

WSL

1.10

For Question Please Contact with WSCT www.wsct-cert.com

FCC SAR Compliance Test Report

For

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET

FOTAN NT HONGKONG

Model: V8001

Prepared By: Zeng Longhao Zeng Longhaw

Report Number: WSCT-A2LA-R&E231200026A-SAR

Report Date: 05 January 2024

FCC ID: 2AXYP-V8001

Checked By: Wei Liangmei Was hangmes

Approved By: Liu Fuxin

Kih-

Prepared By:

ion & Test

NSE1

Non * PT

5

160

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-26996192 Fax: +86-755-86376605

也标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT IN

Page 1 of 37

e

WSET

PHOM * PT

oup (Shenzh

69

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

ACCREDITED

For Question Please Contact with WSCT www.wsct-cert.com

Table of contents

-	1/	General information	4
×	1.1	Notes	
51	1.2	Application details	4
	1.3	Statement of Compliance	
	1.4	EUT Information	
	2	Testing laboratory	
5	3	2.1 ACCREDITATIONS	
	4	Test Environment	
1	5	Applicant and Manufacturer	7
	6	Test standard/s:	
	7	RF exposure limits	9
	8	SAR Definition	9
X	9	SAR Measurement System	
57	9.1	The Measurement System	.10
	9.2	Robot	
	9.3	Probe	
_	9.4	Measurement procedure	
X	9.5	Description of interpolation/extrapolation scheme	
	9.6	Phantom	
61	9.7	Device Holder	.15
	9.8	Video Positioning System	.16
	9.9	Tissue simulating liquids: dielectric properties	.17
	9.10) Tissue simulating liquids: parameters	.18
X	10	System Check	
51	10.1	System check procedure	.19
	10.2	2 System check results	.20
	11	SAR Test Test Configuration	.21
			11.1.1.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Hitp:www.wscl-cert.com 世标检测认证股份

Selection & Testing

WSET

BS DUOM * PT

Zatio

Group (Shenzh

669

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

Please Contact with WSCT www.wsct-cert.com

	A	Wi-Fi Test Configuration	र रिप्रान
1	11.1	Wi-Fi Test Configuration	21
>	11.2	WiFi 2.4G SAR Test Procedures	22
115	12	Detailed Test Results	23
	12.1	Conducted Power measurements	
	12.1.1	Conducted Power of Wi-Fi 2.4G	
	12.1.2	Conducted Power of BT	
/	12.1.3	Conducted Power of BLE	24
/	12.1.4	Tune-up power tolerance	25
W5	12.2	SAR test results	
	12.2.1	Results overview of Wi-Fi 2.4G	
	12.2.2		
-	13	Multiple Transmitter Information	29
1	/		
/	13.1.1	Stand-alone SAR test exclusion	
875	13.1.2		
	14	Measurement uncertainty evaluation	
	14.1	Measurement uncertainty evaluation for SAR test	
	14.2	Measurement uncertainty evaluation for system check	
1	15	Test equipment and ancillaries used for tests	
/	Annex	A: System performance verification	
17	Annex	B: Measurement results	
	Annex		
	2		

世际检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p[Shenzhen] Co. Lts. TEL:86/755-25996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cent.com

23

1.91

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

Please Contact with WSCT www.wsct-cert.com

Modified History

					-
1	REV.	Modification Description	Issued Date	Remark	
5	REV.1.0	Initial Test Report Relesse	05 January 2024	Liu Fuxin	1
	X	X	XX	\rightarrow	$\langle \rangle$

General information

1.1 Notes

1

The test results of this test report relate exclusively to the test item specified in this test report. Shenzhen Timeway Testing Laboratories does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

