

A-dec, Inc.

A-dec Gateway FCC 15.407:2021 RSS-247 Issue 2:2017 802.11 Radio

Report: A-DE0169.3 Rev. 1, Issue Date: March 4, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: December 20, 2021 A-dec, Inc. EUT: A-dec Gateway

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.407:2021	ANSI C63.10:2013, KDB 789033, KDB 905462 D02
RSS-247 Issue 2:2017	ANSI C63.10:2013, KDB 789033, KDB 905462 D02

Results

Method Clause	ethod Clause Test Description		Results	Comments
KDB 905462 (D02) -7.5	DFS Testing - Test Signal Level	No	N/A	Not required if EUT is a "Client" without radar detection.
KDB 905462 (D02) -7.7 DFS Testing - Channel Loading and Channel Utilization		Yes	Pass	
KDB 905462 (D02) -7.8.1	DFS Testing - Detection Bandwidth	No	N/A	Not required if EUT is a "Client" without radar detection.
KDB 905462 (D02) -7.8.2	DFS Testing - Channel Availability Check		N/A	Not required if EUT is a "Client" without radar detection.
KDB 905462 (D02) -7.8.3	DFS Testing – Channel Move Time	Yes	Pass	
KDB 905462 (D02) - 7.8.3	DFS Testing - Closing Time	Yes	Pass	
KDB 905462 (D02) - 7.8.3	DFS Testing - Non Occupancy Period	Yes	Pass	
KDB 905462 (D02) - 7.8.4	DFS Testing - Statistical Performance	No	N/A	Not required if EUT is a "Client" without radar detection.
N/A	DFS Testing - DFS Product Information	Yes	N/A	A1 Product Information filled out by the manufacturer and included in the test report.

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Removed the antenna and power settings from the report, as all the information needed is in the annex	2022-03-04	11
	Swapped out the Master for the Client version	2022-03-04	14
01	Comments were added indicating what the markers represent.	2022-03-04	26, 29
	Updated the test description to indicate FCC type 0 short radar pulse was used and added comments indicating what the markers represent	2022-03-04	30

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE					
For details on the Scopes of our Accreditations, please visit:					
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington	

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Xalifornia Minnesota Oregon Texas bs OC01-17 Labs MN01-11 Labs EV01-12 Labs TX01-09 41 Tesla 9349 W Broadway Ave. 6775 NE Evergreen Pkwy #400 3801 E Plano Pkwy ine, CA 92618 Brooklyn Park, MN 55445 Hillsboro, OR 97124 Plano, TX 75074 49) 861-8918 (612)-638-5136 (503) 844-4066 (469) 304-5255		Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
		A2LA					
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
		VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110			
R	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range Peak Data (MHz) (kHz)		Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

42.6

+

=

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	A-dec, Inc.
Address:	2601 Crestview Dr Building 4
City, State, Zip:	Newberg, OR 97132-9528
Test Requested By:	Russell Perkins
EUT:	A-dec Gateway
First Date of Test:	December 20, 2021
Last Date of Test:	December 20, 2021
Receipt Date of Samples:	November 22, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

A small network gateway that connects to our products data networks, and rolls system information up to the cloud using Ethernet or WiFi.

Testing Objective:

To demonstrate compliance of the 802.11 radio for operation in the 5.3 GHz, 5.6 GHz and 5.8 GHz band(s).

CONFIGURATIONS

Configuration A-DE0169-5

Software/Firmware Running During Test	
Description	Version
iPerf 3	3.7

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Wireless Access Point / IoT Device	A-dec, Inc.	43.0531.00	521A000122

Peripherals in Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
ITE Power Supply	GlobTek, Inc.	GTM96180-1130-6-0	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial to USB	Yes	2.0 m	No	Lab PC	Wireless Access Point / IoT Device

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-12-20	Channel Loading and Channel Utilization	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2021-12-20	Channel Move Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2021-12-20	Closing Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2021-12-20	Non Occupancy Period	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Overview

For a Client Device without DFS, the Channel Move Time and Channel Closing Transmission Time requirements are verified with one Short Pulse Radar and one Long Pulse Radar. Non-occupancy period can be confirmed with either short or long pulses.

