

## **CTC** Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

| -                                                                                                                                                                                                                                                                                                                     | <b>FEST REPORT</b>                                                                                                                          |                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| Report No. ·····:                                                                                                                                                                                                                                                                                                     | CTC20211939E01                                                                                                                              |                       |  |  |
| FCC ID:                                                                                                                                                                                                                                                                                                               | 2AY37-S-BS                                                                                                                                  |                       |  |  |
| Applicant                                                                                                                                                                                                                                                                                                             | Shenzhen Times Innovation Technol                                                                                                           | logy Co., Ltd         |  |  |
| Address                                                                                                                                                                                                                                                                                                               | 5th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen, China |                       |  |  |
| Manufacturer                                                                                                                                                                                                                                                                                                          | Shenzhen Times Innovation Technolog                                                                                                         | y Co., Ltd            |  |  |
| Address                                                                                                                                                                                                                                                                                                               | 5th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen, China |                       |  |  |
| Product Name·····:                                                                                                                                                                                                                                                                                                    | Wisdom Car Smart Atomized Air Fre                                                                                                           | shener                |  |  |
| Trade Mark······                                                                                                                                                                                                                                                                                                      | Baseus                                                                                                                                      |                       |  |  |
| Model/Type reference······:                                                                                                                                                                                                                                                                                           | IPBM82-26 S(BS)                                                                                                                             |                       |  |  |
| Listed Model(s) ······                                                                                                                                                                                                                                                                                                | 1                                                                                                                                           |                       |  |  |
| Standard:                                                                                                                                                                                                                                                                                                             | FCC CFR Title 47 Part 15 Subpart C Section 15.247                                                                                           |                       |  |  |
| Date of receipt of test sample:                                                                                                                                                                                                                                                                                       | Dec. 02, 2021                                                                                                                               |                       |  |  |
| Date of testing                                                                                                                                                                                                                                                                                                       | Dec. 03, 2021 ~ Dec. 21, 2021                                                                                                               |                       |  |  |
| Date of issue                                                                                                                                                                                                                                                                                                         | Dec. 22, 2021                                                                                                                               |                       |  |  |
| Result:                                                                                                                                                                                                                                                                                                               | PASS                                                                                                                                        |                       |  |  |
| Compiled by:                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                       |  |  |
| (Printed name+signature)                                                                                                                                                                                                                                                                                              | Terry Su                                                                                                                                    | Perry Ju              |  |  |
| Supervised by:<br>(Printed name+signature)                                                                                                                                                                                                                                                                            | Miller Ma                                                                                                                                   | Tenny Su<br>Miller Ma |  |  |
| Approved by:                                                                                                                                                                                                                                                                                                          |                                                                                                                                             | Jemas                 |  |  |
| (Printed name+signature)                                                                                                                                                                                                                                                                                              | Totti Zhao                                                                                                                                  |                       |  |  |
| Testing Laboratory Name:                                                                                                                                                                                                                                                                                              | CTC Laboratories, Inc.                                                                                                                      |                       |  |  |
| Address                                                                                                                                                                                                                                                                                                               | 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park,<br>Shenzhen, Guangdong, China                                                 |                       |  |  |
| This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested |                                                                                                                                             |                       |  |  |

sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and

approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.



#### **Table of Contents**

Page

| 1.  | TEST SUMMARY                    | .3  |
|-----|---------------------------------|-----|
| 1.1 | Test Standards                  | . 3 |
| 1.2 | REPORT VERSION                  | . 3 |
| 1.3 | TEST DESCRIPTION                | . 4 |
| 1.4 | . 20                            |     |
| 1.5 |                                 |     |
| 1.6 | Environmental conditions        | . 6 |
| 2.  | ENERAL INFORMATION              | .7  |
| 2.2 | CLIENT INFORMATION              | . 7 |
| 2.2 | GENERAL DESCRIPTION OF EUT      | . 7 |
| 2.3 | Accessory Equipment Information | . 8 |
| 2.4 |                                 |     |
| 2.5 | Measurement Instruments List    | 10  |
| 3.  | EST ITEM AND RESULTS            | 11  |
| 3.3 | CONDUCTED EMISSION              | 11  |
| 3.2 | RADIATED EMISSION               | 14  |
| 3.3 | Band Edge Emissions (Radiated)  | 30  |
| 3.4 |                                 |     |
| 3.5 | DTS BANDWIDTH                   | 49  |
| 3.6 |                                 |     |
| 3.7 |                                 |     |
| 3.8 |                                 |     |
| 3.9 | ANTENNA REQUIREMENT             | 62  |



## 1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz. <u>RSS 247 Issue 2</u>: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices.

## 1.2. Report version

| Revised No. | Date of issue | Description |
|-------------|---------------|-------------|
| 01          | Dec. 22, 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |



## **1.3. Test Description**

| FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2 |                             |                             |        |               |  |
|--------------------------------------------------|-----------------------------|-----------------------------|--------|---------------|--|
| Test Item                                        | Standard Section            |                             | Result | Test Engineer |  |
| rest item                                        | FCC IC                      |                             | Result |               |  |
| Antenna Requirement                              | 15.203                      | /                           | Pass   | Alicia Liu    |  |
| Conducted Emission                               | 15.207                      | RSS-Gen 8.8                 | Pass   | Ice Lu        |  |
| Conducted Band Edge and<br>Spurious Emissions    | 15.247(d)                   | RSS 247 5.5                 | Pass   | Alicia Liu    |  |
| Radiated Band Edge and<br>Spurious Emissions     | 15.205&15.209&<br>15.247(d) | RSS 247 5.5                 | Pass   | Alicia Liu    |  |
| 6dB Bandwidth                                    | 15.247(a)(2)                | RSS 247 5.2 (a)             | Pass   | Alicia Liu    |  |
| Conducted Max Output Power                       | 15.247(b)(3)                | RSS 247 5.4 (d)             | Pass   | Alicia Liu    |  |
| Power Spectral Density                           | 15.247(e)                   | RSS 247 5.2 (b)             | Pass   | Alicia Liu    |  |
| Transmitter Radiated Spurious                    | 15.209&15.247(d)            | RSS 247 5.5&<br>RSS-Gen 8.9 | Pass   | Alicia Liu    |  |

Note: The measurement uncertainty is not included in the test result.





#### CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

#### Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

#### A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

#### FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

## **1.5. Measurement Uncertainty**

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.



| Test Items                              | Measurement Uncertainty | Notes |
|-----------------------------------------|-------------------------|-------|
| Transmitter power conducted             | 0.42 dB                 | (1)   |
| Transmitter power Radiated              | 2.14 dB                 | (1)   |
| Conducted spurious emissions 9kHz~40GHz | 1.60 dB                 | (1)   |
| Radiated spurious emissions 9kHz~40GHz  | 2.20 dB                 | (1)   |
| Conducted Emissions 9kHz~30MHz          | 3.08 dB                 | (1)   |
| Radiated Emissions 30~1000MHz           | 4.51 dB                 | (1)   |
| Radiated Emissions 1~18GHz              | 5.84 dB                 | (1)   |
| Radiated Emissions 18~40GHz             | 6.12 dB                 | (1)   |
| Occupied Bandwidth                      |                         | (1)   |

**Note (1):** This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

## 1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:       | 21°C ~ 27°C |
|--------------------|-------------|
| Relative Humidity: | 40% ~ 60%   |
| Air Pressure:      | 101kPa      |



## 2. GENERAL INFORMATION

## 2.1. Client Information

| Applicant:    | Shenzhen Times Innovation Technology Co., Ltd                                                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Address:      | 5th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd,<br>Gangtou Community, Bantian Street, Longgang District, Shenzhen,<br>China |
| Manufacturer: | Shenzhen Times Innovation Technology Co., Ltd                                                                                                     |
| Address:      | 5th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd,<br>Gangtou Community, Bantian Street, Longgang District, Shenzhen,<br>China |

## 2.2. General Description of EUT

| Product Name:                                          | Wisdom Car Smart Atomized Air Freshener                   |  |  |
|--------------------------------------------------------|-----------------------------------------------------------|--|--|
| Trade Mark:                                            | Baseus                                                    |  |  |
| Model/Type reference:                                  | IPBM82-26 S(BS)                                           |  |  |
| Listed Model(s):                                       | 1                                                         |  |  |
| Power supply:                                          | 5Vdc from USB Cable<br>3.7Vdc/1000mAh from Li-ion Battery |  |  |
| Hardware version:                                      | 1                                                         |  |  |
| Software version: /                                    |                                                           |  |  |
| BT 5.0/ BLE Support 1M PHY, 2M PHY, Code PHY(S=2, S=8) |                                                           |  |  |
| Modulation:                                            | GFSK                                                      |  |  |
| Operation frequency:                                   | 2402MHz~2480MHz                                           |  |  |
| Channel number:                                        | 40                                                        |  |  |
| Channel separation:                                    | 2MHz                                                      |  |  |
| Data rate:                                             | 1Mbps, 2Mbps                                              |  |  |
| Antenna type:                                          | PCB Antenna                                               |  |  |
| Antenna gain:                                          | 1dBi                                                      |  |  |
|                                                        |                                                           |  |  |



FN

## 2.3. Accessory Equipment information

| Equipment Information     |                                        |          |              |  |  |  |
|---------------------------|----------------------------------------|----------|--------------|--|--|--|
| Name                      | Model                                  | S/N      | Manufacturer |  |  |  |
| Notebook                  | ThinkBook 14G3 ACL                     | MP246QDR | Lenovo       |  |  |  |
| 1                         | 1                                      | 1        | 1            |  |  |  |
| Cable Information         | Cable Information                      |          |              |  |  |  |
| Name                      | Name Shielded Type Ferrite Core Length |          |              |  |  |  |
| USB Cable                 | With                                   | Without  | 1M           |  |  |  |
| Test Software Information |                                        |          |              |  |  |  |
| Name                      | Versions                               | 1        | 1            |  |  |  |
| Project1.exe              | v1.4                                   | 1        | 1            |  |  |  |



## 2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing. Operation Frequency List:

| Channel | Frequency (MHz) |  |  |
|---------|-----------------|--|--|
| 00      | 2402            |  |  |
| 01      | 2404            |  |  |
| ÷       | ÷               |  |  |
| 18      | 2438            |  |  |
| 19      | 2440            |  |  |
| 20      | 2442            |  |  |
| :       | :               |  |  |
| 38      | 2478            |  |  |
| 39      | 2480            |  |  |

Note: The display in grey were the channel selected for testing.

#### Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

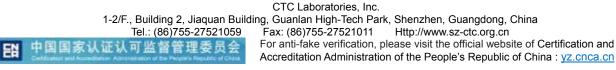
The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.



## 2.5. Measurement Instruments List

| Tonsce | Tonscend JS0806-2 Test system          |                    |           |            |                  |  |
|--------|----------------------------------------|--------------------|-----------|------------|------------------|--|
| Item   | Test Equipment                         | Manufacturer       | Model No. | Serial No. | Calibrated until |  |
| 1      | Spectrum Analyzer                      | Rohde &<br>Schwarz | FSU26     | 100105     | Dec. 25, 2021    |  |
| 2      | Spectrum Analyzer                      | Rohde &<br>Schwarz | FUV40-N   | 101331     | Mar. 15, 2022    |  |
| 3      | MXG Vector<br>Signal Generator         | Agilent            | N5182A    | MY47420864 | Dec. 25, 2021    |  |
| 4      | Signal Generator                       | Agilent            | E8257D    | MY46521908 | Dec. 25, 2021    |  |
| 5      | Power Sensor                           | Agilent            | U2021XA   | MY5365004  | Mar. 15, 2022    |  |
| 6      | Power Sensor                           | Agilent            | U2021XA   | MY5365006  | Mar. 15, 2022    |  |
| 7      | High and low temperature box           | ESPEC              | MT3035    | N/A        | Mar. 24, 2022    |  |
| 8      | Wideband Radio<br>Communication Tester | Rohde &<br>Schwarz | CMW500    | 102414     | Dec. 25, 2021    |  |
| 9      | 300328 v2.2.2 test<br>system           | TONSCEND           | v2.6      | /          | /                |  |

| Radiat | Radiated emission(3m chamber 2) |              |            |            |                  |  |
|--------|---------------------------------|--------------|------------|------------|------------------|--|
| Item   | Test Equipment                  | Manufacturer | Model No.  | Serial No. | Calibrated Until |  |
| 1      | Trilog-Broadband Antenna        | Schwarzbeck  | VULB 9168  | 9168-1013  | Jan. 12, 2022    |  |
| 2      | Horn Antenna                    | Schwarzbeck  | BBHA 9120D | 9120D-647  | Dec. 24, 2021    |  |
| 3      | Spectrum Analyzer               | R&S          | FSU26      | 100105     | Dec. 25, 2021    |  |
| 4      | Spectrum Analyzer               | R&S          | FSV40-N    | 101331     | Mar. 15, 2022    |  |
| 5      | Pre-Amplifier                   | SONOMA       | 310        | 186194     | Dec. 25, 2021    |  |
| 6      | Low Noise Pre-Amplifier         | EMCI         | EMC051835  | 980075     | Dec. 25, 2021    |  |
| 7      | Test Receiver                   | R&S          | ESCI7      | 100967     | Dec. 25, 2021    |  |


Radiated emission(3m chamber 3)

|      | ( /                             |              |            |            |                  |
|------|---------------------------------|--------------|------------|------------|------------------|
| Item | Test Equipment                  | Manufacturer | Model No.  | Serial No. | Calibrated Until |
| 1    | Trilog-Broadband Antenna        | Schwarzbeck  | VULB 9168  | 9168-759   | Nov. 09, 2022    |
| 2    | Horn Antenna                    | Schwarzbeck  | BBHA 9120D | 9120D-647  | Dec. 24, 2021    |
| 3    | Test Receiver                   | Keysight     | N9038A     | MY56400071 | Dec. 25, 2021    |
| 4    | Broadband Premplifier           | SCHWARZBECK  | BBV9743B   | 259        | Dec. 25, 2021    |
| 5    | Mirowave Broadband<br>Amplifier | SCHWARZBECK  | BBV9718C   | 111        | Dec. 25, 2021    |

| Condu | Conducted Emission |              |           |            |                  |  |  |  |  |  |  |
|-------|--------------------|--------------|-----------|------------|------------------|--|--|--|--|--|--|
| Item  | Test Equipment     | Manufacturer | Model No. | Serial No. | Calibrated until |  |  |  |  |  |  |
| 1     | LISN               | R&S          | ENV216    | 101112     | Dec. 25, 2021    |  |  |  |  |  |  |
| 2     | LISN               | R&S          | ENV216    | 101113     | Dec. 25, 2021    |  |  |  |  |  |  |
| 3     | EMI Test Receiver  | R&S          | ESCS30    | 100353     | Dec. 25, 2021    |  |  |  |  |  |  |

Note:1. The Cal. Interval was one year.

