

GTS Global United Technology Services Co., Ltd.

Report No.: GTSL202101000075F01

TEST REPORT

Applicant:	Dandong Dongfang Measurement & Control Technology Co., Ltd.				
Address of Applicant:	No.136, Binjiang M. Road, Yanjiang Development Zone, Dandong, Liaoning, China.				
Manufacturer:	Dandong Dongfang Measurement & Control Technology Co., Ltd.				
Address of Manufacturer:	No.136, Binjiang M. Road, Yanjiang Development Zone, Dandong, Liaoning, China.				
Equipment Under Test (E	EUT)				
Product Name:	Customer Premise Equipment				
Model No.:	DF-CPE201				
Trade Mark:	N/A				
FCC ID:	2AY2A-DF-CPE201				
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247				
Date of sample receipt:	Jan. 12, 2021				
Date of Test:	Jan. 12, 2021- Feb. 24, 2021				
Date of report issued:	Feb. 24, 2021				
Test Result :	PASS *				

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 39

2 Version

Version No.	Date	Description
00	Feb. 24, 2021	Original

Tested/ Prepared By:

handlu Date:

Feb. 24, 2021

Project Engineer

Check By:

objusor (uni Reviewer

Date:

Feb. 24, 2021

3 Contents

		Pa	age
1	CO	/ER PAGE	1
2	VEF	SION	2
3	CO	NTENTS	
-			
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	Test mode	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	Additional Instructions	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	.10
	7.1	ANTENNA REQUIREMENT	.10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	.15
	7.5	Power Spectral Density	-
	7.6	BAND EDGES	
	7.6.		
	7.6.		
	7.7	SPURIOUS EMISSION	
	7.7.		
	7.7.	2 Radiated Emission Method	.31
8	TES	T SETUP PHOTO	.39
9	EUT	CONSTRUCTIONAL DETAILS	.39

Test Summary 4

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	30MHz-200MHz 3.8039dB		(1)
Radiated Emission	200MHz-1GHz 3.9679dB		(1)
Radiated Emission	ion 1GHz-18GHz 4.29dB		(1)
Radiated Emission	Radiated Emission 18GHz-40GHz 3.30dB		(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Customer Premise Equipment	
Model No.:	DF-CPE201	
Test sample(s) ID:	GTSL202101000075-1(Engineer sample)	
	GTSL202101000075-2(Normal sample)	
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11	
Channel separation:	5MHz	
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)	
	Orthogonal Frequency Division Multiplexing (OFDM)	
Antenna Type:	External ANT	
Antenna Gain:	3.00dBi	
Power supply:	DC 12V From external circuit	
Adapter Information	Mode: XH1200-1500	
	Input: AC100-240V, 50/60Hz, 0.5A	
	Output: DC 12V, 1.5A	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)
Data rate	1Mbps	6Mbps	6.5Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC — Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special AT test command provided by manufacturer	
Power level setup	Default	

6 Test Instruments list

Radi	Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021		
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021		
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021		
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021		
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021		
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021		
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021		

Con	Conducted Emission							
ltem	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
7	Thermo meter	КТЈ	TA328	GTS233	June. 25 2020	June. 24 2021		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021		

RF C	RF Conducted Test:							
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021		

Gene	General used equipment:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	КТЈ	TA328	GTS243	June. 25 2020	June. 24 2021		
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

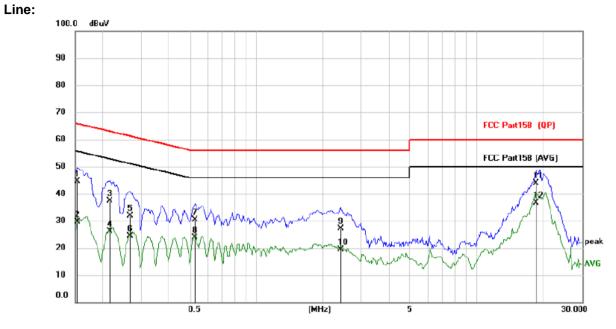
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

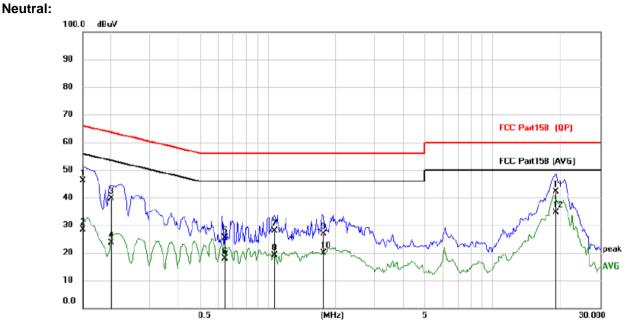
The antennas are External antenna, the best case gain of the antennas are 3.00dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz)	Frequency range (MHz)				
	0.15-0.5	Quasi-peak 66 to 56*		erage o 46*		
	0.15-0.5	56		0 40 46		
	5-30	60		50		
	* Decreases with the logarithm					
Test setup:	Reference Plane					
Test procedure:	Reference Plane LISN					
Test Instruments:	according to ANSI C63.10:2 Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz	I	1			
Test results:	Pass					
	1 400					