Channel Closing Transmission Time: The total duration of transmissions, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time.

Channel Move Time: The time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold. A Client Device will not transmit before having received appropriate control signals from a Master Device. A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

Non-Occupancy Period: Time during which both the client and master device shall not make any transmissions on a channel after a radar signal was detected on that channel. It should at least the minimum requirements but it can be more.

Applicability of DFS Requirements Prior to Use of a Channel						
Requirement	Operational Mode					
	Master	Client (without DFS)	Client (with DFS)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Applicability of DFS requirements during normal operation					
Requirement	Operational Mode				
	Master Device or Client with Radar Detection	Client Without Radar Detection			
DFS Detection Threshold	Yes	Not required			
Channel Closing Transmission Time	Yes	Yes			
Channel Move Time	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required			

Additional requirement for devices with	Operational Mode				
multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using widest BW mode available for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.					

DFS Detection Thresholds for Master or Client Devices Incorporating DFS					
Maximum Transmit Power	Value (See Notes 1, 2, and 3)				
EIRP ≥ 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm				
density requirement					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test					

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response Requirement Values				
Parameter	Value			
Non-occupancy	Minimum 30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds (See Note 1)			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining			
	10 second period. (See Notes 1 and 2).			
	Minimum 100% of the UNII 99% transmission power bandwidth.			
U-NII Detection Bandwidth	(See Note 3).			
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type				

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Short Pulse Rada	ar Test Waveform	S			
Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	(See KDB section 6.1)	60%	30
2	1 - 5	150 - 230	23 - 29	60%	30
3	6 -10	200 - 500	16 – 18	60%	30
4	11 - 20	200 - 500	12 -16	60%	30
Aggregate (Radar	Types 1-4)			80%	120
Note 1: Short Puls	se Radar Type 0 sh	ould be used for the	e detection bandwie	dth test, channel mo	ove time, and
channel closing tir	me tests.				

Long Puls	Long Pulse Radar Test Waveforms						
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Frequenc	Frequency Hopping Radar Test Waveform						
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Setting the Test Signal Level

The radar test signal level is set at the Master Device, or the Client Device with In-Service Monitoring, as appropriate for the particular test. This device is known as the Radar Detection Device (RDD). The RDD consists of the applicable device and the device antenna assembly that has the lowest antenna assembly gain of all available antenna assemblies. Depending on the UUT, the following configurations exist:

- When the Master Device is the UUT, the Master Device is the RDD.
- When a Client Device without Radar Detection is the UUT, the Master Device is the RDD.

• When a Client Device with Radar Detection is the UUT, and is tested for response to the Master Device detections, the Master Device is the RDD.

• When a Client Device with Radar Detection is the UUT, and is tested for independent response to detections by the Client Device, the Client Device is the RDD.

A spectrum analyzer is used to establish the test signal level for each radar type. During this process, there are no transmissions by either the Master Device or Client Device. The spectrum analyzer is switched to the zero span (time domain) mode at the frequency of the Radar Waveform generator. The peak detector function of the spectrum analyzer is utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) are set to at least 3 MHz.

The signal generator amplitude and/or step attenuators are set so that the power level measured at the spectrum analyzer is equal to the DFS Detection Threshold that is required for the tests. The signal generator and attenuator settings are recorded for use during the test.

Data demonstrating that the test signal level is correctly set for each radar type (0-6) will be recorded and reported.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST	FOUIPMENT	
IE31	EQUIFINIENT	

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Attenuator	S.M. Electronics	SA26B-10	AWR	2021-07-16	2022-07-16
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02
Attenuator	Fairview Microwave	SA26B-10	TWG	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The master and client were connected using the conducted method described in FCC KDB 905462 DO2, 7.2.2 via a series of splitters and attenuators.