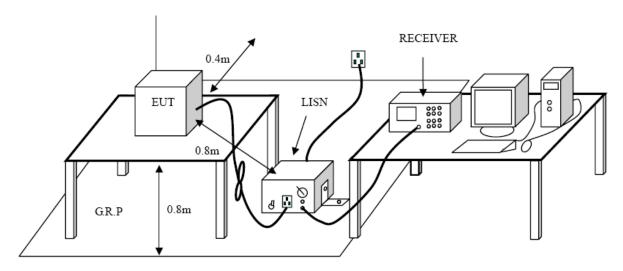
2. The cable loss has calculated in test result which connection between each test instruments.





# 3. TEST ITEM AND RESULTS

## 3.1. Conducted Emission


#### <u>Limit</u>

#### FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

| Eroquonov rongo (MHz) | Limit (dBuV) |           |  |  |  |
|-----------------------|--------------|-----------|--|--|--|
| Frequency range (MHz) | Quasi-peak   | Average   |  |  |  |
| 0.15-0.5              | 66 to 56*    | 56 to 46* |  |  |  |
| 0.5-5                 | 56           | 46        |  |  |  |
| 5-30                  | 60           | 50        |  |  |  |

\* Decreases with the logarithm of the frequency.

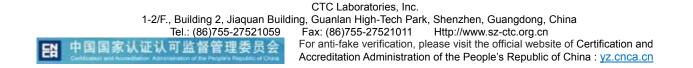
#### **Test Configuration**



#### Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

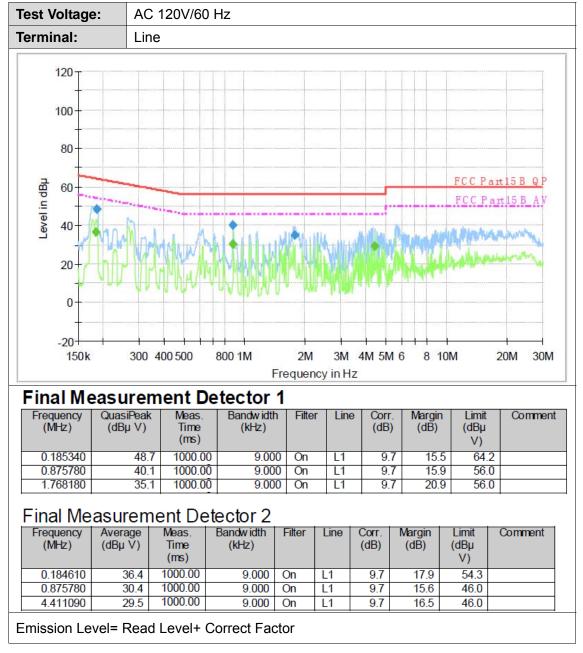

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

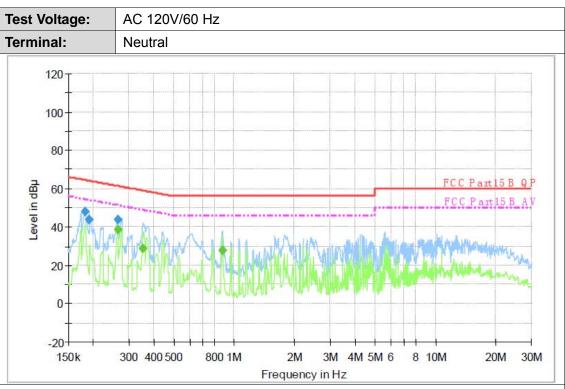
5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.







#### Test Mode:

Please refer to the clause 2.4.

#### **Test Results**







### Final Measurement Detector 1

| Frequency<br>(MHz) | QuasiPeak<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|----------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.182410           | 47.7                 | 1000.00               | 9.000              | On     | Ν    | 10.0          | 16.7           | 64.4                |         |
| 0.191360           | 43.9                 | 1000.00               | 9.000              | On     | Ν    | 10.0          | 20.1           | 64.0                |         |
| 0.264410           | 43.8                 | 1000.00               | 9.000              | On     | Ν    | 10.0          | 17.5           | 61.3                |         |

### Final Measurement Detector 2

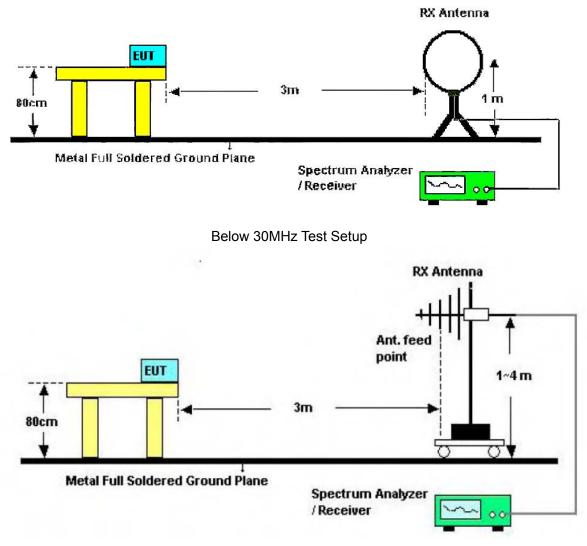
| Frequency<br>(MHz) | Average<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|--------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.264410           | 38.4               | 1000.00               | 9.000              | On     | Ν    | 10.0          | 12.9           | 51.3                |         |
| 0.353870           | 28.9               | 1000.00               | 9.000              | On     | Ν    | 10.0          | 20.0           | 48.9                |         |
| 0.872290           | 27.8               | 1000.00               | 9.000              | On     | Ν    | 10.0          | 18.2           | 46.0                |         |

Emission Level= Read Level+ Correct Factor



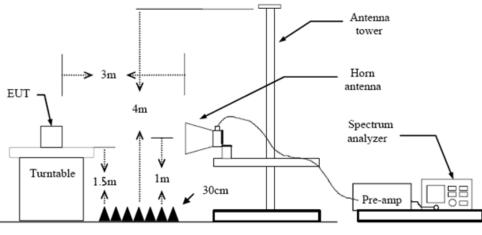
## 3.2. Radiated Emission

<u>Limit</u>


#### FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9

| Frequency         | Limit (dBuV/m @3m) | Value      |
|-------------------|--------------------|------------|
| 30 MHz ~ 88 MHz   | 40.00              | Quasi-peak |
| 88 MHz ~ 216 MHz  | 43.50              | Quasi-peak |
| 216 MHz ~ 960 MHz | 46.00              | Quasi-peak |
| 960 MHz ~ 1 GHz   | 54.00              | Quasi-peak |
|                   | 54.00              | Average    |
| Above 1 GHz       | 74.00              | Peak       |

#### Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

#### Test Configuration



#### Below 1000MHz Test Setup





Above 1GHz Test Setup

#### **Test Procedure**

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for

above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable 3. height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

Set to the maximum power setting and enable the EUT transmit continuously. 5.

Use the following spectrum analyzer settings 6.

(1) Span shall wide enough to fully capture the emission being measured;

(2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to  $10^{\text{th}}$  harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

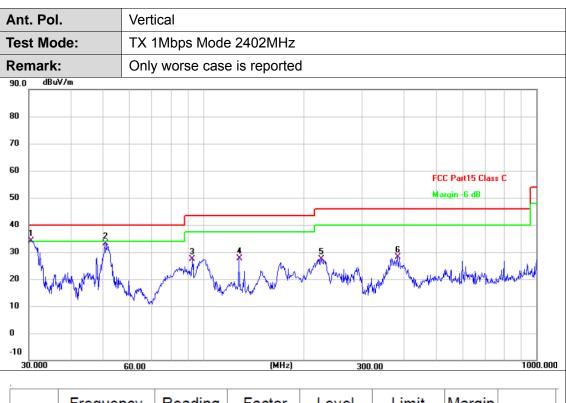
Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

#### **Test Mode**

Please refer to the clause 2.4.

#### **Test Result**

#### 9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



| nt. Po      | l.                                     | Hori  | zontal            |                  |                                       |                   |                |          |
|-------------|----------------------------------------|-------|-------------------|------------------|---------------------------------------|-------------------|----------------|----------|
| est Mo      | de:                                    | TX 1  | Mbps Mode         | e 2402MHz        |                                       |                   |                |          |
| emark       |                                        | Only  | worse case        | e is reported    | ł                                     |                   |                |          |
| 0.0 dBu     | V/m                                    |       |                   |                  |                                       |                   |                |          |
| o           |                                        |       |                   |                  |                                       |                   |                |          |
| 0           |                                        |       |                   |                  |                                       |                   |                |          |
| 0           |                                        |       |                   |                  |                                       | FCC               | Part15 Class   | C        |
| o           |                                        |       |                   |                  |                                       | Mar               | gin -6 dB      |          |
| o           |                                        |       |                   |                  |                                       |                   |                |          |
|             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Admin | - may Mar         | an Man Markalan  | N N N N N N N N N N N N N N N N N N N | with the second   | hadden         | dunasha  |
| 0<br>30.000 |                                        | 60.00 |                   | (MHz)            | 300.                                  | 00                |                | 1000.0   |
| No.         | Freque<br>(MHz                         | -     | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m)                     | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| 1 *         | 30.74                                  | 55    | 44.81             | -18.15           | 26.66                                 | 40.00             | -13.34         | QP       |
| 2           | 51.300                                 | )5    | 41.35             | -17.87           | 23.48                                 | 40.00             | -16.52         | QP       |
| 3           | 128.11                                 | 30    | 45.01             | -18.64           | 26.37                                 | 43.50             | -17.13         | QP       |
| 4           | 180.01                                 | 65    | 44.22             | -19.25           | 24.97                                 | 43.50             | -18.53         | QP       |
| 5           | 233.34                                 | 87    | 45.77             | -19.74           | 26.03                                 | 46.00             | -19.97         | QP       |
|             | 299.31                                 |       | 47.84             | -17.83           | 30.01                                 | 46.00             | -15.99         | QP       |





| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|
| 1 * | 30.5306            | 52.22             | -18.16           | 34.06             | 40.00             | -5.94          | QP       |
| 2   | 50.7637            | 51.00             | -17.83           | 33.17             | 40.00             | -6.83          | QP       |
| 3   | 92.7871            | 48.88             | -21.50           | 27.38             | 43.50             | -16.12         | QP       |
| 4   | 128.1130           | 46.19             | -18.64           | 27.55             | 43.50             | -15.95         | QP       |
| 5   | 226.0994           | 47.45             | -19.99           | 27.46             | 46.00             | -18.54         | QP       |
| 6   | 382.5879           | 44.13             | -16.12           | 28.01             | 46.00             | -17.99         | QP       |