1.2 Application details

S PHOM * PT

669

Date of receipt of test item:	2023-12-10	NYET OF	AT AT A	1
Start of test:	2023-12-12	/ meren		1
End of test:	2023-12-29	\times \rightarrow		X
AVER A	1999	त्र रिप्स	-	741
\vee	\sim	\sim		
THE AVERAGE	WESTER .	(TATA)	THE REAL	1
X	$\langle \rangle$			III
Sentention & Testing Group (Sheng	1476	THE REAL PROPERTY AND A DECIMAL OF A DECIMAL	1111	1

世际检测认证股份 ADD:Building A-B Baoshi Science's Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86/755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

For Question, Please Contact with WSCT www.wsct-cert.com

1.3 Statement of Compliance

non & Tes

HOM * P

(She

The maximum results of Specific Absorption Rate (SAR) found during testing for V8001 is as below:

Band	Position	MAX Reported SAR _{1g} (W/kg)		
Wi-Fi 2.4G	Body 0mm	1.045	/	
BT Body 0mm 0.107				
The hi	ghest simultaneous SAR is 1.04	45W/kg per KDB690783 D01	150	

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1g tissue according to the FCC rule §2.1093, the ANSI/IEEE C95.1:2005, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013.

本語語人近期日 Shenden) Co. List TEL:86/755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

ACCREDITED

1111 - 1 - 1 - A

SOL

Certificate #5768.01 For Question Please Contact with WSCT www.wsct-cert.com

11111

EUT Information 1.4

Non & Testino

WSET

S DUOM * PT

e

Joup (Shenzh

60

			1614		
	Device Information:				
	Product Name:	Tablet			
9	Model :	V8001 W5CT W5CT			
-	Trade Mark:	VILLAON			
	Software Version:	V8001-A133	X		
	Hardware Version:	V1.0	WIST -		
/	Device Type:	Portable device	IFIA		
	Exposure Category:	uncontrolled environment / general population			
T	Production Unit or Identical Prototype:	Production Unit			
	Antenna Type :	Integral Antenna			
	Device Operating Configurations:				
1	Supporting Mode(s) :	Wi-Fi , BT	LE19		
	Modulation:	WiFi(DBPSK,DQPSK,CCK,BPSK, QPSK,16QAM,64QAM,256QAM), BT3.0(GFSK,π/4-DQPSK, 8-DPSK),BT 5.0(GFSK)			
-	Device Class :	Class B, No DTM Mode	X		
7	Operating Frequency Range(s)	Band TX(MHz) RX(MHz) Wi-Fi (2.4G) 2412-2462			
<u>a</u>	Power Source:	0-19-39(BLE) Rechargeable Li-ion Polymer Battery :BL-40PV Rated Voltage: 3.8V Rated Cpacity:4000mAh/15.2Wh Typical Capacity:4100mAh/15.58Wh Limited Charge Voltage: 4.35V			

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Hitp:www.wscl-cert.com 世标检测认证股份

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

For Question Please Contact with WSCT www.wsct-cert.com

2 Testing laboratory

	/				
Test Site World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.					
	Test Location	Building A-B, Baoshi Science & Technology Park, Baoshi Road,			
5/	Test Location	Bao'an District, Shenzhen, Guangdong, China			
1	Telephone	+86-755-26996192			
	Fax	+86-755-86376605	X		

3 2.1 ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732 FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

4 Test Environment

non & Test

MOM * P

(Sher

	Required	Actual
Ambient temperature:	18 – 25 °C	22 ± 2 °C
Tissue Simulating liquid:	22 ± 2 °C	22 ± 2 °C
Relative humidity content:	30 – 70 %	30 – 70 %
	N N	V

1	5 Applicant and Manufacturer					
Applicant/Client Name: ORAIMO TECHNOLOGY LIMITED						
	Applicant Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG				
	Manufacturer Name:	ORAIMO TECHNOLOGY LIMITED				
X	Manufacturer Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG				

大統領以证設設 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bae'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Hitp:www.wsci-cert.com

Member of the WSCT INC

WS LEL

Selection & Testing

WSET

TIG * MOURS

669

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

1510

2.