The communication traffic was configured to 17% or greater.

Setup for Client with injection at the Master

EUT	A-dec Gateway						Work Order: A	-DE0169	
Serial Number:	: 521A000122						Date: 2	0-Dec-21	
Customer	A-dec, Inc.						Temperature: 1	9.2 °C	
Attendees	None						Humidity: 4	1.1% RH	
Project:	None						Barometric Pres.: 1	018 mbar	
Tested by:	Jeff Alcoke		Power:	24 VDC via 110VAC/60Hz	z		Job Site: E	V06	
TEST SPECIFICAT	IONS			Test Method					
FCC 15.407:2021				ANSI C63.10:2013					
RSS-247 Issue 2:20	017			ANSI C63.10:2013					
COMMENTS									
None									
DEVIATIONS FROM	M TEST STANDARD								
None									
Configuration #	5		Tal						
		Signature	Ver	1/2					
					Pulse	Period	Laoding	Limit	
				W	idth (mS)	(mS)	Value (%)	(%)	Result
40 MHz BW, Ch 60.	.62, 5310 MHz, MCS7								
	Duty Cycle				35.8	93.2	38.41201717	≥ 17	Pass
	2 mS				N/A	N/A	N/A	N/A	N/A
	10 mS				N/A	N/A	N/A	N/A	N/A
	25 mS				N/A	N/A	N/A	N/A	N/A
	100 mS				N/A	N/A	N/A	N/A	N/A
	10 Sec				N/A	N/A	N/A	N/A	N/A

-30.0	łH				_r drat						, f wl				TRIG LVL
-40.0 -50.0		AN C	hallow for the state of the sta	henne		 _ /	γψľ	Alloynartur	Norder Marthau (ł			_,, <mark>1</mark> ,3. 4 /11,4,4/111,	have to the loss	urafniyfrayddilla
-60.0 -70.0						WW				-	4	mutin			
-60.0															
Cen Res	ter BW	5.32000 / 3.0 MH	00000 GHz Iz			#	¢VB	W 3.0 MHz					Swee	o 2.000 ms	Span 0 Hz (1001 pts)
MSG										6	STATU	JS	an an an		

	Pulse	Period	Laoding	Limit	
	Width (mS)	(mS)	Value (%)	(%)	Result
	N/A	N/A	N/A	N/A	N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Attenuator	S.M. Electronics	SA26B-10	AWR	2021-07-16	2022-07-16
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02
Attenuator	Fairview Microwave	SA26B-10	TWG	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The master and client were connected using the conducted method described in FCC KDB 905462 D02, 7.2.2 via a series of splitters and attenuators which allows the radar signals to be injected and monitored.

The radar waveform generator was configured to send Short Pulse Radar Type 0 waveforms. The amplitude level of the radar pulse was verified prior to testing by temporarily replacing the master device with the analyzer. An additional 1dB was added to the radar signal to ensure it is at or above the DFS threshold for the master device.

The master device was then returned to the test setup.

A data stream was established between the EUT and the master device. The radar waveform was injected into the system. The transmissions of the EUT were then monitored for duration greater than 10 seconds.