FN

|       | Pol        |        |        | Horizontal<br>TX BLE 1Mbps Mode 2402MHz |      |                      |            |      |     |         |                   |             |           |
|-------|------------|--------|--------|-----------------------------------------|------|----------------------|------------|------|-----|---------|-------------------|-------------|-----------|
|       | Mo<br>ark: |        |        | No r                                    | epor |                      | e emissio  |      |     | more t  | han 10 dB         | below the   | ;         |
| 110.0 | dBu'       | //m    |        | pree                                    |      | su mm.               |            |      |     |         |                   |             |           |
|       |            |        |        |                                         |      |                      |            |      |     |         |                   |             |           |
|       |            |        |        |                                         |      |                      |            |      |     |         |                   |             |           |
| 0     |            |        |        |                                         |      |                      |            |      |     |         |                   |             |           |
| 0     |            |        |        |                                         |      |                      |            |      |     | FCC Par | t15 Class C 3M Ab | ove-1G Peak |           |
| '0  - |            |        |        |                                         |      |                      |            | -    |     |         |                   |             |           |
| :0  - |            |        |        |                                         |      |                      |            | -    |     | FCC Par | t15 Class C 3M Ab | ove-1G AV   |           |
| 0     |            |        | 1<br>X |                                         |      |                      |            | -    |     |         |                   |             |           |
| 0     |            |        | ×      |                                         |      |                      |            | -    |     |         |                   |             |           |
| 0     |            |        | 2<br>X |                                         |      |                      |            | -    |     |         |                   |             |           |
| 20 -  |            |        |        |                                         |      |                      |            | _    |     |         |                   |             |           |
| 0.0   | 0.000      | 3500.0 | 0 0    | 000.00                                  | 950  | 10.00 1 <sup>°</sup> | 1000.00 (N | (Hz) | 160 | 00.00 1 | 8500.00 2100      | 0.00 23500. | 00 26000. |
| No    |            |        | quer   |                                         |      | ading                | Facto      |      |     | vel     | Limit             | Margin      | Detector  |
|       |            |        | ИНz    | ,<br>                                   |      | BuV)                 | (dB/m      | ·    | -   |         | (dBuV/m)          |             |           |
| 1     | _          |        | 04.2   |                                         |      | 6.36                 | -2.82      |      |     | .54     | 74.00             | -30.46      | peak      |
| 2     | *          | 480    | 04.4   | 74                                      | 3    | 3.22                 | -2.82      | -    | 30  | .40     | 54.00             | -23.60      | AVG       |
|       |            |        |        |                                         | 1    |                      | 1          |      | 1   |         | <u> </u>          |             | 1         |



| Ant. Pol  | l.              | Verti  | cal                            |                  |                   |                   |                |             |
|-----------|-----------------|--------|--------------------------------|------------------|-------------------|-------------------|----------------|-------------|
| Test Mo   | de:             |        |                                | Mode 2402        |                   |                   |                |             |
| Remark    | :               |        | eport for the<br>cribed limit. | e emission v     | vhich more t      | han 10 dB b       | pelow the      |             |
| 110.0 dBu | V/m             |        |                                |                  |                   |                   |                |             |
| 100       |                 |        |                                |                  |                   |                   |                |             |
| 90        |                 |        |                                |                  |                   |                   |                |             |
| 80        |                 |        |                                |                  | FCC Par           | 15 Class C 3M Abo | ove-16 Peak    |             |
| 70        |                 |        |                                |                  |                   |                   |                |             |
| 60        |                 |        |                                |                  | FCC Par           | 15 Class C 3M Abo | ove-1G AV      |             |
| 50        | 2<br>X          |        |                                |                  |                   |                   |                |             |
| 40        |                 | _      |                                |                  |                   |                   |                |             |
| 30        | X               |        |                                |                  |                   |                   |                |             |
| 20        |                 |        |                                |                  |                   |                   |                |             |
| 10.0      | 3500.00 6       | 000.00 | 8500.00 11                     | 000.00 (MHz)     | 16000.00          | 8500.00 21000     | .00 23500.     | 00 26000.00 |
| No.       | Frequer<br>(MHz |        | Reading<br>(dBuV)              | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector    |
| 1 *       | 4804.4          | 24     | 33.26                          | -2.82            | 30.44             | 54.00             | -23.56         | AVG         |
| 2         | 4804.7          | 64     | 46.65                          | -2.82            | 43.83             | 74.00             | -30.17         | peak        |

EN



| nt. Po   | l              | Horizontal |                           |                  |                   |                    |                |           |
|----------|----------------|------------|---------------------------|------------------|-------------------|--------------------|----------------|-----------|
| est Mo   | de:            | TX BL      | E 1Mbps                   | Mode 2440        | MHz               |                    |                |           |
| Remark   | :              |            | port for the ribed limit. | e emission v     | which more        | than 10 dB t       | pelow the      | ;         |
| 10.0 dBu | V/m            |            |                           |                  |                   |                    |                |           |
| 00       |                |            |                           |                  |                   |                    |                |           |
| o 📃      |                |            |                           |                  |                   |                    |                |           |
| 0        |                |            |                           |                  |                   |                    |                |           |
|          |                |            |                           |                  | FCC Par           | t15 Class C 3M Abo | ve-1G Peak     |           |
| 0        |                |            |                           |                  |                   |                    |                |           |
| 0        |                |            |                           |                  | FCC Par           | t15 Class C 3M Abo | ve-1G AV       |           |
| 0        | 1              |            |                           |                  |                   |                    |                |           |
| o        |                |            |                           |                  |                   |                    |                |           |
| o        | 2<br>X         |            |                           |                  |                   |                    |                |           |
| 0        |                |            |                           |                  |                   |                    |                |           |
| 0.0      | 3500.00 6      | 000.00     | 8500.00 11                | 000.00 (MHz)     | 16000.00          | 8500.00 21000.     | 00 23500.0     | 0 26000.0 |
| No.      | Freque<br>(MHz |            | Reading<br>(dBu∀)         | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m)  | Margin<br>(dB) | Detector  |
|          | 4880.1         | 28         | 47.37                     | -2.60            | 44.77             | 74.00              | -29.23         | peak      |
| 1        |                |            | 33.91                     | -2.60            | 31.31             | 54.00              | -22.69         | AVG       |



| Ant. Po     | ol.             | Vertic | cal                            |            |                   |                    |             |          |
|-------------|-----------------|--------|--------------------------------|------------|-------------------|--------------------|-------------|----------|
| lest M      |                 |        |                                | Mode 2440  |                   |                    |             |          |
| Remar       | k:              |        | eport for the<br>cribed limit. | emission v | which more t      | han 10 dB t        | pelow the   | ;        |
| 10.0 dB     | uV/m            |        |                                |            |                   |                    |             |          |
| 00          |                 |        |                                |            |                   |                    |             |          |
| 0           |                 |        |                                |            |                   |                    |             |          |
|             |                 |        |                                |            |                   |                    |             |          |
| 70          |                 |        |                                |            | FUC Par           | t15 Class C 3M Abo | ove-16 Peak |          |
| 50          |                 |        |                                |            | FCC Par           | t15 Class C 3M Abo | we-16 AV    |          |
| 50          | 2<br>X          |        |                                |            |                   |                    |             |          |
| 10 <u> </u> |                 |        |                                |            |                   |                    |             |          |
| 30          | X               |        |                                |            |                   |                    |             |          |
| 20          |                 |        |                                |            |                   |                    |             |          |
| 10.0        |                 |        |                                |            |                   |                    |             |          |
|             |                 |        |                                |            |                   |                    |             |          |
|             |                 |        | Dooding                        | Factor     |                   | Limit              | Margin      | Detector |
| No.         | Frequer<br>(MHz |        | Reading<br>(dBuV)              | (dB/m)     | Level<br>(dBuV/m) | (dBuV/m)           |             | Detector |
| No.         |                 | )      |                                |            |                   |                    |             | AVG      |



EN

| est Mod     | Ant. Pol.       |        |       | al                     |               |       |       |               |             |          |                |            |
|-------------|-----------------|--------|-------|------------------------|---------------|-------|-------|---------------|-------------|----------|----------------|------------|
| USI MOU     | le:             | TX E   | 3LE 1 | 1Mbps                  | Mode 2        | 480   | MHz   |               |             |          |                |            |
| Remark:     |                 |        |       | t for the<br>ed limit. |               | ion v | vhich | more t        | han 10      | ) dB b   | pelow the      | ;          |
| 110.0 dBuV/ | /m              | p. 00  |       |                        | 1             |       |       |               |             |          |                |            |
| 100         |                 |        |       |                        |               |       |       |               |             |          |                |            |
|             |                 |        |       |                        |               |       |       |               |             |          |                |            |
| 90          |                 | _      |       |                        |               |       |       |               | _           |          |                |            |
| 30          |                 |        |       |                        |               | _     |       | FCC Parl      | 15 Class    | C 3M Abo | ove-16 Peak    |            |
| 70          |                 |        |       |                        |               |       |       |               |             |          |                |            |
| 50          |                 |        |       |                        |               |       |       |               |             |          |                |            |
| 50          |                 |        |       |                        |               |       |       | FCC Par       | 15 Class    | C 3M Abo | we-16 AV       |            |
|             | 1×              |        |       |                        |               |       |       |               |             |          |                |            |
| 40          | 2               |        |       |                        |               |       |       |               |             |          |                |            |
| 30          | 2<br>X          | _      |       |                        |               |       |       |               |             |          |                |            |
| 20          |                 |        |       |                        |               | _     |       |               |             |          |                |            |
| 1000.000    | 3500.00 6       | 000.00 | 8500  | 100 11                 | 1000.00 (     | MHz)  | 100   | 00.00 1       | 8500.00     | 21000    | .00 23500.     | 00 26000.1 |
| No.         | Frequer<br>(MHz |        |       | ading<br>BuV)          | Fact<br>(dB/r |       |       | evel<br>iV/m) | Lir<br>(dBu |          | Margin<br>(dB) | Detector   |
| 1           | 4959.8          | 92     | 46    | 5.16                   | -2.3          | 8     | 43    | .78           | 74.         | 00       | -30.22         | peak       |
| 2 *         | 4960.0          | 86     | 33    | 3.10                   | -2.3          | 8     | 30    | .72           | 54.         | 00       | -23.28         | AVG        |



|          | l.             | Verti  | ical                        |                 |                   |                   |                |           |
|----------|----------------|--------|-----------------------------|-----------------|-------------------|-------------------|----------------|-----------|
| Test Mo  | ode:           | TX E   | BLE 1Mbps                   | Mode 2480       | MHz               |                   |                |           |
| Remark   | <b>K:</b>      |        | eport for the cribed limit. | emission v      | vhich more f      | han 10 dB l       | pelow the      | ;         |
| 10.0 dBu | ₩/m            |        |                             |                 |                   |                   |                |           |
| 00       |                |        |                             |                 |                   |                   |                |           |
| 0        |                |        |                             |                 |                   |                   |                |           |
|          |                |        |                             |                 | FCC Part          | 15 Class C 3M Abo | ve-16 Peak     |           |
| 0        |                |        |                             |                 |                   |                   |                |           |
| 0        |                |        |                             |                 | FCC Part          | 15 Class C 3M Abo | ve-1G AV       |           |
| 0        | 2<br>X         |        |                             |                 |                   |                   |                |           |
| 0        |                |        |                             |                 |                   |                   |                |           |
| o        | ×              |        |                             |                 |                   |                   |                |           |
| 0        |                |        |                             |                 |                   |                   |                |           |
| 0.0      | 3500.00 6      | 000.00 | 8500.00 11                  | 000.00 (MHz)    | 16000.00 1        | 8500.00 21000     | .00 23500.0    | 0 26000.0 |
| 1000.000 | Freque         |        | Reading                     | Factor          | Level             | Limit             | Margin         | Detector  |
| No.      | (MHz           |        | (dBuV)                      | (dB/m)          | (dBuV/m)          | (dBuV/m)          | (dB)           |           |
| No.      | (MHz<br>4959.4 | :)     | (dBuV)<br>33.10             | (dB/m)<br>-2.38 | (dBuV/m)<br>30.72 | (dBuV/m)<br>54.00 | (dB)<br>-23.28 | AVG       |

EN



| Ant. Po | ol.            | Hori | zontal                         |                  |                   |                   |                |          |
|---------|----------------|------|--------------------------------|------------------|-------------------|-------------------|----------------|----------|
| est M   | ode:           | TX E | BLE 2Mbps                      | Mode 2402        | MHz               |                   |                |          |
| Remarl  | k:             |      | eport for the<br>cribed limit. | e emission v     | vhich more t      | han 10 dB t       | pelow the      | !        |
| 10.0 dB | uV/m           |      |                                |                  |                   |                   |                |          |
|         |                |      |                                |                  |                   |                   |                |          |
| 00      |                |      |                                |                  |                   |                   |                |          |
| 0       |                |      |                                |                  |                   |                   |                |          |
| o       |                |      |                                |                  | FCC Parl          | 15 Class C 3M Abo | ve-16 Peak     |          |
| 0       |                |      |                                |                  |                   |                   |                |          |
| o       |                |      |                                |                  | ECC Paul          | 15 Class C 3M Abo |                |          |
| 0       |                |      |                                |                  |                   | TO CIASS C OM ADU | Ve-TO AV       |          |
| 0       | 2<br>X         |      |                                |                  |                   |                   |                |          |
| 0       | 1<br>X         |      |                                |                  |                   |                   |                |          |
|         |                |      |                                |                  |                   |                   |                |          |
| 20      |                |      |                                |                  |                   |                   |                |          |
|         |                |      |                                |                  |                   |                   |                |          |
| No.     | Freque<br>(MHz |      | Reading<br>(dBuV)              | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| 1 *     | 4803.5         | 12   | 33.15                          | -2.82            | 30.33             | 54.00             | -23.67         | AVG      |
| 2       | 4804.3         | 24   | 46.10                          | -2.82            | 43.28             | 74.00             | -30.72         | peak     |
| Remark  | (S.            |      |                                | 1                | 1                 |                   | 1              |          |