GTS

Measurement data


Report No.: GTSL202101000075F01

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector
1	0.1539	33.59	10.92	44.51	65.79	-21.28	QP
2	0.1539	18.79	10.92	29.71	55.79	-26.08	AVG
3	0.2163	26.35	10.92	37.27	62.96	-25.69	QP
4	0.2163	15.29	10.92	26.21	52.96	-26.75	AVG
5	0.2670	21.01	10.92	31.93	61.21	-29.28	QP
6	0.2670	13.46	10.92	24.38	51.21	-26.83	AVG
7	0.5243	19.55	10.92	30.47	56.00	-25.53	QP
8	0.5243	13.01	10.92	23.93	46.00	-22.07	AVG
9	2.4119	16.23	10.98	27.21	56.00	-28.79	QP
10	2.4119	8.30	10.98	19.28	46.00	-26.72	AVG
11	18.5493	32.33	11.61	43.94	60.00	-16.06	QP
12 *	18.5493	24.90	11.61	36.51	50.00	-13.49	AVG

GTS

Report No.: GTSL202101000075F01

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	35.33	10.92	46.25	66.00	-19.75	QP
2	0.1500	17.55	10.92	28.47	56.00	-27.53	AVG
3	0.2007	28.79	10.92	39.71	63.58	-23.87	QP
4	0.2007	12.72	10.92	23.64	53.58	-29.94	AVG
5	0.6414	14.44	10.92	25.36	56.00	-30.64	QP
6	0.6414	7.06	10.92	17.98	46.00	-28.02	AVG
7	1.0743	16.99	10.92	27.91	56.00	-28.09	QP
8	1.0743	8.16	10.92	19.08	46.00	-26.92	AVG
9	1.7724	15.97	10.96	26.93	56.00	-29.07	QP
10	1.7724	9.03	10.96	19.99	46.00	-26.01	AVG
11	19.1070	30.47	11.64	42.11	60.00	-17.89	QP
12 *	19.1070	23.11	11.64	34.75	50.00	-15.25	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

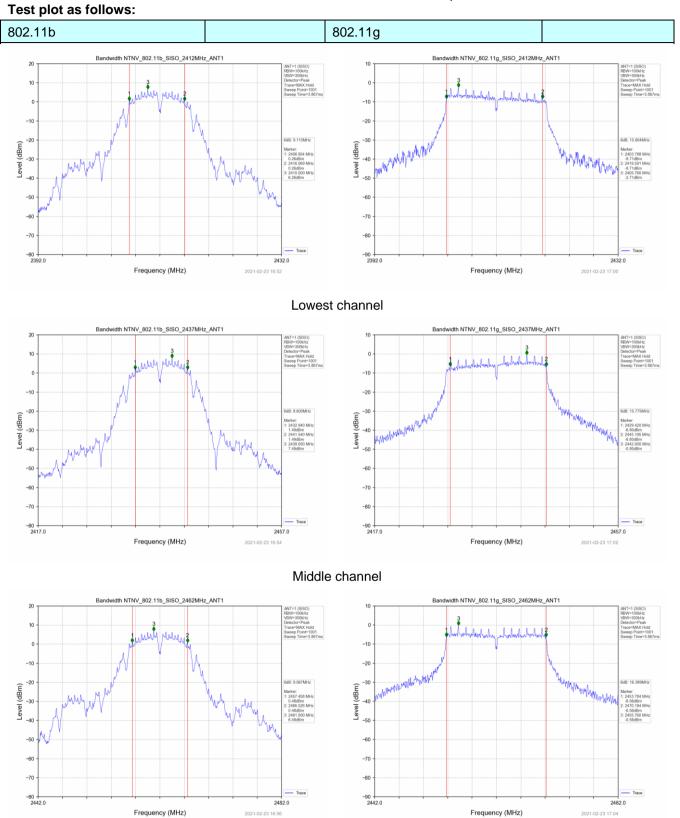
7.3 Conducted Peak Output Power

Test Requirement :	FCC Part15 C Section 15.247 (b)(3)		
Test Method :	KDB558074 D01 DTS Meas Guidance v05or02		
Limit:	30dBm		
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