23

For Question, Please Contact with WSCT www.wsct-cert.com

	AVIS OF	AVERA AVERA	VISION
1	6 Test standard/s:		
X	X	<u> </u>	
1175	ANSI Std C95.1-2005	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	$ \rightarrow $
	IEEE Std 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	YEII A
>	RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 5 March 2015)	
W5	KDB447498 D01	General RF Exposure Guidance v06	$ \longrightarrow $
	KDB941225 D06	Hot Spot SAR V02r01	X
_	KDB248227 D01	SAR meas for 802.11 a/b/g v02r02	VISIA
>	KDB865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04	
1175	KDB865664 D02	RF Exposure Reporting v01r02	

Z R

1.91

Page 8 of 37

Member of the WSCT INC

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

For Question Please Contact with WSCT

RF exposure limits

ATTAC A	1414 AV414	A1494
Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Heads/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g
	A COLORADO	

The limit applied in this test report is shown in bold letters Notes:

AT AT A PARTY

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

8 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

where:

ion & Tes

M * P

S

 σ = conductivity of the tissue (S/m)

 $SAR = \frac{\sigma |E|^2}{\rho}$

- ρ = mass density of the tissue (kg/m³)
- E = rms electric field strength (V/m)

総論派以正設行
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
(Shenzhen) Co, Ltt
FEL:86-755-26996192 26992306 FAX:86-759-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

AVAIAT

Please Contact with WSC1

9 SAR Measurement System

9.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

AWSET

- Main computer to control all the system

- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Device holder

sion & Tes

Mom * P

(Sher

- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Ltd. TEL:85-755-26996192_26992306_FAX-86-755-86376605_E-mail: Fengbing Wang@wsci-cert.com_Http://www.wsci-cent.com_

ilac-MR/

Please Contact with WSC1

ReportNo.: WSCT-A2LA-R&E231200026A-SAR 9.2 Robot

The COMOSAR system uses the high precision robots KR 6 R900 sixx type out of the newer series from Satimo SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used. The KR 6 R900 sixx robot series have many features that are important for

our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

9.3 Probe

non & Tes

M * P

S

For the measurements the Specific Dosimetric E-Field Probe SSE 5 with following specifications is

used

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

D,	vnomio	rongo	0.0	1 100	M/ka
D	ynanic	range:	0.0	1-100	vv/kg

Probe Length	330 mm	
Length of Individual Dipoles	4.5 mm	
Maximum external diameter	8 mm	X
Probe Tip External Diameter	5 mm	\sim
Distance between dipoles / probe extremity	2.7 mm	14.1

- Calibration range: 300MHz to 3GHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:less than 30°

Figure 2 – MVG COMOSAR Dosimetric E field Dip	pole
Dynamic range: 0.01-100 W/kg	
Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

- Calibration range: 5GHz to 6GHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:less than 30°

世际检测认证服份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86/755-26996192 26992306 FAX:86/759-86376605 E-mail: Fengbing/Wang@wsci-cert.com Http://www.wsci-cert.com

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

ilac-MR

For Question

with WSCT

9.4 Measurement procedure

- The following steps are used for each test position
 - Establish a call with the maximum output power with a base station simulator. The connection

between the mobile and the base station simulator is established via air interface.

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 *
 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Spatial Peak SAR Evaluation

(c) (d)

M * P

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

(a) Extraction of the measured data (grid and values) from the Zoom Scan

(b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)

- Generation of a high-resolution mesh within the measured volume
- Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Ltd TEL:86/785-26998192 26992306 FAX 86-756-86376605 E-mail: Fengbing, Wang@wsct-cert.com Hitp:www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

1.1.14

For Question Please Contact with WSC1 www.wsct-cert.com

SAR Averaged Methods

non & Test

M * P

S

In SATIMO, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

9.5 Description of interpolation/extrapolation scheme

- The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.
- An extrapolation is using to determinate this highest local SAR values.
 The extrapolation is based on afourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.
- The measurements have to be performed over a limited time(due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR average over 10 grams and 1gram requires a very fine resolution in the three dimensional scanned data array.