2.Margin value = Level -Limit value

EN



| Ant. Po | ol.             | Vertic | al                           |                  |                   |                    |                |             |
|---------|-----------------|--------|------------------------------|------------------|-------------------|--------------------|----------------|-------------|
| Fest M  | ode:            |        | •                            | Mode 2402        |                   |                    |                |             |
| Remar   | k:              |        | port for the<br>ribed limit. | emission v       | vhich more 1      | han 10 dB t        | pelow the      | •           |
| 10.0 dB | luV/m           |        |                              |                  |                   |                    |                |             |
| 00      |                 |        |                              |                  |                   |                    |                |             |
| 0       |                 |        |                              |                  |                   |                    |                |             |
| :0      |                 |        |                              |                  | FCC Par           | t15 Class C 3M Abo | we-16 Peak     |             |
| 'o 📃    |                 |        |                              |                  |                   |                    |                |             |
| io      |                 |        |                              |                  | ECC D             |                    | 10.47          |             |
| io —    | 2               |        |                              |                  |                   | t15 Class C 3M Abo | JVE-TO AV      |             |
| ю —     | 2<br>X          |        |                              |                  |                   |                    |                |             |
| io      |                 |        |                              |                  |                   |                    |                |             |
| 20      |                 |        |                              |                  |                   |                    |                |             |
| 0.0     | 0 3500.00 6     | 000.00 | 8500.00 11                   | 000.00 (MHz)     | 16000.00          | 8500.00 21000      | .00 23500.     | 00 26000.00 |
| No.     | Frequer<br>(MHz | -      | Reading<br>(dBuV)            | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m)  | Margin<br>(dB) | Detector    |
| 1 *     | 4803.1          | 66     | 33.09                        | -2.82            | 30.27             | 54.00              | -23.73         | AVG         |
| 2       | 4804.8          | 78     | 46.98                        | -2.82            | 44.16             | 74.00              | -29.84         | peak        |



| nt. Pol   |                | Horiz  | zontal                         |                  |                   |                   |                |           |
|-----------|----------------|--------|--------------------------------|------------------|-------------------|-------------------|----------------|-----------|
| est Mo    | de:            | TX E   | BLE 2Mbps                      | Mode 2440        | MHz               |                   |                |           |
| emark     | :              |        | eport for the<br>cribed limit. | emission v       | vhich more t      | han 10 dB b       | elow the       |           |
| IO.O dBuV | //m            |        |                                |                  |                   |                   |                |           |
|           |                |        |                                |                  |                   |                   |                |           |
|           |                |        |                                |                  |                   |                   |                |           |
| )         |                |        |                                |                  | FCC Part          | 15 Class C 3M Abo | ve-1G Peak     |           |
| )         |                |        |                                |                  |                   |                   |                |           |
| )         |                |        |                                |                  | FCC Part          | 15 Class C 3M Abo | ve-16 AV       |           |
| )         | 1<br>X         |        |                                |                  |                   |                   |                |           |
| )         | 2<br>X         |        |                                |                  |                   |                   |                |           |
|           | ×              |        |                                |                  |                   |                   |                |           |
| )         |                |        |                                |                  |                   |                   |                |           |
| 1000.000  | 3500.00 6      | 000.00 | 8500.00 11                     | 000.00 (MHz)     | 16000.00 1        | 8500.00 21000     | .00 23500.0    | 0 26000.0 |
| No.       | Freque<br>(MHz | -      | Reading<br>(dBu∀)              | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |
| 1         | 4879.6         | 32     | 46.86                          | -2.60            | 44.26             | 74.00             | -29.74         | peak      |
|           | 4880.9         |        | 33.93                          | -2.60            | 31.33             | 54.00             | -22.67         | AVG       |



| -      | Vertic                                                   | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| de:    | TX BL                                                    | E 2Mbps I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mode 2440                                                                                                                                                                                                                                                 | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| :      | No re<br>presc                                           | port for the<br>ribed limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emission v                                                                                                                                                                                                                                                | vhich more t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | han 10 dB b                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elow the                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ¥/m    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           | 500 D-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           | FLL Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 LIASS L 3M ADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ve-lu reak                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           | FCC Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 Class C 3M Abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ve-1G AV                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>X |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ×      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  | 0 26000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                        | Reading<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Factor<br>(dB/m)                                                                                                                                                                                                                                          | Level<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                   | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4879.9 | 96                                                       | 33.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.60                                                                                                                                                                                                                                                     | 31.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -22.78                                                                                                                                                                                                                                                                                                                                           | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4879.9 | 99                                                       | 47.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.60                                                                                                                                                                                                                                                     | 45.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.95                                                                                                                                                                                                                                                                                                                                           | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | :<br>//m<br>//m<br>//m<br>//m<br>//m<br>//m<br>//m<br>// | No represent present presen | No report for the prescribed limit.   V/m   X/m   X/m   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X | No report for the emission v<br>prescribed limit.   V/m   V/m   Z Image: Constraint of the emission v<br>prescribed limit.   Z Image: Constraint of the emission v<br>prescribed limit. Image: Constraint of the emission v<br>prescribed limit.   Z Image: Constraint of the e | No report for the emission which more t prescribed limit.   V/m FCC Part   V/m FCC Part   Solution FCC Part   X FCC Part   X FCC Part   X FCC Part   Solution FCC Part   X FCC Part | No report for the emission which more than 10 dB to prescribed limit.   V/m FCC Part15 Class C 3M Abor   FCC Part15 Class C 3M Abor FCC Part15 Class C 3M Abor   3500.00 6000.00 8500.00 11000.00 (MHz) 16000.00 18500.00 21000.   Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m)   4879.996 33.82 -2.60 31.22 54.00 | No report for the emission which more than 10 dB below the prescribed limit.   V/m FCC Part15 Class C 3M Above-16 Peak   V/m FCC Part15 Class C 3M Above-16 Peak FCC Part15 Class C 3M Above-16 Peak   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV   X FCC Part15 Class C 3M Above-16 AV FCC Part15 Class C 3M Above-16 AV |

EN



EN

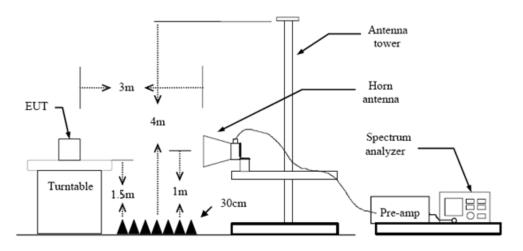
| Ant. Po   | l                        | Hori    | zonta | l             |                         |      |       |                     |              |          |                |          |           |
|-----------|--------------------------|---------|-------|---------------|-------------------------|------|-------|---------------------|--------------|----------|----------------|----------|-----------|
| lest Mo   | de:                      |         |       |               | Mode 24                 |      |       |                     |              |          |                |          |           |
| Remark    | :                        |         |       | for the       |                         | on v | vhich | more t              | han 10       | ) dB k   | pelow the      | е        |           |
| 110.0 dBu | √/m                      | 1 0.00  |       | <u></u>       |                         |      |       |                     |              |          |                |          | 1         |
| 100       |                          |         |       |               |                         |      |       |                     |              |          |                |          |           |
|           |                          |         |       |               |                         |      |       |                     |              |          |                |          |           |
| 0         |                          |         |       |               |                         | +    |       |                     |              |          |                |          |           |
| 0         |                          |         |       |               |                         |      |       | FCC Par             | 15 Class     | C 3M Abo | ove-16 Peak    |          |           |
| '0        |                          |         |       |               |                         | _    |       |                     |              |          |                |          |           |
| io        |                          |         |       |               |                         |      |       |                     |              |          |                |          |           |
| ;0        |                          |         |       |               |                         |      |       | FCC Par             | 15 Class     | С ЗМ АЬ  | ove-1G AV      |          |           |
| 10        | 2<br>X                   |         |       |               |                         |      |       |                     |              |          |                |          |           |
|           | 1                        |         |       |               |                         |      |       |                     |              |          |                |          |           |
| 30        | <b>^</b>                 |         |       |               |                         |      |       |                     |              |          |                |          |           |
| 20        |                          |         |       |               |                         | -    |       |                     | _            |          |                |          |           |
| 1000.000  | 3500.00 (                | 5000.00 | 8500. | .00 11        | 000.00 (N               | (Hz) | 160   | 00.00 1             | 8500.00      | 21000    | .00 23500      | 0.00 260 | <br>100.1 |
| 1000.000  | 3500.00                  | 6000.00 | 8500. | 00 11         | 000.00 (N               | (Hz) | 160   | 00.00 1             | 8500.00      | 21000    | 1.00 23500     | 0.00 260 | 00        |
| No.       | Freque<br>(MHz           |         |       | ading<br>3uV) | Facto<br>(dB/m          |      |       | vel<br>IV/m)        | Lin<br>(dBu) |          | Margin<br>(dB) | Detec    | tor       |
| No.       | Freque<br>(MHz<br>4959.6 | :)      | (dB   | ading<br>BuV) | Facto<br>(dB/m<br>-2.38 | ר)   | (dBu  | vel<br>iV/m)<br>.56 |              | √/m)     |                | Delec    |           |



| Ant. Pol  | •              | Vert   | ical              |                  |                   |                   |                |           |
|-----------|----------------|--------|-------------------|------------------|-------------------|-------------------|----------------|-----------|
| est Mo    | de:            |        |                   | Mode 2480        |                   |                   |                |           |
| Remark    | :              |        | eport for th      | e emission v     | vhich more t      | han 10 dB b       | elow the       | •         |
| 10.0 dBu\ | //m            |        |                   |                  |                   |                   |                |           |
| 00        |                |        |                   |                  |                   |                   |                |           |
| 0         |                |        |                   |                  |                   |                   |                |           |
| o         |                |        |                   |                  |                   | 15 Class C 3M Abo | 10.0.1         |           |
| 0         |                |        |                   |                  | FLC Part          | TO Class C 3M ADO | ve-tu reak     |           |
| 0         |                |        |                   |                  | FCC Part          | 15 Class C 3M Abo | ve-16 AV       |           |
| 0         | 2              |        |                   |                  |                   |                   |                |           |
| 0         | ^              |        |                   |                  |                   |                   |                |           |
| 0         | X              |        |                   |                  |                   |                   |                |           |
| 0         |                |        |                   |                  |                   |                   |                |           |
| 0.0       | 3500.00 6      | 000.00 | 8500.00 1         | 1000.00 (MHz)    | 16000.00 1        | 8500.00 21000.    | 00 23500.0     | 0 26000.0 |
| No.       | Freque<br>(MHz |        | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |
| 1 *       | 4959.2         | 214    | 32.99             | -2.38            | 30.61             | 54.00             | -23.39         | AVG       |
|           | 4960.5         |        | 46.01             | -2.38            | 43.63             | 74.00             | -30.37         | peak      |

EN




## 3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

#### FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

| Restricted Frequency Band | (dBuV/m | n)(at 3m) |
|---------------------------|---------|-----------|
| (MHz)                     | Peak    | Average   |
| 2310 ~ 2390               | 74      | 54        |
| 2483.5 ~ 2500             | 74      | 54        |

#### **Test Configuration**



#### Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

#### Test Mode

Please refer to the clause 2.4.



#### Test Results

| Ant. Po    | ol.                   | Hori         | izontal           |                  |                   |                   |                |                  |
|------------|-----------------------|--------------|-------------------|------------------|-------------------|-------------------|----------------|------------------|
| Test M     |                       | BLE          | 1Mbps Mo          | de 2402MH        | Z                 |                   |                |                  |
| 110.0 dB   | uV/m                  |              |                   |                  |                   |                   |                |                  |
| 100        |                       |              |                   |                  |                   |                   |                | - 1              |
| 90         |                       |              |                   |                  |                   |                   |                |                  |
| 30         |                       |              |                   |                  |                   | FCC Part15 C      | - Above 1G PK  |                  |
| 70         |                       |              |                   |                  |                   |                   |                |                  |
| 60         |                       |              |                   |                  |                   |                   | 1<br>X         | -++1             |
| 50         |                       |              |                   |                  |                   | FCC Part15 C      | - Above 1G AV  | <u> </u>         |
| 40         |                       |              |                   |                  |                   |                   |                |                  |
|            |                       |              |                   |                  |                   |                   | 3              | V .              |
| 20         | and the second second | ~~~          | with              | $\sim$           |                   |                   | ~ ~            |                  |
| 10.0       | 0 2315.00             | 2325.00      | 2335.00 23        | 45.00 (MHz)      | 2365.00 2         | 2375.00 2385.     | 00 2395.0      | 0 2405.00        |
|            |                       |              |                   |                  |                   |                   |                |                  |
| [          |                       |              | 1                 |                  |                   |                   |                |                  |
| No.        |                       | uency<br>Hz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector         |
| No.<br>1 * | (M                    |              |                   |                  |                   |                   |                | Detector<br>peak |

Remarks:

EN



| Ant. Po   |                       | Verti                                   | ical                                                                                                            |                  |                   |                   |                   |           |
|-----------|-----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------|-------------------|-----------|
| lest Mo   | de:                   | BLE                                     | 1Mbps Mod                                                                                                       | de 2402MHz       | Z                 |                   |                   |           |
| 110.0 dBu | V/m                   |                                         |                                                                                                                 |                  |                   |                   |                   |           |
| 100       |                       |                                         |                                                                                                                 |                  |                   |                   |                   |           |
| 90        |                       |                                         |                                                                                                                 |                  |                   |                   |                   | -         |
| 80        |                       |                                         |                                                                                                                 |                  |                   | FCC Part15 C      | - Above 1G P      | ĸ         |
| 70        |                       |                                         |                                                                                                                 |                  |                   |                   |                   |           |
| 60        |                       |                                         |                                                                                                                 |                  |                   | FCC Part15 C      | 1<br>- Above 16 A | v         |
| 50        |                       |                                         |                                                                                                                 |                  |                   |                   |                   |           |
| 40        |                       |                                         |                                                                                                                 |                  |                   |                   | 3 month of        | V V       |
| 30        | and the second second | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | and a second and the second | mon              | m                 | m                 | un Marth must     |           |
| 20        |                       |                                         |                                                                                                                 |                  |                   |                   |                   |           |
| 2305.500  | 2315.50 2             | 2325.50                                 | 2335.50 23                                                                                                      | 145.50 (MHz)     | 2365.50           | 2375.50 2385.     | <u>50 2395.</u>   | 50 2405.5 |
| No.       | Frequer<br>(MHz       | -                                       | Reading<br>(dBuV)                                                                                               | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)    | Detector  |
| 1 *       | 2390.0                | 00                                      | <mark>61.10</mark>                                                                                              | -4.13            | 56.97             | 74.00             | -17.03            | peak      |
| 2         | 2390.0                | 00                                      | 34.71                                                                                                           | -4.13            | 30.58             | 54.00             | -23.42            | AVG       |
|           |                       |                                         |                                                                                                                 |                  |                   |                   |                   |           |
|           | (dB/m) =              |                                         | na Factor (c<br>Limit value                                                                                     | IB/m)+Cabl       | e Factor (dB      | )-Pre-ampli       | fier Facto        | Dr        |



|            | . Po               | l.                        | Hor     | izontal                    |                           |                   |                            |                |                  |
|------------|--------------------|---------------------------|---------|----------------------------|---------------------------|-------------------|----------------------------|----------------|------------------|
| es         | t Mo               | de:                       | BLE     | 1Mbps Mo                   | de 2480 MF                | łz                |                            |                |                  |
| 10.0       | ) dBu              | W/m                       |         |                            |                           |                   |                            |                |                  |
| 100        | Λ                  |                           |         |                            |                           |                   |                            |                |                  |
| 0          | $\uparrow\uparrow$ |                           |         |                            |                           |                   |                            |                |                  |
| Ű,         |                    |                           |         |                            |                           |                   | FCC Part15 C               | - Above 1G P   | К                |
| <i>'</i> 0 | $\uparrow\uparrow$ | ×                         |         |                            |                           |                   |                            |                |                  |
| 0          |                    |                           |         |                            |                           |                   | FCC Part15 C               | - Above 1G A   | v                |
| i0         | П                  | 2                         |         |                            |                           |                   |                            |                |                  |
| i0         |                    | 2                         |         | nn                         | hanne                     | mun               | Mummun                     | wwwwww         | northurson       |
| 0          |                    |                           |         |                            |                           |                   |                            |                |                  |
| 0.0<br>24  | 77.000             | 2487.00                   | 2497.00 | 2507.00 2                  | 517.00 (MHz)              | 2537.00           | 2547.00 2557               | .00 2567.      | 00 2577.1        |
|            |                    |                           |         |                            |                           |                   |                            | I              |                  |
| N          | o.                 | Frequer<br>(MHz           |         | Reading<br>(dBuV)          | Factor<br>(dB/m)          | Level<br>(dBuV/m) | Limit<br>(dBuV/m)          | Margin<br>(dB) | Detector         |
| N<br>1     |                    | Frequer<br>(MHz<br>2483.5 | )       | Reading<br>(dBuV)<br>70.91 | Factor<br>(dB/m)<br>-3.67 |                   | Limit<br>(dBuV/m)<br>74.00 |                | Detector<br>peak |



EN

| Ant. Pol.        |             |               | Vert    | Vertical                |      |        |       |      |       |         |          |            |                   |        |
|------------------|-------------|---------------|---------|-------------------------|------|--------|-------|------|-------|---------|----------|------------|-------------------|--------|
| Test Mode:       |             |               | BLE     | BLE 1Mbps Mode 2480 MHz |      |        |       |      |       |         |          |            |                   |        |
| 110.0            | ) dBu       | V/m           |         |                         |      |        |       |      |       |         |          |            |                   |        |
| 100<br>90        | Λ           |               |         |                         |      |        |       |      |       |         |          |            |                   | _      |
| 80               |             |               |         |                         |      |        |       |      |       | FCC     | Part15 C | - Above 1G | РК                |        |
| 70<br>60         |             | ×             |         |                         |      |        |       |      |       |         |          |            |                   |        |
| 50               |             | 2             |         |                         |      |        |       |      |       | FCC     | Part15 C | - Above 1G | AV                |        |
| 40<br>30         |             | $\lambda \mu$ | Lam     | Name                    | vw   | n.m    | w     | www. | mrit  | And     | h        | www        | han               | ~~     |
| 20<br>10.0<br>24 | \$77.000    | 2487.00       | 2497.00 | 2507.00                 | ) 25 | i17.00 | (MHz) | 253  | 7.00  | 2547.00 | 2557     | .00 256    | 7.00              | 2577.0 |
|                  | <b>1</b> 0. | Frequ         |         | Read                    |      | Fac    |       |      | vel   | Lir     |          | Margi      | n <sub>Dete</sub> | ector  |
|                  | <b>1</b> 0. | (Mł           | Hz)     | (dBu                    | ıV)  | (dB/ı  | m)    | (dBu | ıV/m) | (dBu    | V/m)     | (dB)       |                   |        |
| 1                | 1 *         | 2483          | .500    | 69.7                    | 75   | -3.6   | 7     | 66   | .08   | 74      | .00      | -7.92      | pe                | ak     |
|                  | 2           | 2483          | .500    | 43.1                    | 10   | -3.6   | 7     | 39   | .43   | 54      | .00      | -14.57     | 7 A\              | /G     |
| Ren              | narks       | <u>.</u>      |         |                         |      |        |       |      |       |         |          |            |                   |        |



|          |                | Horizontal             |                   |                  |                   |                   |                |                  |  |  |  |  |  |
|----------|----------------|------------------------|-------------------|------------------|-------------------|-------------------|----------------|------------------|--|--|--|--|--|
| lest Mo  | de:            | BLE 2Mbps Mode 2402MHz |                   |                  |                   |                   |                |                  |  |  |  |  |  |
| 10.0 dBu | //m            |                        | 1                 |                  | Î                 |                   |                |                  |  |  |  |  |  |
| 00       |                |                        |                   |                  |                   |                   |                |                  |  |  |  |  |  |
|          |                |                        |                   |                  |                   |                   |                | -                |  |  |  |  |  |
| :0       |                |                        |                   |                  |                   | FCC Part15 C      | - Above 1G Pl  | ĸ                |  |  |  |  |  |
| ro 📃 🗌   |                |                        |                   |                  |                   |                   | 1<br>X         |                  |  |  |  |  |  |
| 60       |                |                        |                   |                  |                   | FCC Part15 C      |                | AV               |  |  |  |  |  |
| 10       |                |                        |                   |                  |                   |                   |                |                  |  |  |  |  |  |
| 10       | ~~~~           | war                    | ~~~~              | $\sim$           | $\sim$            | $\sim$            | ŴV             |                  |  |  |  |  |  |
| 0.0      | 2315.00        | 2325.00                | 2335.00 2         | 345.00 (MHz)     | 2365.00           | 2375.00 2385      | .00 2395.0     | 00 2405.         |  |  |  |  |  |
|          |                |                        |                   |                  |                   |                   |                |                  |  |  |  |  |  |
| No.      | Freque<br>(MHz |                        | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector         |  |  |  |  |  |
| No.      |                | 2)                     |                   |                  |                   |                   |                | Detector<br>peak |  |  |  |  |  |

EN



EN

| Ant. Pol. |                | Vertical               |                             |                  |                   |                   |                                 |           |  |  |  |
|-----------|----------------|------------------------|-----------------------------|------------------|-------------------|-------------------|---------------------------------|-----------|--|--|--|
| Test Mo   | de:            | BLE 2Mbps Mode 2402MHz |                             |                  |                   |                   |                                 |           |  |  |  |
| 110.0 dBu | ∀/m            |                        |                             |                  |                   |                   |                                 |           |  |  |  |
| 100       |                |                        |                             |                  |                   |                   |                                 |           |  |  |  |
| 90        |                |                        |                             |                  |                   |                   |                                 | -         |  |  |  |
| 80        |                |                        |                             |                  |                   | FCC Part15 C      | - Above 1G Pl                   | ĸ         |  |  |  |
| 70        |                |                        |                             |                  |                   |                   |                                 |           |  |  |  |
| 60        |                |                        |                             |                  |                   | FCC Part15 C      | 1<br>- Al <sup>g</sup> ove 1G A | -         |  |  |  |
| 40        |                |                        |                             |                  |                   |                   |                                 |           |  |  |  |
| 30        | - 41 - 20 - 20 | and the second second  |                             | M. A.M.M.M.M.    | unin              | han               | 3 M                             |           |  |  |  |
| 20        |                |                        |                             |                  |                   |                   |                                 |           |  |  |  |
| 2305.500  | 2315.50 2      | 325.50                 | 2335.50 23                  | 45.50 (MHz)      | 2365.50           | 2375.50 2385.     | 50 2395.5                       | 50 2405.5 |  |  |  |
| No.       | Freque<br>(MHz |                        | Reading<br>(dBuV)           | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)                  | Detector  |  |  |  |
| 1 *       | 2390.000       |                        | 60.61                       | -4.13            | 56.48             | 74.00             | -17.52                          | peak      |  |  |  |
| 2         | 2390.0         | 00                     | 37.28                       | -4.13            | 33.15             | 54.00             | -20.85                          | AVG       |  |  |  |
|           |                |                        |                             |                  |                   |                   |                                 |           |  |  |  |
|           | (dB/m) =       |                        | na Factor (c<br>Limit value | IB/m)+Cable      | e Factor (dB      | )-Pre-amplif      | fier Facto                      | or        |  |  |  |



| Ant    | t. Po       | ol.       | Hori    | zontal     |             |           |              |              |                  |
|--------|-------------|-----------|---------|------------|-------------|-----------|--------------|--------------|------------------|
| es     | st M        | ode:      | BLE     | 2Mbps Mod  | de 2480 M⊦  | łz        |              |              |                  |
| 10.0   | ) dB        | u¥/m      |         |            |             |           |              |              |                  |
| 00     | Λ           |           |         |            |             |           |              |              |                  |
| 0      | +           |           |         |            |             |           |              |              |                  |
| 0      |             |           |         |            |             |           | FCC Part15 C | - Above 1G P | ĸ                |
| o      | 1           | 1<br>X    |         |            |             |           |              |              |                  |
| 0      |             |           |         |            |             |           | FCC Part15 C | - Above 1G A | v                |
| 0<br>0 | J           | × A       |         |            |             |           |              |              |                  |
| 0      |             | - V ( )   | A       | m          | m           | white the | When been    | mannen       | hermothernethern |
| 0      |             |           |         |            |             |           |              |              |                  |
| 0.0    | 76.00       | 0 2486.00 | 2496.00 | 2506.00 25 | 16.00 (MHz) | 2536.00   | 2546.00 2556 | .00 2566.    | 00 2576.         |
|        | <b>I</b> o. | Freque    |         | Reading    | Factor      | Level     | Limit        | Margin       | Detector         |
|        | NO.         | (MH:      |         | (dBuV)     | (dB/m)      |           | (dBuV/m)     | (dB)         | Delector         |
| 1      | 1 *         | 2483.5    | 500     | 71.67      | -3.67       | 68.00     | 74.00        | -6.00        | peak             |
|        | 2           | 2483.5    | 500     | 49.43      | -3.67       | 45.76     | 54.00        | -8.24        | AVG              |
|        |             |           |         |            |             |           |              |              |                  |

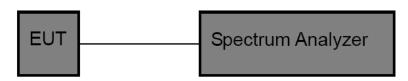
#### Remarks:

EN.

