · ·	GFSK π/4-DQPSK	GFSK 8.172 GFSK 8.066 6.852 8.201 π/4-DQPSK 8.162 6.865 8.182 8DPSK 8.225 6.901 6.901	$\begin{tabular}{ c c c c } \hline Mode & Measured Power (dBm) & power (dBm) \\ \hline Mode & 8.172 & 8\pm1 \\ \hline & 8.066 & 8\pm1 \\ \hline & 6.852 & 7\pm1 \\ \hline & 6.852 & 7\pm1 \\ \hline & 8.201 & 8\pm1 \\ \hline & 8.162 & 8\pm1 \\ \hline & 6.865 & 7\pm1 \\ \hline & 8.182 & 8\pm1 \\ \hline & 8DPSK & 8.225 & 8\pm1 \\ \hline & 6.901 & 7\pm1 \\ \hline \end{tabular}$	$ \begin{array}{c} \mbox{Measured Power} \\ \mbox{Mode} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{array}{c c c c c c c } \mbox{Measured Power} & Tune-up power (dBm) & up & Result \\ \hline \mbox{power} (dBm) & power (dBm) & calculation \\ \hline \mbox{power} (dBm) & 2.4622 \\ \hline \mbox{power} (dBm) & 2.4622 \\ \hline \mbox{stabular} & 8.172 & 8\pm 1 & 9 & 2.4622 \\ \hline \mbox{6.852} & 7\pm 1 & 8 & 1.9873 \\ \hline \mbox{m/4-DQPSK} & 8.201 & 8\pm 1 & 9 & 2.4622 \\ \hline \mbox{8.162} & 8\pm 1 & 9 & 2.4622 \\ \hline \mbox{8.162} & 8\pm 1 & 9 & 2.4821 \\ \hline \mbox{6.865} & 7\pm 1 & 8 & 1.9873 \\ \hline \mbox{8.182} & 8\pm 1 & 9 & 2.4622 \\ \hline \mbox{8DPSK} & 8.225 & 8\pm 1 & 9 & 2.4622 \\ \hline \mbox{8.197} & 8.225 & 8\pm 1 & 9 & 2.4622 \\ \hline \\mbox{8.197} & 8.225 & 8\pm 1 & 9 & 2.4622 \\ \hline \\mbox{8.197} & 8.225 & 8\pm 1 & 8 & 1.98 \\ \hline \\mbox{8.197} & 8.225 & 8\pm 1 & 8 & 1.98 \\ \hline \\mbox{8.197} & 8.225 & 8\pm 1 & 8 & 1.98 \\ \hline \\mbox{8.197} & 8.225 & 8\pm 1 & 1.98 \\ \hline \\\mbox{8.197} & 8.225 & 8\pm 1 & 1.98 \\ \hline \\\mbox{8.197} & 8.25 & 1.98 \\ \hline \\\mbox{8.197}$

Bluetooth DTS:

Transmit Frequency (GHz)	Mode	Measured Power (dBm)	Tune-up power (dBm)	Max tune-up	Result	1g SAR
2.402		0.189	0±1	1	0.3902	3
2.440	GFSK	0.442	0±1	1	0.3933	3
2.480		-0.736	0±1	1	0.3965	3

Conclusion:

For the max result: 2.4821≤ 3.0 for 1g SAR, No SAR is required.

----END OF REPORT----