世际检测认证股份 ADD:Building A-6 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Steathen) Co. Ma

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

NPT4A

For Question Please Contact with WSCT www.wsct-cert.com

9.6 Phantom

non & Tesu

WSET

PHOM * PT

JUP (Shen

Co

11510

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

1717-57.57 MILES

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005
	ZULATA ZULA	19 1419

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China piSheutheni Co, Litt

Device holder

Permittivity

3.7

Loss Tangent

0.005

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 28992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

System Material

Delrin

世标检测认证股份

non & Tes

WSET

PHOM * PT

up (Shen

e

non & Test

M * P

(Sher

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

For Question Please Contact with WSCT www.wsct-cert.com

9.8 Video Positioning System

- The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.
- During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.
- The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

ilac-MR/

with WSCI ert.com

Tissue simulating liquids: dielectric properties 9.9

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ± 5% of the target values.

The following materials are used for producing the tissue-equivalent materials. (Liquids used for tests are marked with \boxtimes):

	(Elquido docu foi teote						
	Ingredients(% of weight)			Freque	ncy (MHz)		
1	frequency band	750	835	1800	1900	2450	2600
	Tissue Type	Head	Head	Head	Head	Head	Head
1	Water	39.2	41.45	52.64	55.242	62.7	55.242
	Salt (NaCl)	2.7	1.45	0.36	0.306	0.5	0.306
	Sugar	57.0	56.0	0.0	0.0	0.0	0.0
	HEC	0.0	1.0	0.0	0.0	0.0	0.0
	Bactericide	0.0	0.1	0.0	0.0	0.0	0.0
	Triton X-100	0.0	0.0	0.0	0.0	36.8	0.0
V	DGBE	0.0	0.0	47.0	44.542	0.0	44.452
	Ingredients(% of weight)		\square	Freque	ncy (MHz)	4	
7	•	750	835	Freque	ncy (MHz)	2450	2600
7	weight)	750 Body	835 Body		1000 C	2450 Body	2600 Body
7	weight) frequency band			1800	1900		
7	weight) frequency band Tissue Type	Body	Body	1800 Body	1900 Body	Body	Body
1	weight) frequency band Tissue Type Water	Body 50.30	Body 52.4	1800 Body 69.91	1900 Body 69.91	Body 73.2	Body 64.493
7	weight) frequency band Tissue Type Water Salt (NaCl) Sugar HEC	Body 50.30 1.60	Body 52.4 1.40	1800 Body 69.91 0.13	1900 Body 69.91 0.13	Body 73.2 0.04	Body 64.493 0.024
7	weight) frequency band Tissue Type Water Salt (NaCl) Sugar	Body 50.30 1.60 47.0	Body 52.4 1.40 45.0	1800 Body 69.91 0.13 0.0	1900 Body 69.91 0.13 0.0	Body 73.2 0.04 0.0	Body 64.493 0.024 0.0
×	weight) frequency band Tissue Type Water Salt (NaCl) Sugar HEC	Body 50.30 1.60 47.0 0.0	Body 52.4 1.40 45.0 1.0	1800 Body 69.91 0.13 0.0 0.0	1900 Body 69.91 0.13 0.0 0.0	Body 73.2 0.04 0.0 0.0	Body 64.493 0.024 0.0 0.0
X	weight) frequency band Tissue Type Water Salt (NaCl) Sugar HEC Bactericide	Body 50.30 1.60 47.0 0.0 0.0	Body 52.4 1.40 45.0 1.0 0.1	1800 Body 69.91 0.13 0.0 0.0 0.0	1900 Body 69.91 0.13 0.0 0.0 0.0	Body 73.2 0.04 0.0 0.0 0.0	Body 64.493 0.024 0.0 0.0 0.0