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value



| Ant        | . Po   | I.     |                | Vert   | ical   |             |      |                |          |       |               |                   |           |              |      |          |
|------------|--------|--------|----------------|--------|--------|-------------|------|----------------|----------|-------|---------------|-------------------|-----------|--------------|------|----------|
| Tes        | t Mo   | de     | :              | BLE    | 2M     | bps N       | /lod | le 2480        | MH       | lz    |               |                   |           |              |      |          |
| 110.0      | dBu\   | //m    |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
|            |        |        |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
| 100        |        |        |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
| 90         | -A-    |        |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
| 30         | =      |        |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
|            |        |        |                |        |        |             |      |                |          |       |               | FCC P             | art15 C - | Above 1G     | PK   |          |
| 70         | +      | 1      |                | _      |        |             |      |                |          |       |               |                   |           |              |      |          |
| :0         |        | 1<br>X |                | _      |        |             |      |                |          |       |               |                   |           |              |      |          |
|            |        |        |                | _      |        |             |      |                |          |       |               | FCC P             | art15 C - | Above 16     | AV   |          |
| 50         |        | 2      |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
| 10         | )      | R      |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |
| 80         |        | _/     | ΛΛ             | 4 -    |        |             |      |                |          |       |               |                   |           |              |      |          |
|            |        |        |                |        | work   | m           | y.wh | and the main   | www      | mound | Marine        | -der ser swederer | hornor    | hannen       | -    | www      |
| 20         |        |        |                | _      |        |             |      |                |          |       |               |                   |           |              |      |          |
| 10.0<br>24 | 76.000 | 248    | 6.00 2         | 496.00 | 250    | 6.00        | 251  | 6.00 (M        | Hz)      | 253   | 6.00 2        | 546.00            | 2556.0    | 0 256        | 6.00 | 2576.00  |
| N          | lo.    | F      | requer<br>(MHz |        |        | adin<br>BuV | -    | Facto<br>(dB/m |          | 1     | evel<br>ıV/m) | Lin<br>(dBu)      |           | Marg<br>(dB) |      | Detector |
| 1          | *      |        | 2483.5         |        | ,<br>e | 7.10        | -    | -3.67          | <u> </u> |       | .43           | 74.               |           | -10.5        | 7    | neek     |
|            |        |        |                |        |        |             |      |                |          |       |               |                   |           |              |      | peak     |
|            | 2      | 4      | 2483.5         | 00     | 4      | 4.47        |      | -3.67          |          | 40    | .80           | 54.               | 00        | -13.2        | 0    | AVG      |
|            | nark   |        |                |        |        |             |      |                |          |       |               |                   |           |              |      |          |




# 3.4. Band edge and Spurious Emissions (Conducted)

## <u>Limit</u>

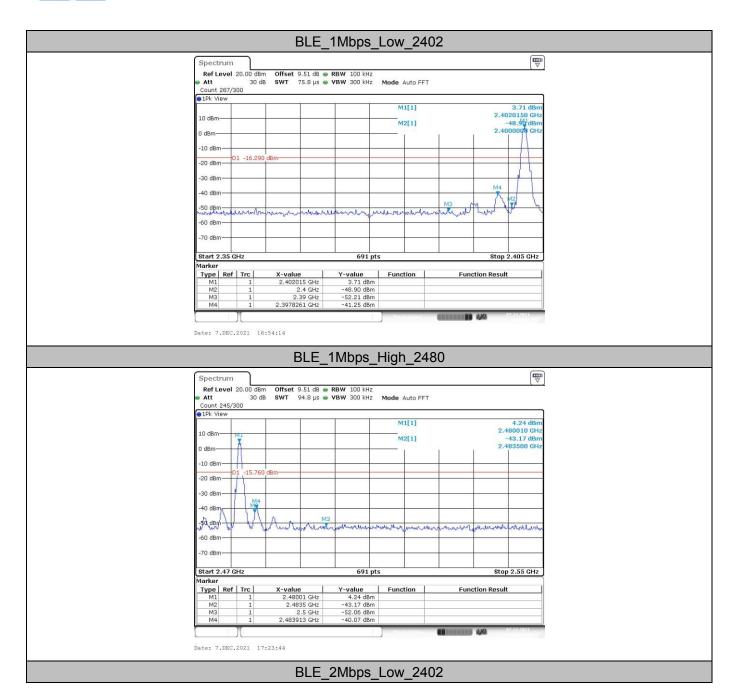
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### Test Configuration

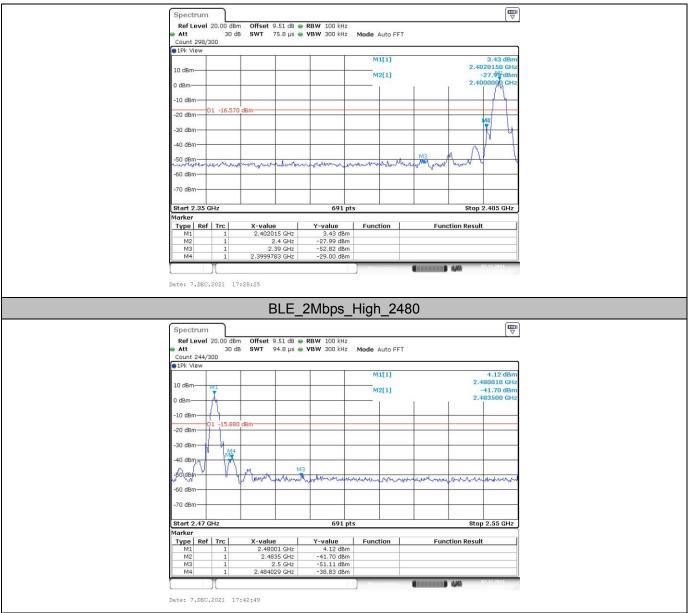


#### Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10<sup>th</sup> harmonic.
- Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


#### Test Mode

Please refer to the clause 2.4.

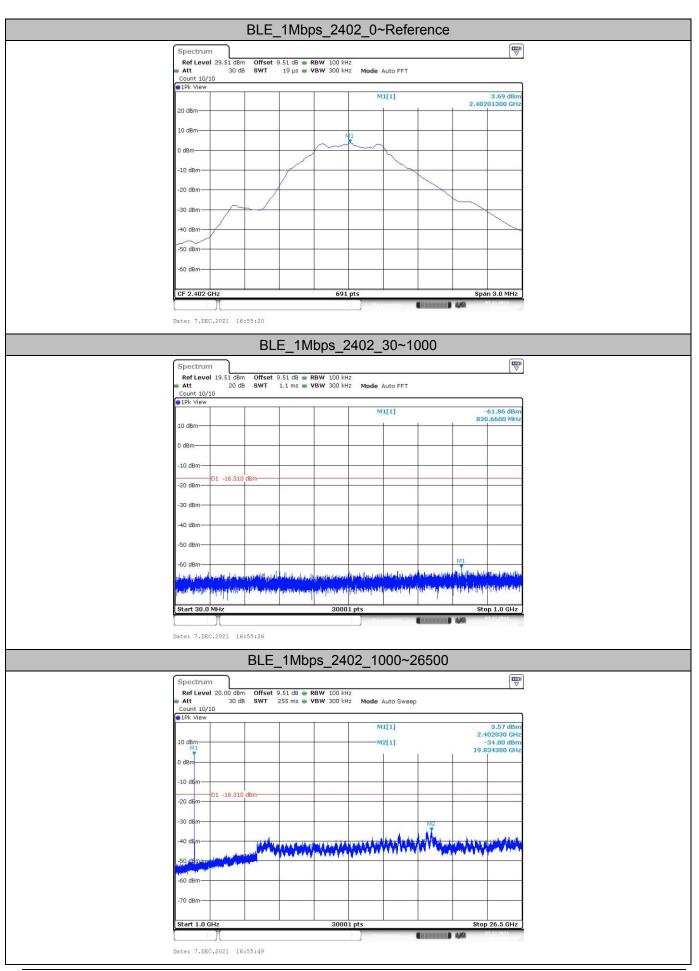

#### Test Results

#### (1) Band edge Conducted Test

| Test Mode | Frequency[MHz] | Ref Level[dBm] | Result[dBm] | Limit[dBm] | Verdict |
|-----------|----------------|----------------|-------------|------------|---------|
|           | 2402           | 3.71           | -41.25      | ≤-16.29    | PASS    |
| BLE 1Mbps | 2480           | 4.24           | -40.07      | ≤-15.76    | PASS    |
|           | 2402           | 3.43           | -29.00      | ≤-16.57    | PASS    |
| BLE 2Mbps | 2480           | 4.12           | -38.83      | ≤-15.88    | PASS    |



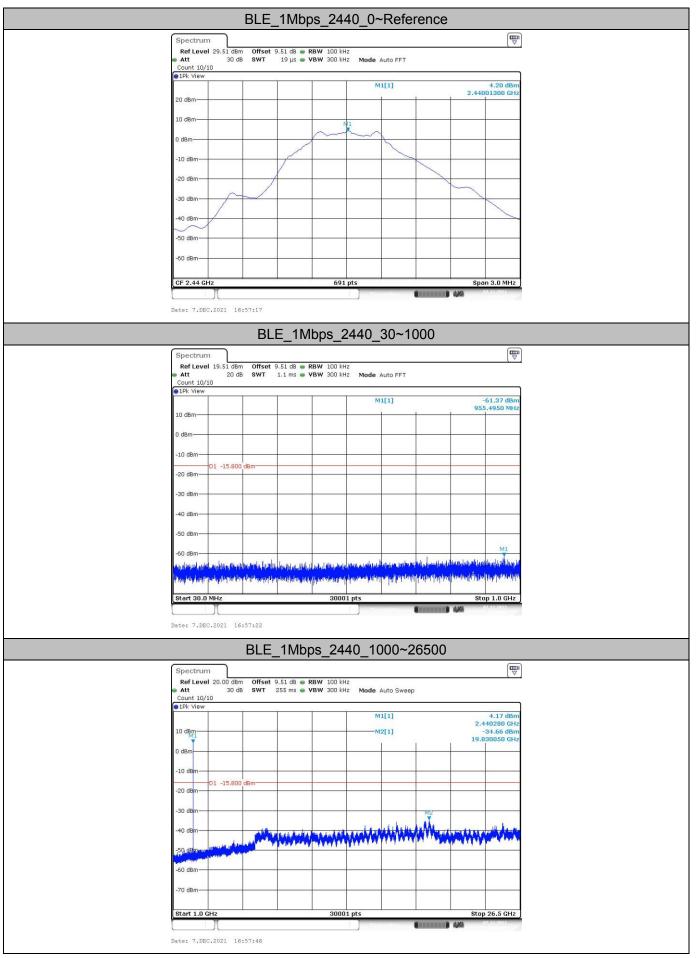






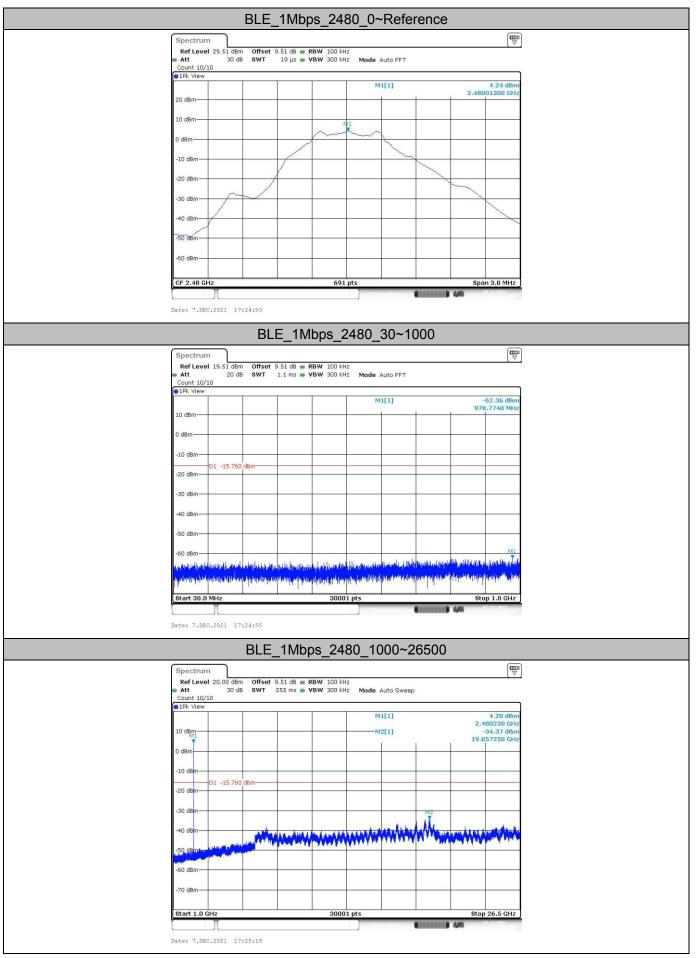

(2) Conducted Spurious Emissions Test

| Test Mode | Frequency<br>[MHz] | Freq Range<br>[MHz] | Ref Level<br>[dBm] | Result[dBm] | Limit[dBm] | Verdict |
|-----------|--------------------|---------------------|--------------------|-------------|------------|---------|
|           |                    | Reference           | 3.69               | 3.69        |            | PASS    |
|           | 2402               | 30~1000             | 3.69               | -61.86      | ≤-16.31    | PASS    |
|           |                    | 1000~26500          | 3.69               | -34.80      | ≤-16.31    | PASS    |
|           |                    | Reference           | 4.20               | 4.20        |            | PASS    |
| BLE 1Mbps | 2440               | 30~1000             | 4.20               | -61.37      | ≤-15.8     | PASS    |
|           |                    | 1000~26500          | 4.20               | -34.66      | ≤-15.8     | PASS    |
|           | 2480               | Reference           | 4.24               | 4.24        |            | PASS    |
|           |                    | 30~1000             | 4.24               | -62.36      | ≤-15.76    | PASS    |
|           |                    | 1000~26500          | 4.24               | -34.37      | ≤-15.76    | PASS    |
|           | 2402               | Reference           | 3.45               | 3.45        |            | PASS    |
|           |                    | 30~1000             | 3.45               | -62.27      | ≤-16.55    | PASS    |
|           |                    | 1000~26500          | 3.45               | -34.20      | ≤-16.55    | PASS    |
|           |                    | Reference           | 4.05               | 4.05        |            | PASS    |
| BLE 2Mbps | 2440               | 30~1000             | 4.05               | -60.72      | ≤-15.95    | PASS    |
|           |                    | 1000~26500          | 4.05               | -34.04      | ≤-15.95    | PASS    |
|           |                    | Reference           | 4.14               | 4.14        |            | PASS    |
|           | 2480               | 30~1000             | 4.14               | -62.17      | ≤-15.86    | PASS    |
|           |                    | 1000~26500          | 4.14               | -34.03      | ≤-15.86    | PASS    |