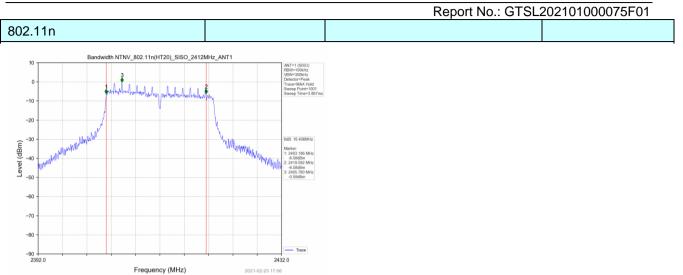
Measurement Data

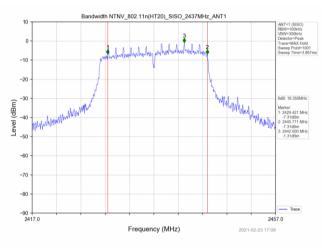
Test CH	Peak Output Power (dBm)			Limit(dBm)	Result
	802.11b	802.11g	802.11n(HT20)		IVESUIL
Lowest	17.39	15.69	16.54		
Middle	18.32	17.08	16.46	30.00	Pass
Highest	17.71	17.48	16.83		

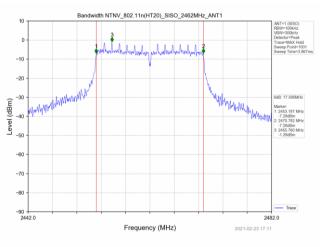
7.4 Channel Bandwidth


Test Requirement :	FCC Part15 C Section 15.247 (a)(2)		
Test Method :	KDB558074 D01 DTS Meas Guidance v05or02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data


Test CH	(Channel Bandwidth (MHz)			Result
	802.11b	802.11g	802.11n(HT20)	Limit(KHz)	Result
Lowest	9.115	15.804	16.406		
Middle	8.600	15.775	16.350	>500	Pass
Highest	9.067	16.399	17.595		