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

(Sher

on & Tea

M * P

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang @wsct-cert.com Http://www.wsct-cert.com

WSET

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

1.10

40.5

WSI

Please Contact with WSCT www.wsct-cert.com

1.6-1.97 1

75

7.-

9.10 Tissue simulating liquids: parameters

	T :	Measured		Target 7	Fissue		Measure	d Tissue			
4	Tissue Type	Frequency (MHz)	Target Permittivity ε _r	Range of ±5%	Target Conductivity σ (S/m)	Range of ±5%	٤ _r	σ (S/m)	Liquid Temp.	Test Date	
		2410	52.80	50.16~55.44	1.91	1.81~2.00	52.72	1.92			
1	2450MHz	2435	52.70	50.07~55.34	1.94	1.84~2.04	52.75	1.92	24.0%	2023-	
4	Body	2450	52.70	50.07~55.34	1.95	1.85~2.05	52.74	1.91	21.6°C	12-29	/
		2460	52.70	50.07~55.34	1.96	1.86~2.06	52.70	1.91		X	1

151

Contration & Testing

WSET

S PUOM * PT

dizatio

895

Group (Shenzh

60

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen)Co, Ltt. TEL:86/755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

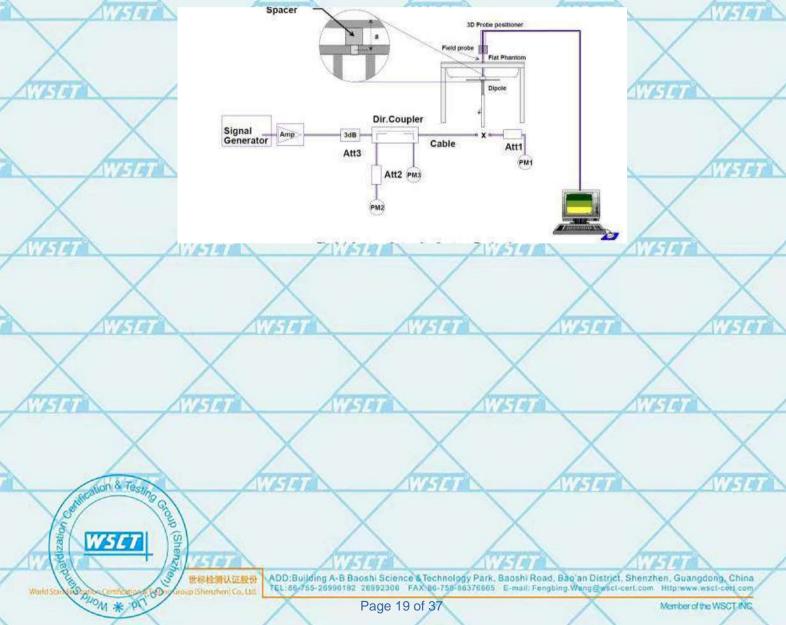
12-1

1.91

Page 18 of 37

Member of the WSCT INC

ReportNo.: WSCT-A2LA-R&E231200026A-SAR


For Question Please Contact with WSC1 www.wsct-cert.com

10 System Check

10.1 System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

For Question, Please Contact with WSCT www.wsct-cert.com

10.2 System check results

non & Test

WSET

PHOM * PT

up (Shen

e

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

								1		41
	Sustam		Target SAR (1	W) (+/-10%)	Measure (Normalize		Liquid		\times
	System Check	1-g (W/g)	Range of ±10% 1-g (W/g)	10-g (W/g)	Range of ±10% 10-g (W/g)	1-g (W/g)	10-g (W/g)	Liquid Temp.	Test Date	257-
/	D2450V2 Body	51.39	46.25~56.53	23.63	21.27~25.99	54.330	23.330	21.6°C	2023/12/29	
1			Note: All SAI	R values are	e normalized to	1W forward	power.			