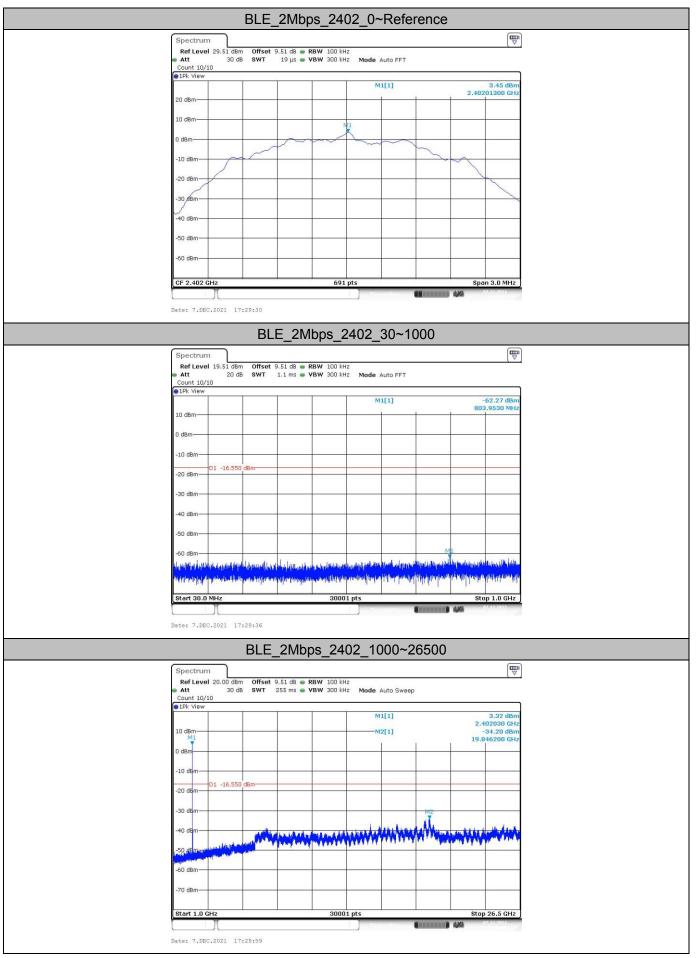






1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

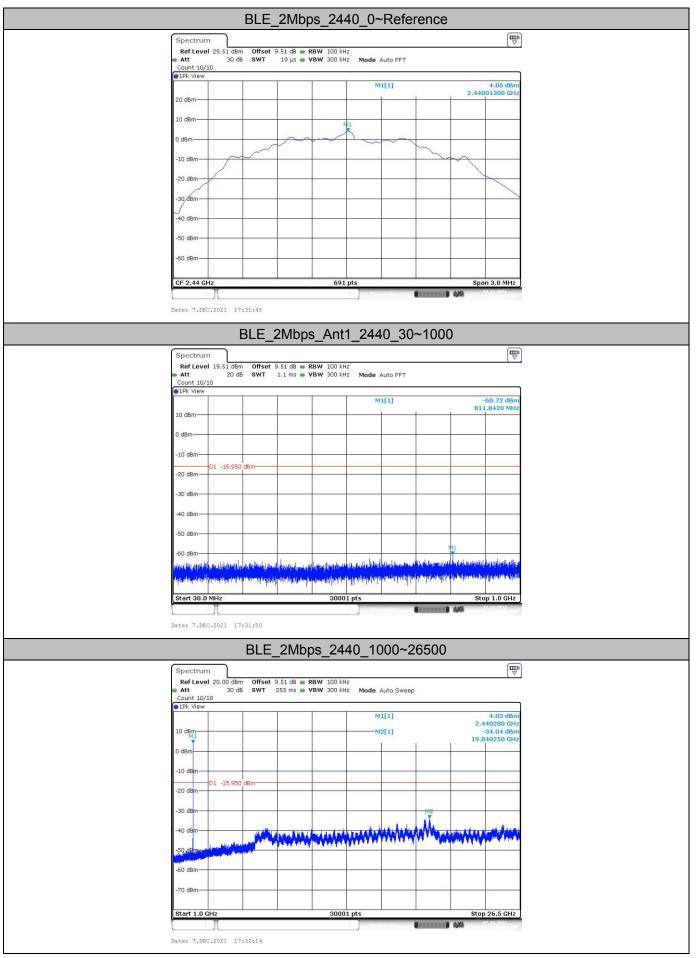




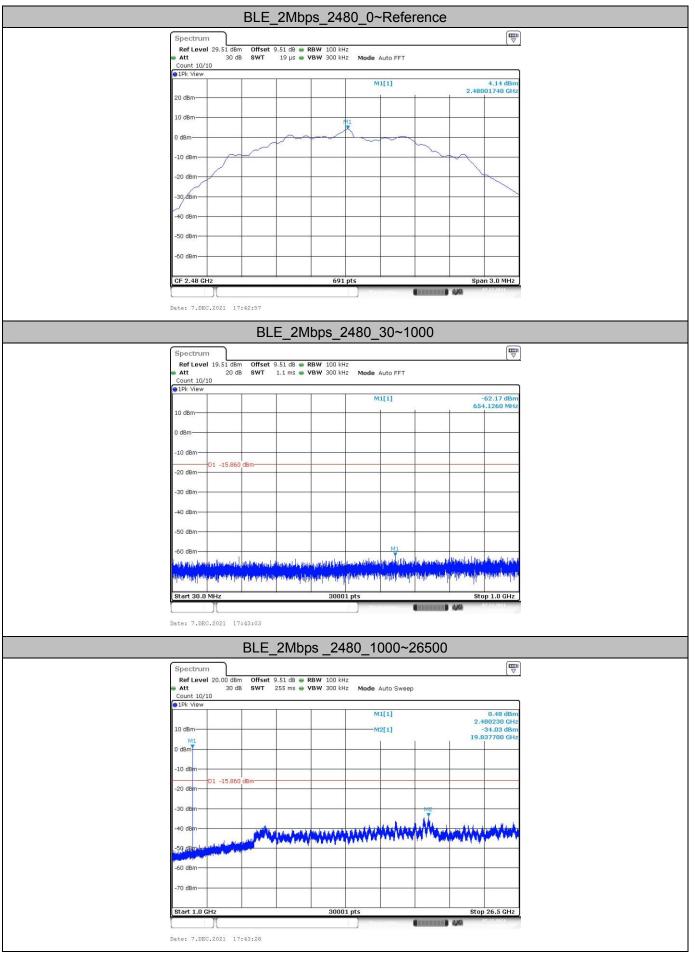












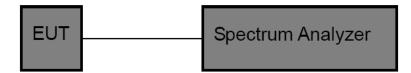












# 3.5. DTS Bandwidth

<u>Limit</u>

## FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

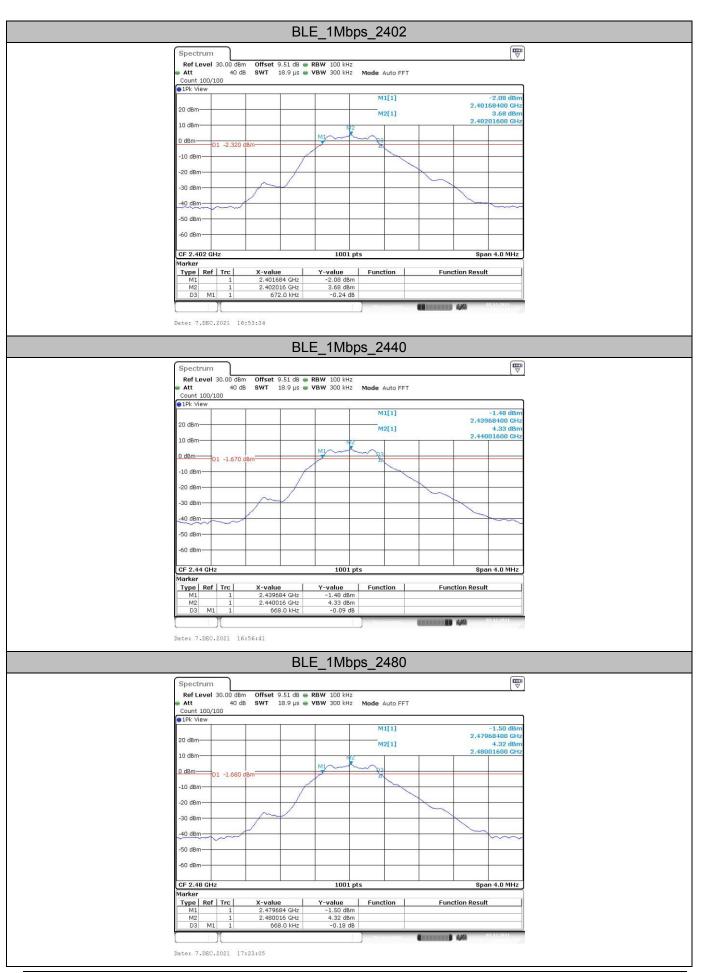
| Test Item     | Limit                        | Frequency Range(MHz) |
|---------------|------------------------------|----------------------|
| DTS Bandwidth | >=500 KHz<br>(6dB bandwidth) | 2400~2483.5          |

## Test Configuration



#### Test Procedure

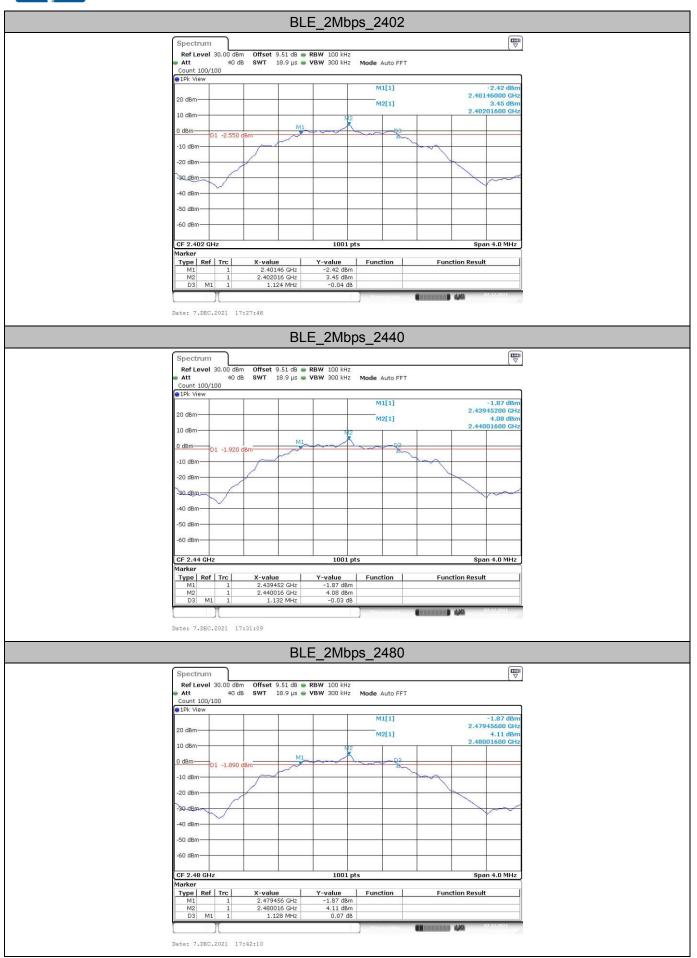
- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
  - (1) Set RBW = 100 kHz.
  - (2) Set the video bandwidth (VBW)  $\geq$  3 RBW.
  - (3) Detector = Peak.
  - (4) Trace mode = Max hold.
  - (5) Sweep = Auto couple.
  - OCB Spectrum Setting:
  - (1) Set RBW =  $1\% \sim 5\%$  occupied bandwidth.
  - (2) Set the video bandwidth (VBW)  $\geq$  3 RBW.
  - (3) Detector = Peak.
  - (4) Trace mode = Max hold.
  - (5) Sweep = Auto couple.


#### Test Mode

Please refer to the clause 2.4.

## Test Results

| Test Mode | Frequency[MHz] | DTS BW[MHz] | Limit[MHz] | Verdict |
|-----------|----------------|-------------|------------|---------|
|           | 2402           | 0.672       | >=0.5      | PASS    |
| BLE 1Mbps | 2440           | 0.668       | >=0.5      | PASS    |
|           | 2480           | 0.668       | >=0.5      | PASS    |
|           | 2402           | 1.124       | >=0.5      | PASS    |
| BLE 2Mbps | 2440           | 1.132       | >=0.5      | PASS    |
|           | 2480           | 1.128       | >=0.5      | PASS    |







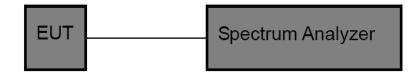

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn










# 3.6. Peak Output Power

## <u>Limit</u>

## FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4 d:

| Section                 | Test Item                         | Limit           | Frequency Range(MHz) |
|-------------------------|-----------------------------------|-----------------|----------------------|
| CFR 47 FCC 15.247(b)(3) | Maximum conducted<br>output power | 1 Watt or 30dBm | 2400~2483.5          |
| ISED RSS-247 5.4 d      | EIRP                              | 4 Watt or 36dBm | 2400~2483.5          |

## Test Configuration



#### Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. Spectrum Setting:

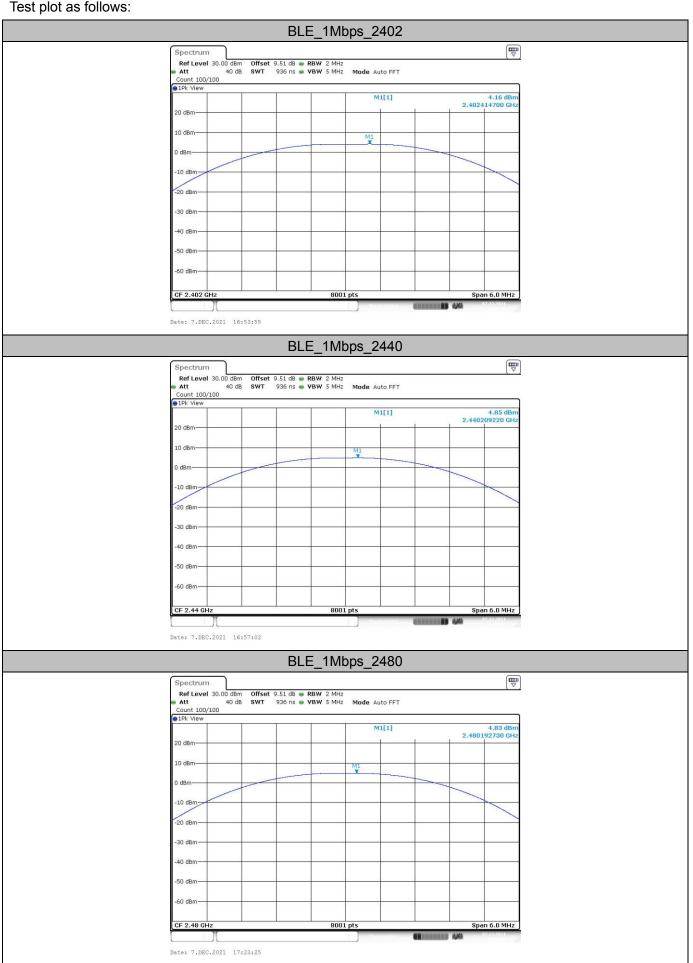
Peak Detector: RBW≥DTS Bandwidth, VBW≥3\*RBW.