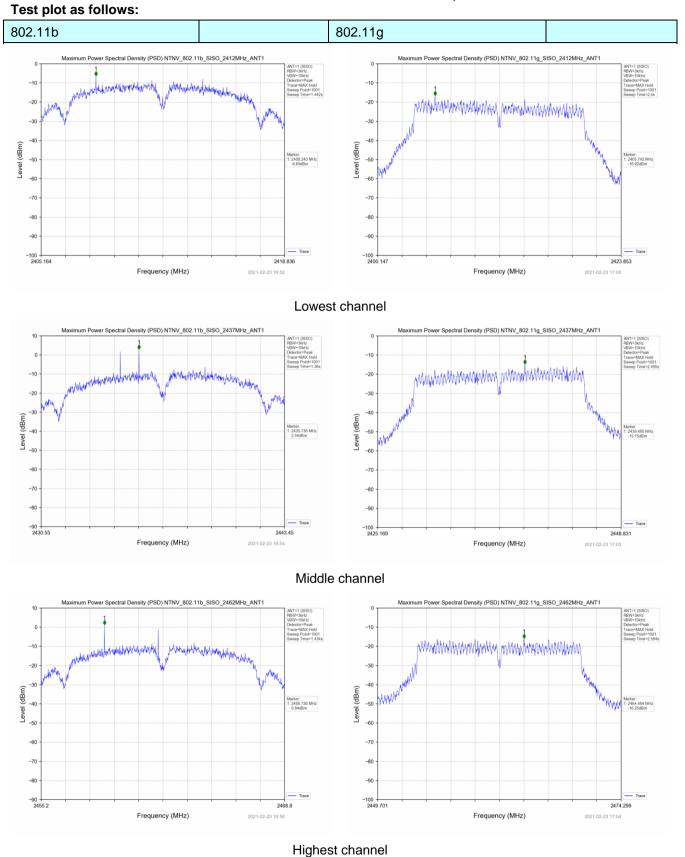

Highest channel

Lowest channel

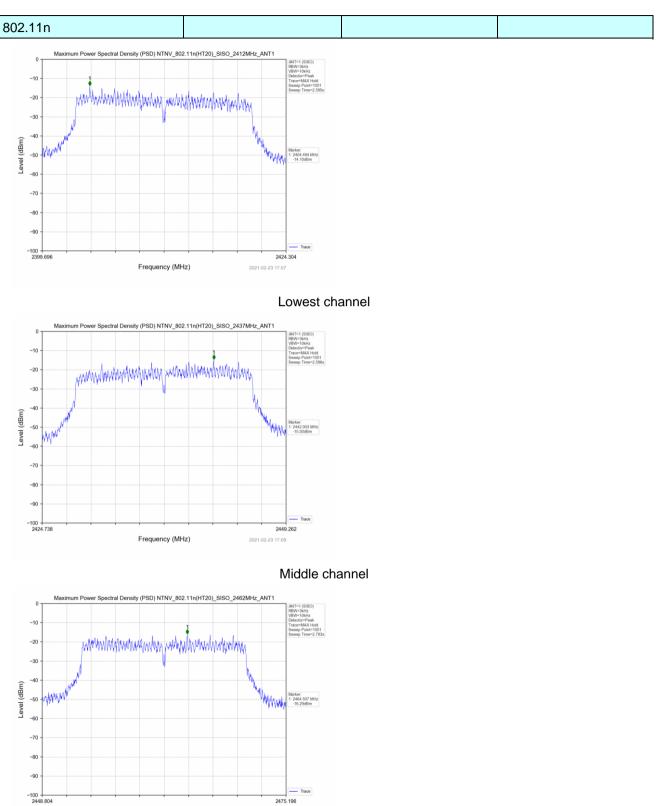
Middle channel

Highest channel

7.5 Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

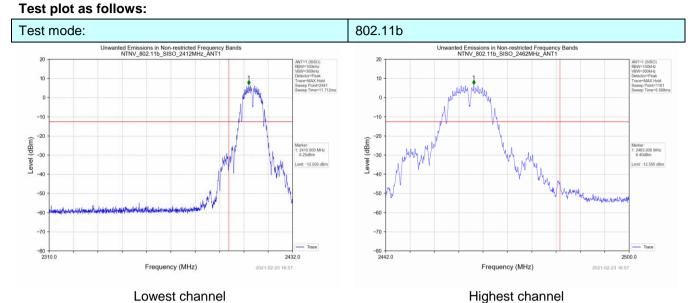

Test CH	Power Spectral Density (dBm/3kHz)			Limit	Result
Test Ch	802.11b	802.11g	802.11n(HT20)	(dBm/3kHz)	Nesul
Lowest	-6.69	-16.92	-14.10		
Middle	2.54	-15.15	-15.00	8.00	Pass
Highest	0.84	-16.25	-16.29		

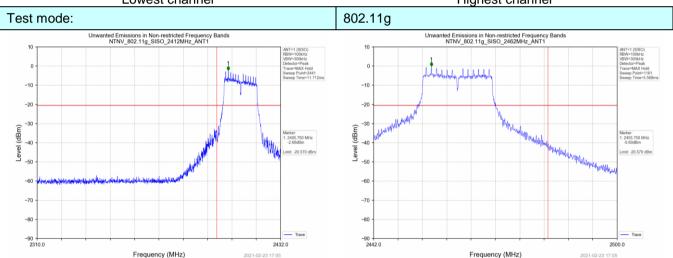
Report No.: GTSL202101000075F01

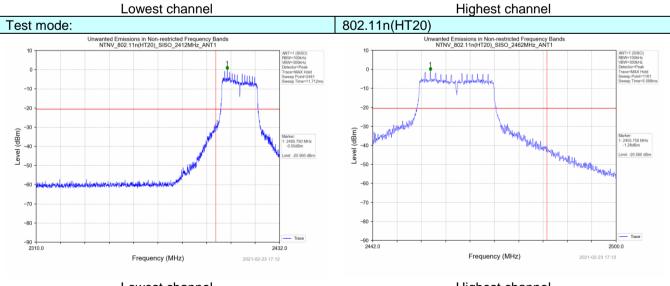
Highest channel

2021-02-23 17:11

Frequency (MHz)

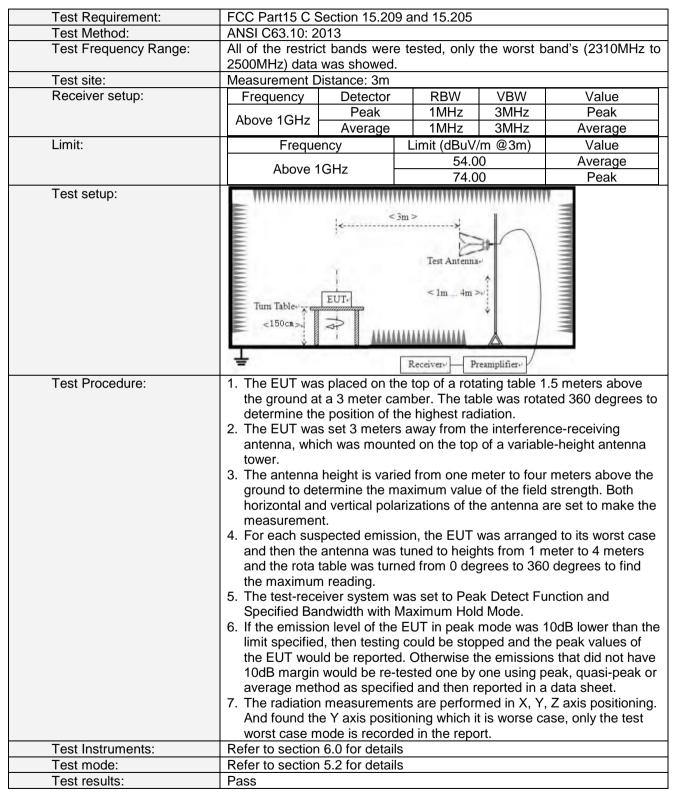

7.6 Band edges


7.6.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

GTS

Report No.: GTSL202101000075F01



Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Measurement data:

Report No.: GTSL202101000075F01

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported Horizontal: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type
2390	67.85	-5.68	62.17	74	-11.83	peak
2390	48.43	-5.68	42.75	54	-11.25	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.			