EUT:	A-dec Gateway			Work Order:	A-DE0169	
Serial Number:	521A000122			Date:	20-Dec-21	
Customer:	A-dec, Inc.			Temperature:	19.2 °C	
Attendees:	None			Humidity:	41.2% RH	
Project:	None			Barometric Pres.:	1018 mbar	
Tested by:	Jeff Alcoke		Power: 24 VDC via 110VAC/60Hz	Job Site:	EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.407:2021			ANSI C63.10:2013			
RSS-247 Issue 2:20	17		ANSI C63.10:2013			
COMMENTS						
Data stream betwe	en client and master was	established using iPerf3. The mas	ster device changes channel upon detection of the radar pul	se. The EUT moves channels with th	e master. In the	system response
screen caputres, th	e marker delta indicates	when the radar was injected, and v	when transmissions ceased.			
DEVIATIONS FROM	I TEST STANDARD					
None						
			/ h.			
Configuration #	5	(1 at Ill			
		Signature	ICAI MIR			
				Value	Limit	
				(Sec)	(Sec)	Result
FCC Short Pulse Ra	idar - Type 0					
	Verification			N/A	N/A	N/A
40 MHz BW, Ch. 60	/64, 5310 MHz, MCS7					
	System response			0.06	≤ 10	Pass
40 MHz BW, Ch. 13	2/136, 5670 MHz, MCS7					
	System response			0.014	≤ 10	Pass

	10 11	,,	Value	Limit	
			(Sec)	(Sec)	Result
			0.06	≤ 10	Pass

🔤 Ke	ysight Spec	trum Ana	ilyzer - Element N	Aaterials Technolo	gy						
LXI R	L	RF	50 Ω DC			SENSE:INT	AL	IGN AUTO		01:32:41	PM Dec 18, 2021
								#Avg Type:	Voltage	TF	RACE 1 2 3 4 5 6
والمراجع المراجع الم					NO: East	. Trig: Free	Run				TYPE WWWWWW
				IF	Gain:Low	Atten: 30 d	dB				DET P NNNN
											00.00
										ZIMKL1	60.00 ms
10 di	Bidiy	Ref 2	0 00 dBm							-	-30.86 dB
Log						1	1	T	I		
10.0											
0.00											
-10.0											
			Υ.								
			<u>^2</u>								
-20.0											
-30.0	in di katatan	i n i n ni he	* A .								
-40.0			<u>λ</u> 1Δ2 —								
	1661	JU P	. Vandelskamp	denoise a state of the	البادرة فسراوط وبالأب	pedate ditrictul territ	a sada di sana sa bata sa Cin	and set of the second set of the	الطبيات ويسع أكارو محروط	ويعتبك وأدريتها أبراني ويرجعها	Anna Antonio (1990)
	14133564	1000 AU AU	Notes and the second of the second	identities and a shift of the second	and an a local second second second	A sector sector and a sector sec	Internet to a second	become the industry in the second		and a state of the	(and a second
-50.0											
-6U.U											
70.0											
-70.0											
Cen	ter 5.3	20000	0000 GHz								Span 0 Hz
Doo	DIAL 2				#\/D	W 2 0 MH-			Curo	n 15.00 e	(15001 pto)
RC+S	DW 3.	σ WITI 4			#V 🗅	W 3.0 WHZ			Swee	-p 15.00 S	(rauur pis)
MSG								STATUS			Contraction of the second

DFS TESTING - CLOSING TIME

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Attenuator	S.M. Electronics	SA26B-10	AWR	2021-07-16	2022-07-16
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02
Attenuator	Fairview Microwave	SA26B-10	TWG	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The master and client were connected using the conducted method described in the FCC KDB 905462 D02, 7.2.2 via a series of splitters and attenuators which allows the radar signals to be injected and monitored.

The radar waveform generator was configured to send Short Pulse Radar Type 0 waveforms. The amplitude of the radar pulse verified prior to testing by temporarily replacing the master device with the analyzer, setting the power level according to Table 3 and Section 7.5.

Where required, an approved Media file was streamed through the master and client or an alternative method to load the channel may be used instead. Channel loading requirements were also verified prior to testing. Configuration and status of the master and client devices were then monitored using the spectrum analyzer. The Closing Time test was performed by starting a transmission between the master and client device, and then injecting the appropriate radar signals. All transmission signals between the master and client in the first 200mS are allowed. After this time period, the number of transmissions signals are counted and multiplied by the pulse width value(s). This aggregate is then added to the 200mS allowance for the final value and compared to the specified limit.