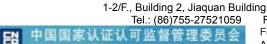
Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

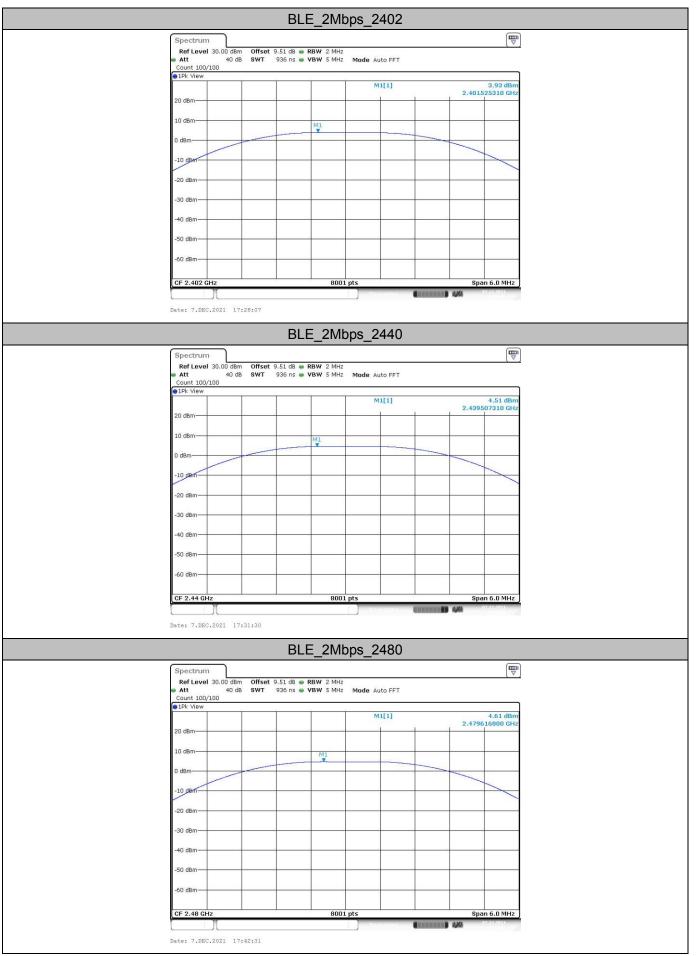
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

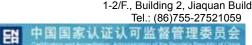

## Test Mode


Please refer to the clause 2.4.

## Test Result

| Test Mode | Frequency[MHz] | Result[dBm] | Limit[dBm] | Verdict |
|-----------|----------------|-------------|------------|---------|
|           | 2402           | 4.16        | <=30       | PASS    |
| BLE 1Mbps | 2440           | 4.85        | <=30       | PASS    |
|           | 2480           | 4.83        | <=30       | PASS    |
|           | 2402           | 3.93        | <=30       | PASS    |
| BLE 2Mbps | 2440           | 4.51        | <=30       | PASS    |
|           | 2480           | 4.61        | <=30       | PASS    |





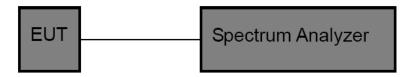

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn










# 3.7. Power Spectral Density

## <u>Limit</u>

## FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

| Test Item              | Limit              | Frequency Range(MHz) |
|------------------------|--------------------|----------------------|
| Power Spectral Density | 8dBm(in any 3 kHz) | 2400~2483.5          |

## Test Configuration



#### Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

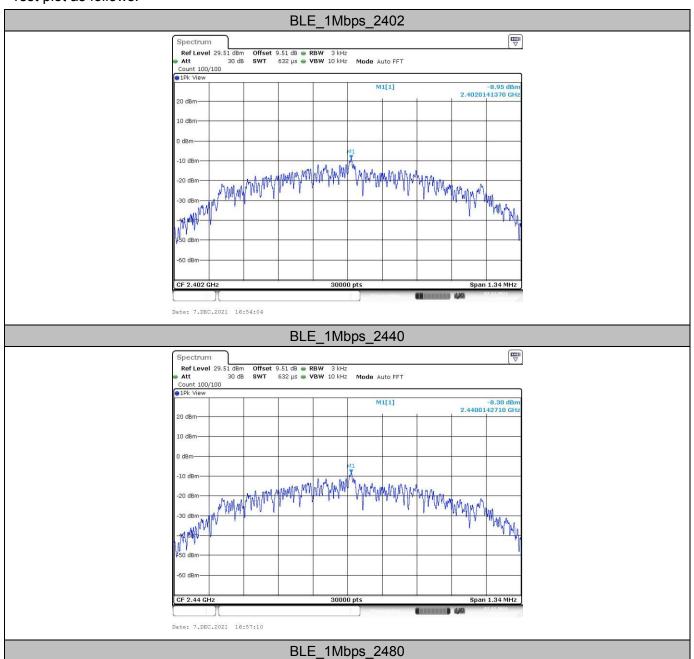
Set the VBW to: 10 kHz

Detector: peak

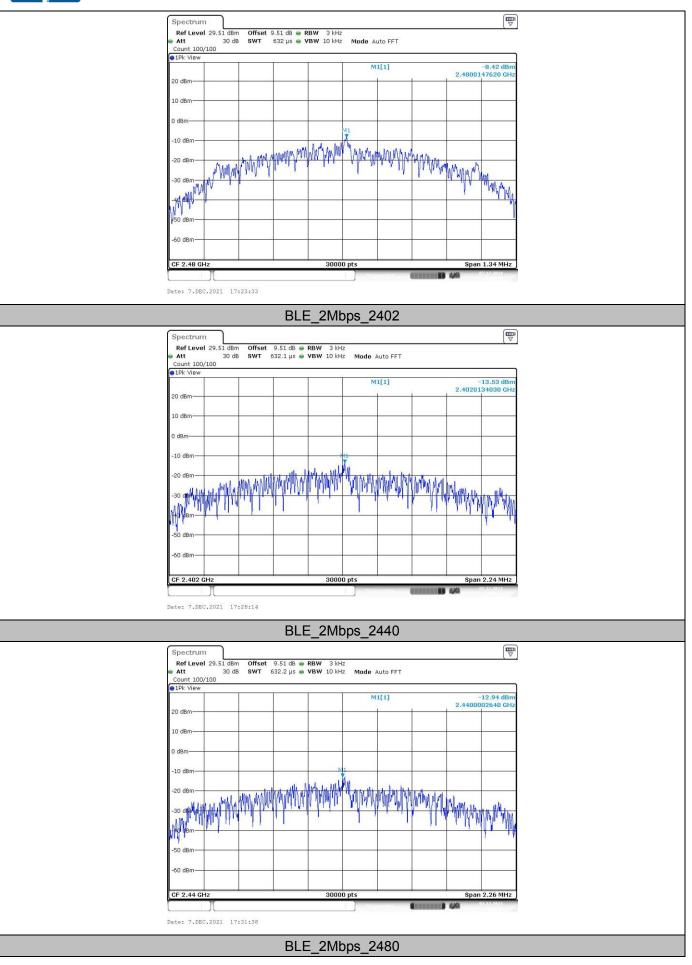
Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

## Test Mode


Please refer to the clause 2.4.

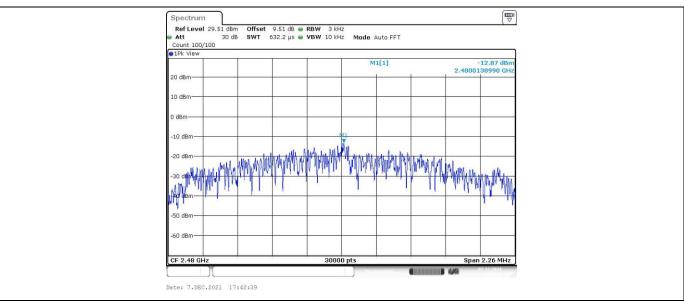
#### Test Result


| Test Mode | Frequency[MHz] | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|-----------|----------------|------------------|-----------------|---------|
|           | 2402           | -8.95            | <=8             | PASS    |
| BLE 1Mbps | 2440           | -8.30            | <=8             | PASS    |
|           | 2480           | -8.42            | <=8             | PASS    |
|           | 2402           | -13.53           | <=8             | PASS    |
| BLE 2Mbps | 2440           | -12.94           | <=8             | PASS    |
|           | 2480           | -12.87           | <=8             | PASS    |



EN





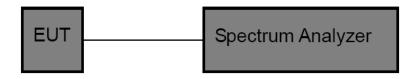







EN






## 3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

### Test Configuration

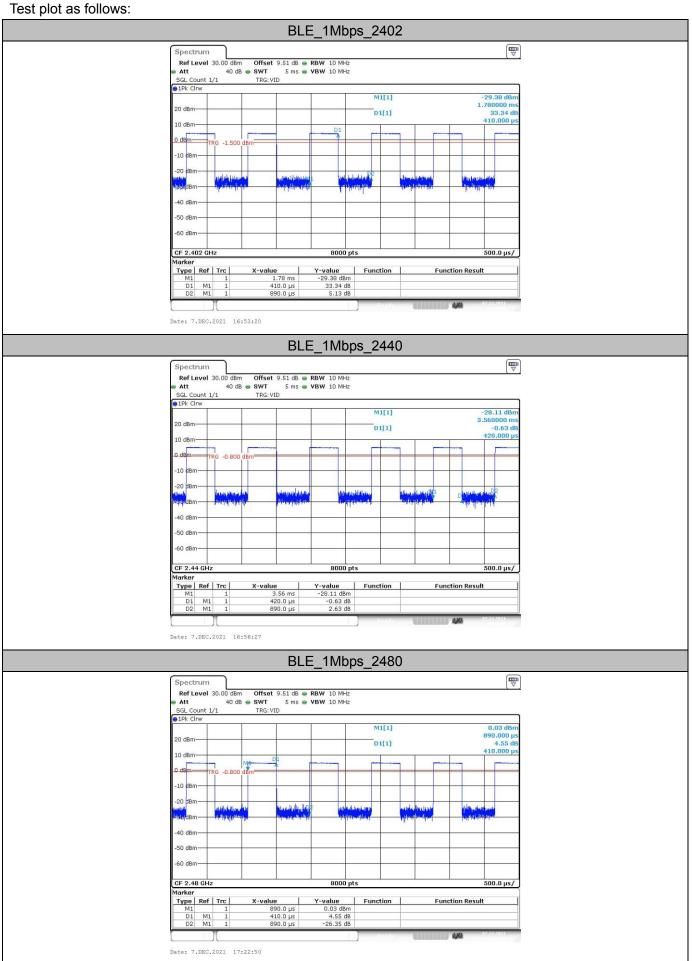


#### Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting: Set analyzer center frequency to test channel center frequency. Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz Detector: Peak Sweep time: Auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


## Test Mode

Please refer to the clause 2.4.

#### <u>Test Result</u>

| Test Mode    | Frequency<br>[MHz] | Transmission<br>Duration [ms] | Transmission<br>Period [ms] | Duty Cycle<br>[%] | 1/T<br>Minimum VBW<br>(kHz) | Final setting<br>For VBW<br>(kHz) |
|--------------|--------------------|-------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------|
|              | 2402               | 0.41                          | 0.89                        | 46.07             | 2.44                        | 3                                 |
| BLE<br>1Mbps | 2440               | 0.42                          | 0.89                        | 47.19             | 2.38                        | 3                                 |
| mopo         | 2480               | 0.41                          | 0.89                        | 46.07             | 2.44                        | 3                                 |
|              | 2402               | 0.21                          | 0.89                        | 23.60             | 4.76                        | 5.1                               |
| BLE<br>2Mbps | 2440               | 0.21                          | 0.89                        | 23.60             | 4.76                        | 5.1                               |
| 211000       | 2480               | 0.21                          | 0.89                        | 23.60             | 4.76                        | 5.1                               |







1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn









## 3.9. Antenna requirement

#### **Requirement**

#### FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.