Vertical: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type			
2390	68.29	-5.68	62.61	74	-11.39	peak			
2390	49.43	-5.68	43.75	54	-10.25	AVG			
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

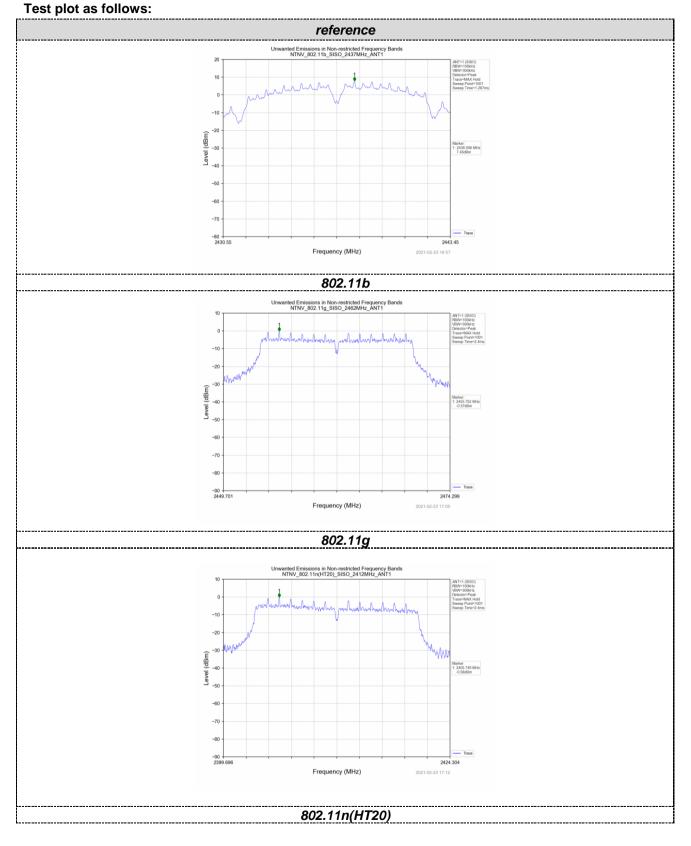
Horizontal: 802.11b Mode TX CH HIGH (2462MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
2483.5	64.59	-5.85	58.74	74	-15.26	peak	
2483.5	48.47	-5.85	42.62	54	-11.38	AVG	
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.				

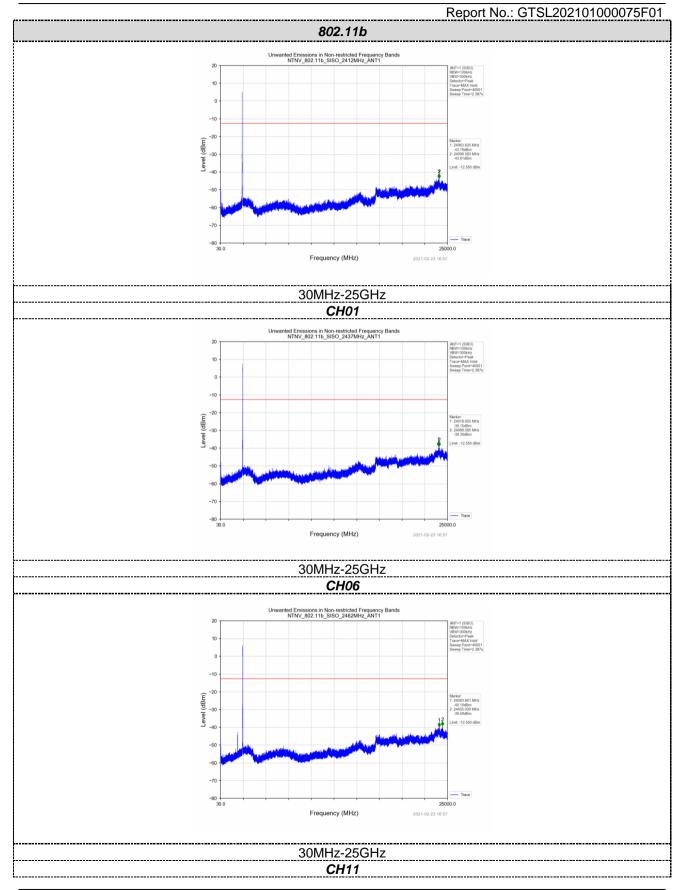
Vertical: 802.11b Mode TX CH HIGH (2462MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type				
2483.5	64.01	-5.65	58.36	74	-15.64	peak				
2483.5	47.39	-5.85	41.54	54	-12.46	AVG				
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