DFS TESTING - CLOSING TIME

EUT:	A-dec Gateway				Work Order:	A-DE0169				
Serial Number:	521A000122				Date:	20-Dec-21				
Customer:	A-dec, Inc.				Temperature:	19 °C				
Attendees:	None				Humidity:	41.7% RH				
Project:	None			E	Barometric Pres.:	1018 mbar				
Tested by:	Jeff Alcoke		Power: 24 VDC via 110VAC/60Hz		Job Site:	EV06				
TEST SPECIFICAT	IONS		Test Method							
FCC 15.407:2021			ANSI C63.10:2013							
RSS-247 Issue 2:20	017		ANSI C63.10:2013							
COMMENTS										
No intermittent cor	ntrol signals were observe	ed beyond the 200 mS window during	the Channel Move Time, therefore no additional aggregation	ate was added to the	final value. The	master device char	nges channels			
upon detection of t	the radar waveform. The	EUT moves channels with the master.	In the system response captures, the marker delta indi	cates when the rada	r was injected an	d 200ms after the i	njection.			
DEVIATIONS FROM	I TEST STANDARD									
None										
Configuration #	5	Signature	Tot the							
			# of Signals	Pulse Width	Value (mS)	Limit (mS)	Result			
40 MHz BW, Ch. 60	/64, 5310 MHz, MCS7									
	System response		0	N/A	200	≤ 260	Pass			
40 MHz BW, Ch. 13	IHz BW, Ch. 132/136, 5670 MHz, MCS7									
	System response		0	N/A	200	≤ 260	Pass			

DFS TESTING - CLOSING TIME

Value Limit
of Signals Pulse Width (mS) (mS) Result
0 N/A 200 ≤ 260 Pass

📕 Ke	ysight Spec	trum Analy	/zer - Element N	laterials Technolo	ду						
LXI R	L	RF	50 Ω DC			SENSE:INT	A	LIGN AUTO		07:32:27	AM Dec 21, 2021
				F IF	PNO: Fast 🔸	. Trig: Free Atten: 30	Run dB	#Avg Type:	voltage	16	DET P N N N N
10 de	2/diu	Def 2	00 dBm							ΔMkr1	200.1 ms 33.21 dB
Log											
10.0											
0.00											
0.00											
-10.0		-v									
-20.0		-+-									
20.0											
-30.0	IIMII										
-40.0		III - 1	Δ2								
			ilin kira ruskolu	da de staten a dat di	المجروبا فوالفرام وقر		Alter instructivities at	latifa bio an atalaite	constant on a table day taken		la aska i lata itina palati
-50.0											
-60.0											
-70.0											
Cen	ter 5.6	80000	000 GHz								Span 0 Hz
Res	BW 3.	0 MHz			#VB	W 3.0 MHz			Swee	p 15.00 s	(15001 pts)
MSG								STATUS			

DFS TESTING - NON OCCUPANCY PERIOD

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Attenuator	S.M. Electronics	SA26B-10 A\		2021-07-16	2022-07-16
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02
Attenuator	Fairview Microwave	SA26B-10	TWG	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The master and client were connected using the conducted method described in the FCC KDB procedure via a series of splitters and attenuators which allows the communication and injected radar signals to be monitored simultaneously. The spectrum analyzer was configured to monitor the frequency for at least 30 minutes. The Short Pulse Radar Type 0 was injected and the channel was monitored to make sure the master and client devices vacated the channel and did not use it again for a period of time equal to or greater than 30 minutes.