Note: 5G band system check USES standard waveguide, so the test results are standard en62209-2 table B2

AVISION

For Question Please Contact with WSCT

11 SAR Test Test Configuration

11.1 Wi-Fi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for Wi-Fi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz.During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. 802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

AVSTAT

SAR is not required for 802.11g/n channels when the maximum average output power is less than

0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Band	GHz	Channel	"Default	Test Channels"
incuc	Dana	0.12	onamo	802.11b	802.11g
		2412	1#	Allera	Δ
802.11b/g	2.4 GHz	2437	6	\times \checkmark	Δ
	A	2462	11#	V	Δ

Notes:

non & Test

HOM * P

(Sher

 $\sqrt{}$ = "default test channels"

 \triangle = possible 802.11g channels with maximum average output ½ dB the "default test channels" # = when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

802.11 Test Channels per FCC Requirements

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. List TEL:86-755-26998192_26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com http://www.wsci-cent.com

CREDITED Certificate #5768.01

For Ouestion Please Contact with WSCI www.wsct-cert.com

11.2 WiFi 2.4G SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.

A)802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

1) When the reported SAR of the highest measured maximum output power channel (section 3.1 of of KDB 248227D01v02) for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

B) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of of KDB 248227D01v02r01). SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

C) SAR Test Requirements for OFDM configurations

non & Test

MOM * PT

S

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

> ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cont.co

ACCREDITED Certificate #5768.01

For Ouestion Please Contact with WSCI www.wsct-cert.com

12 **Detailed Test Results**

12.1 Conducted Power measurements

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

12.1.1 Conducted Power of Wi-Fi 2.4G

Mode		802.11b	
Channel / Frequency (MHz)	1(2412)	6(2437)	11(2462)
Average Power(dBm)	14.33	14.05	14.13
Mode		802.11g	
Channel / Frequency (MHz)	1(2412)	6(2437)	11(2462)
Average Power(dBM)	13.39	13.05	13.23
Mode		802.11n(HT20)	
Channel / Frequency (MHz)	1(2412)	6(2437)	11(2462)
Average Power(dBM)	13.26	12.89	13.13
Mode		802.11n(HT40)	
Channel / Frequency (MHz)	1(2422)	6(2437)	11(2452)
Average Power(dBm)	13.31	13.24	13.23
			ATTICAL

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

uon & Test

HOM * P

S

(1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.

(2)For Wi-Fi 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

> ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China 世經綺麗认证股份 TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cont.co

ACCREDITED Certificate #5768.01

N1474 1

For Question Please Contact with WSCT www.wsct-cert.com

12.1.2 Conducted Power of BT

The maximum output power of BT is:

Mode		GFSK mode		
Channel / Frequency (MHz)	0(2402)	39(2441)	78(2480)	1
Average Power(dBm)	10.93	10.03	9.09	
Mode		Pi/4DQPSK mode		
Channel / Frequency (MHz)	0(2402)	39(2441)	78(2480)	
Average Power(dBm)	13.75	12.86	11.91	
Mode		8DPSK mode		
Channel / Frequency (MHz)	0(2402)	39(2441)	78(2480)	1
Average Power(dBm)	14.10	13.27	12.31	
				-

A 1767 M

12.1.3 Conducted Power of BLE

The maximum output power of BLE is:

non & Tesu

WSET

PHOM * PT

OUD

(Shenz

Co

CO. Constanting of the Constanti		A DE LA DESCRIPTION OF THE OWNER	
	BLE 1M	7	4
0(2402)	19(2440)	39(2480)	
10.87	10.10	9.08	5
	BLE 2M		
0(2402)	19(2440)	39(2480)	
10.94	10.15	9.15	/
	0(2402) 10.87 0(2402)	0(2402) 19(2440) 10.87 10.10 BLE 2M 0(2402) 19(2440)	BLE 1M 0(2402) 19(2440) 39(2480) 10.87 10.10 9.08 BLE 2M BLE 2M 39(2480)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-88376605 E-mail: Fengbing Wang@wscl-cert.com Http:www.wscl-cert.com 世标检测认证股份