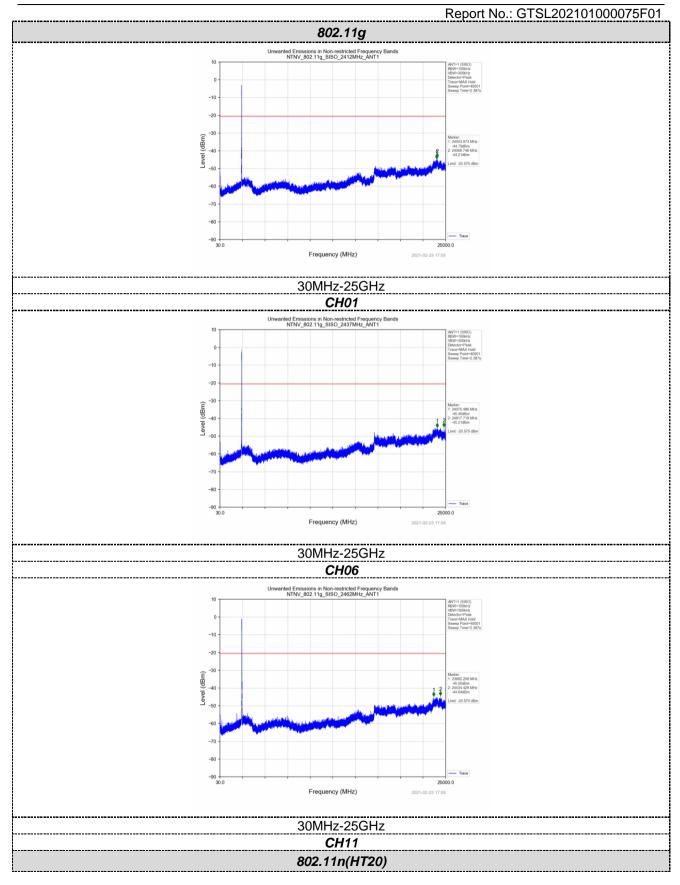
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