DFS TESTING - NON OCCUPANCY PERIOD

						XMit 2020.12.30.0	
EUT:	A-dec Gateway			Work Order:	A-DE0169		
Serial Number:	521A000122			Date:	20-Dec-21		
Customer:	A-dec, Inc.			Temperature:	19 °C		
Attendees:	None			Humidity:	41.7% RH		
Project:	None			Barometric Pres.:	1018 mbar		
Tested by:	Jeff Alcoke		Power: 24 VDC via 110VAC/60Hz	Job Site:	EV06		
TEST SPECIFICAT	IONS		Test Method				
FCC 15.407:2021	CC 15.407:2021 ANSI C63.10:2013						
RSS-247 Issue 2:20	2:2017 ANSI C63.10:2013						
COMMENTS							
The master device changes channels upon detection of the radar waveform. The EUT moves channels with the master. No control signals were observed during the 30 min observation period. The marker delta							
indiates when the	radar pulse was injected,	and when the 30 min observation perio	od has concluded.	5	•		
DEVIATIONS FROM TEST STANDARD							
None							
Configuration #	5	Signature	Tot the				
				Value	Limit		
				(min)	(min)	Result	
40 MHz BW, Ch. 60/64, 5310 MHz, MCS7							
System response			≥ 30	≥ 30	Pass		
40 MHz BW, Ch. 132/136, 5670 MHz, MCS7							
System response			≥ 30	≥ 30	Pass		

DFS TESTING - NON OCCUPANCY PERIOD

LX/ RL RF 50 Ω DC	SENSE:INT	ALIGN AUTO	04:17:39 PM Dec 18, 2021	
	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	#Avg Type: Voltage	TRACE 123456 TYPE WWWWWW DET PNNNNN	
10 dB/div Ref 20.00 dBm			∆Mkr1 1.800 ks 0.54 dB	
Lug				
10.0				
0.00				
-10.0				
20.0				
-2010				
-30.0				
40.0			▲ 1∆2	
	and the second	te en en ante en la desta data de tradatar en deservador de la seconda de la seconda da seconda de la seconda s		
-50.0				
.60.0				
-70.0				
Center 5.680000000 GHz Span 0 Hz Res BW 3.0 MHz Sweep 2.000 ks (50000 pts)				
MSG		STATUS		

APPENDIX

Information Provided by the Party Requesting the Test

Example answers have been given (italicized) to help you understand what information is required. Please replace "Your answer here" with information specific to your product.

Section 1

The following information must be provided prior to the start of testing:

List all antenna assemblies and their corresponding gains.

- If radiated tests are to be performed, the U-NII Device should be tested with the lowest gain antenna assembly (regardless of antenna type). The report should indicate which antenna assembly was used for the tests. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
- 2. If conducted tests are to be performed, indicate which antenna port/connection was used for the tests and the antenna assembly gain that was used to set the DFS Detection Threshold level during calibration of the test setup.
 - a. Indicate the calibrated conducted DFS Detection Threshold level.
 - b. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
 - c. Indicate the antenna connector impedance. Ensure that the measurement instruments match (usually 50 Ohms) or use a minimum loss pad and take into account the conversion loss.
- 3. Antenna gain measurement verification for tested antenna.
 - a. Describe procedure
 - b. Describe the antenna configuration and how it is mounted
 - c. If an antenna cable is supplied with the device, cable loss needs to be taken into account. Indicate the maximum cable length and either measure the gain with this cable or adjust the measured gain accordingly. State the cable loss.

Example: The client device (EUT) has one 50 ohm antenna port. The antenna assembly gain of the client device was measured by the antenna manufacturer. The maximum gain in the 5 GHz bands is 4.2 dBi.

Linear Polarization SMD mount ceramic antenna soldered to PCB, not user removable. 5 GHz 5.2 dBi Mounted 0.6in from transmitter on same PCB as transmitter. Antenna cable length and loss 0.6in PCB trace 50ohm feedline, no loss Spacing distance from operator is >20 cm.

Functional Description of the EUT (Equipment Under Test):

Example: 802.11abgn SISO radio with 1 stream and 1 antenna.