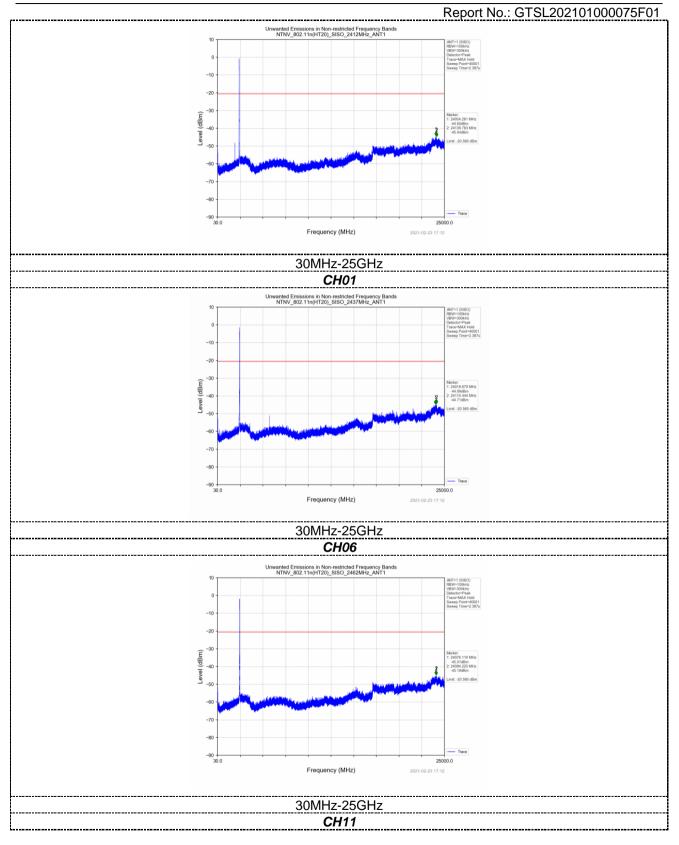


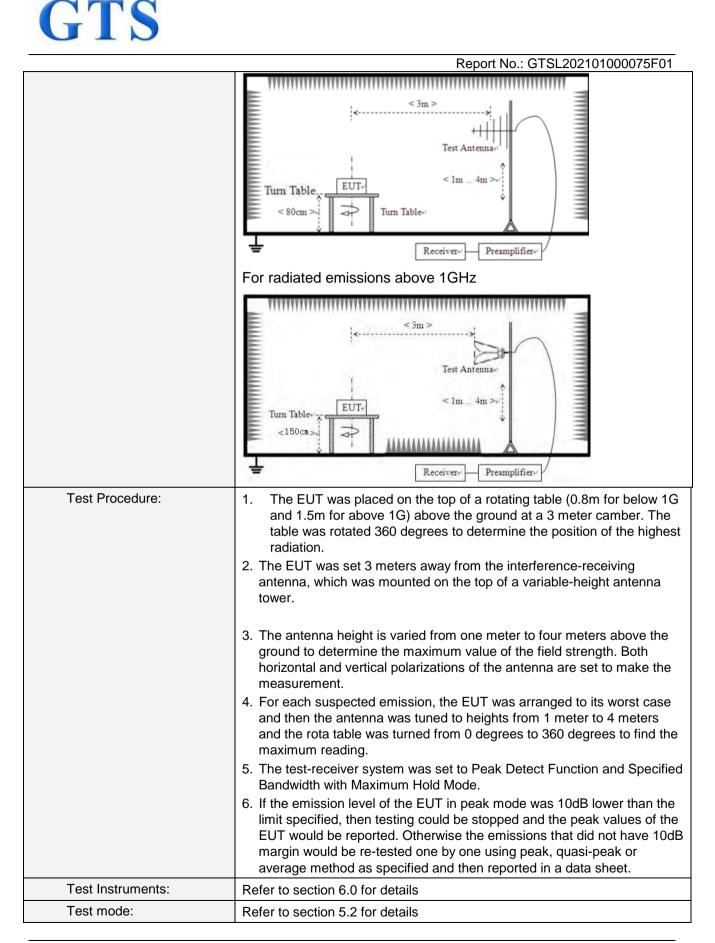
7.7 Spurious Emission


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					







7.7.2 Radiated Emission Method

FCC Part15 C Section 15.209							
ANSI C63.10: 2013							
9kHz to 25GHz							
Measurement Distance: 3m							
Frequency		Detector RBV		RBW VBW		Value	
9KHz-150KHz	Qı	uasi-peak	200	Ηz	600Hz	z Quasi-peak	
150KHz-30MHz	Qu	uasi-peak	9KH	Ιz	30KH2	z Quasi-peak	
30MHz-1GHz	Qı	uasi-peak	100k	Hz	300KH	lz Quasi-peak	
Above 1GHz		Peak	1Mł	Ηz	3MHz	z Peak	
Above ronz		Peak	1Mł	Ηz	10Hz	Average	
Frequency		Limit (u∖	//m)	V	alue	Measurement Distance	
0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
0.490MHz-1.705M	Hz	24000/F(KHz)		QP	300m	
1.705MHz-30MH	z	30			QP	30m	
30MHz-88MHz		100		QP			
88MHz-216MHz	<u>-</u>	150		QP			
216MHz-960MH	Z	200		QP		3m	
960MHz-1GHz		500) QP		om	
Above 1GHz		500		Average			
		5000	00 Peak		Peak		
For radiated emiss	sions	from 9kH	z to 30	OMH	Z		
Image: Solution of the second seco							
	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Above 1GHz 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emiss	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3 Frequency I 9KHz-150KHz Qu 150KHz-30MHz Qu 30MHz-1GHz Qu Above 1GHz Qu 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz For radiated emissions For radiated emissions	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Frequency Limit (uv 0.009MHz-0.490MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 300 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 For radiated emissions from 9kH	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBN 9KHz-150KHz Quasi-peak 2000 150KHz-30MHz Quasi-peak 100k 30MHz-1GHz Quasi-peak 100k Above 1GHz Peak 1MH Peak 1MH 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 2400/F(KHz) 0.490MHz-1.705MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 S00 5000 Ket 500 Above 1GHz 500 S00 5000	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 100KHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz 0.009MHz-0.490MHz 2400/F(KHz) 0 0 0.490MHz-1.705MHz 24000/F(KHz) 0 0 1.705MHz-30MHz 30 30 0 30MHz-88MHz 100 88MHz-216MHz 150 2 216MHz-960MHz 200 0 0 9 960MHz-1GHz 500 Av 5000 F For radiated emissions from 9kHz to 30MH Test Antenna Im Automa Im Automa Im Automa Im Test Antenna Im Im Automa Im Im Automa Im Im	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100KHz 300KH Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 2400/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP 5000 Average 5000 Peak For radiated emissions from 9kHz to 30MHz For radiated emissions from 9kHz to 30MHz	

Report No.: GTSL202101000075F01								
Test voltage:	AC120V 60	AC120V 60Hz						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 6	AC 120V, 60Hz						
Test results:	Pass	Pass						

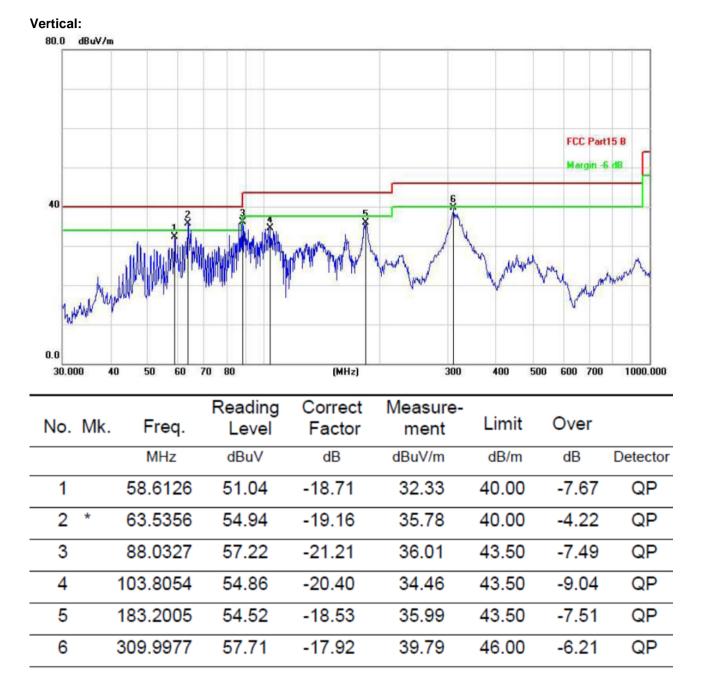
Remarks:

1. Only the worst case Main Antenna test data.

2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

9kHz~30MHz


> The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Below 1GHz Horizontal: 80.0 dBuV/m FCC Part15 B Margin 6 dB 6 40 marth is had been with MININ 0.0 30.000 60 70 80 (MHz) 300 400 500 600 700 1000.000 40 50 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dB/m dB Detector 1 84.9993 52.39 -21.06 31.33 40.00 QP -8.67 2 105.6414 53.50 -20.34 33.16 43.50 -10.34 QP 3 QP 54.69 -18.43 36.26 43.50 -7.24 140.8351 QP 164.9071 51.89 -16.45 35.44 43.50 -8.06 4 57.23 QP 5 183.8437 -18.66 38.57 43.50 -4.93 6 311.0867 58.98 -18.1940.79 46.00 -5.21 QP L

Final Level =Receiver Read level + Correct Factor

Final Level =Receiver Read level + Correct Factor

Above 1GHz

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4824	64.42	-3.67	60.75	74	-13.25	peak			
4824	46.09	-3.64	42.45	54	-11.55	AVG			
7236	60.52	-0.9	59.62	74	-14.38	peak			
7236	42.18	-0.9	41.28	54	-12.72	AVG			
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Horizontal: LOW CH1 (802.11b Mode)/2412

Vertical: LOW CH1 (802.11b Mode)/2412

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4824	63.87	-3.67	60.2	74	-13.8	peak			
4824	46.03	-3.64	42.39	54	-11.61	AVG			
7236	57.35	-0.9	56.45	74	-17.55	peak			
7236	42.28	-0.9	41.38	54	-12.62	AVG			
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4874	62.49	-3.53	58.96	74	-15.04	peak			
4874	45.58	-3.53	42.05	54	-11.95	AVG			
7311	57.31	-0.85	56.46	74	-17.54	peak			
7311	41.95	-0.85	41.1	54	-12.9	AVG			
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Horizontal: MID CH6 (802.11b Mode)/2437

Vertical: MID CH6 (802.11b Mode)/2437

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
4874	62.11	-3.53	58.58	74	-15.42	peak		
4874	45.38	-3.53	41.85	54	-12.15	AVG		
7311	57.62	-0.85	56.77	74	-17.23	peak		
7311	43.01	-0.85	42.16	54	-11.84	AVG		
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
4924	64.29	-3.49	60.8	74	-13.2	peak			
4924	45.12	-3.49	41.63	54	-12.37	AVG			
7386	59.86	-0.78	59.08	74	-14.92	peak			
7386	41.79	-0.78	41.01	54	-12.99	AVG			
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

Horizontal: HIGH CH11 (802.11b Mode)/2462

Vertical: HIGH CH11 (802.11b Mode)/2462

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4924	63.98	-3.49	60.49	74	-13.51	peak			
4924	45.25	-3.49	41.76	54	-12.24	AVG			
7386	58.33	-0.78	57.55	74	-16.45	peak			
7386	42.17	-0.78	41.39	54	-12.61	AVG			
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----