A-dec Gateway PCB (43.0521.00) is designed to enable 802.11a/b/g/n/ac W-LAN + Bluetooth 5.0, Single input, single output (SISO) radio with 1 stream and 1 antenna.

The operating modes (Master and/or Client) of the U-NII device. Example: Client device with no ad-hoc capability, with both 802.11a and 802.11n (20/40MHz)

The module by default supports active scanning and ad-hoc mode with 802.11AC/AN radio that supports 20/40/80 MHz Bandwidths. RF-related settings including modes are set via firmware and are not accessible for change via the UI.

For Client devices, indicate whether or not it has DFS Radar detection capabilities.

Example: The client device has no radar detection and no ad-hoc capability. The client device has no radar detection and no ad-hoc mode.

System architectures, data rates, U-NII Channel bandwidths.

1. Indicate the type(s) of system architecture (e.g. IP based or Frame based) that the U-NII device employs. Each type of unique architecture must be tested.

Example: The client device (EUT) employs IP based system architecture.

The client device (EUT) employs IP based system architecture.

Applicable only to devices with Radar detection capabilities: The time required for the Master Device or Client Device (with radar detection) to complete its power-on cycle.

No radar detection capabilities.

Section 2

The following information must be provided prior to the completion of a test report:

Hardware, Firmware, and OS Versions:

Example: Hardware version: 0.1.5.6 Firmware version: 12.6.8

OS versions: CPM 7.8.2.1

Gateway hardware version: 43.0521.00 Rev. 6 A-dec Cirrus firmware version: v00.02.102

The operating frequency band(s) of the equipment.

Example: 5150 – 5250 MHz, 5250 - 5350 MHz (DFS Band),etc

5180-5850 MHz

List the highest and the lowest possible power level (equivalent isotropic radiated power (EIRP) of the equipment.

Example: The maximum EIRP of the 5 GHz equipment is 24.4 dBm conducted.

The maximum EIRP of the 5 GHz equipment is 16.7 dBm conducted.

Test sequences or messages that should be used for communication between Master and Client Devices, which are used for loading the Channel.

- 1. Stream the test file from the Master Device to the Client Device for IP based systems or frame based systems which dynamically allocate the talk/listen ratio.
- 2. For frame based systems with fixed talk/listen ratio, set the ratio to 45%/55% and stream the test file from the Master to the Client.
- 3. For other system architectures, supply appropriate Channel loading methodology.

Example: Testing was performed with an audio file streamed from the Master Device to the Client Device. Channel loading was greater than 64%.

- 1. Establish a data stream through use of iPerf:
 - a. On the Client Device (receiver of data), the command is: **iperf3 -s**
 - b. On the Master Device (sender of data), the command is: iperf3 -c <ip> -u -t 9999
 - i. -u indicates that the client should use UDP for transfer (no error checking/retransmit)
 - ii. -t 9999 makes the iperf3 stream last as long as is needed for testing.
 - iii. Determine (at time of test) the IP address it is dependent on the network setup of the test environment, so that remains as a "fill in".

Transmit Power Control description.

Example: This device does not exceed 27dBm EIRP, so no transmit power control is implemented. This device does not exceed 27dBm EIRP, so no transmit power control is implemented.

Applicable only to devices with Radar detection capabilities: Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. No radar detection capabilities.

Applicable only to Master devices: Uniform Channel Spreading requirement for Master Devices. For Master Devices, indicate how the master provides, on aggregate, uniform Channel loading of the spectrum across all Channels.

Not a master device.

For Client devices, indicate the FCC (and IC) identifier for the Master U-NII Device that is used with it for DFS testing.

Example: A DFS-compliant Master device was used for testing. It's the CISCO Model AIR-AP1252AG-A-K9, FCC ID:LDK102061, IC: 2461B-102061

A DFS- compliant Master device was used for testing: CISCO Model AIR-SAP2602E-A-K9, FCC ID:LDK102080, IC: 2461B-102080

End of Test Report