11-1-1

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

118191

115

For Question, Please Contact with WSCT www.wsct-cert.com

12.1.4 Tune-up power tolerance

	Band	Tune-up po	ower tolerance(dBm)	0
	\wedge	802.11b	Max output power =14.0±0.5dbm	\sim
	2.4G Wi-Fi	802.11g	Max output power =13.0±0.5dbm	
_	2.46 10-51	802.11n (HT20)	Max output power =13.0 ±0.5dbm	57
1		802.11n (HT40)	Max output power =13.0±0.5dbm	
X		1Mbps Power	Max output power =10.5dBm±0.5dbm	
1	BT 📝	2Mbps Power	Max output power =13.5dBm±0.5dbm	
11		3Mbps Power	Max output power =14.0dBm±0.5dbm	
	BLE	1Mbps Power	Max output power =10.5dBm±0.5dbm	
	DLE	2Mbps Power	Max output power =10.5dBm±0.5dbm	
				/

16

Zatio

WSET

PHOM * PT

60

WSIL

25

Contration & Testing Group (Shenzh

1

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-25998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份

77

1.9

75

1.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

ilac-MR/

with WSCI

ert.com

.01 For Question

12.2 SAR test results

Notes:

non & Test

PHOM * PT

(Sher

Co

1) Per KDB447498 D01v05 r02, the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the scaled SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

2) Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

3) Per KDB447498 D01v05r02, All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.

4) Per KDB648474 D04v01r02, body-worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn with headset SAR.

5)Per KDB248227 D01v01r02, the procedures required to establish specific device operating configurations for testing the SAR of 802.11 a/b/g transmitters.

(1) For Headsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is ≤ 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

(2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

(3) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.

世际检测认证股份 ADD:Building A-6 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Stenden) Co. Lts

non & Tesu

PUOM * PT

(Sher

Co

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question Please Contact with WSCI www.wsct-cert.com

6) Per KDB865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is <20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.</p>

7) Per KDB865664 D02v01r01, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix B for details).

8) Per KDB941225 D06v01r01, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

9) Per KDB 941225 D01, 3G SAR Measurement Procedures , The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is \leq 1/4 dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

> 世紀检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755 86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

Please Contact with WSCT www.wsct-cert.com

12.2.1 Results overview of Wi-Fi 2.4G

	Test Position of Body with	Test channel /Freq.(MHz)	Test Mode	SAR (W/	Value 'kg)	Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-g}	Scaling Factor
1	0mm	///////////////////////////////////////		1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	1 dotor
			S	AR Result	s for Body	/ Exposure	Condition			\backslash
	Front side	6/2437	802.11b	1.005	0.349	-0.360	14.33	14.50	1.045	1.040
	Rear side 💋	6/2437	802.11b	0.260	0.114	-1.410	14.33	14.50	0.270	1.040
0	Left side	6/2437	802.11b	0.187	0.137	-4.400	14.33	14.50	0.194	1.040
	Right side	6/2437	802.11b	0.179	0.132	-0.710	14.33	14.50	0.186	1.040
	Top side	6/2437	802.11b	0.267	0.103	-4.100	14.33	14.50	0.278	1.040
	Bottom side	6/2437	802.11b	0.196	0.141	-4.240	14.33	14.50	0.204	1.040
			The second secon		ALC: NO DESCRIPTION OF THE OWNER		and a second second second		and a series of the second sec	

12.2.2 Results overview of BT

1670

Acation & Testing

WSET

PHOM * PT

e

Zatio

Croup (Shenzh

69

	~								~	
	Test Position of Body with	Test channel	Test Mode	SAR Value (W/kg)		Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-g}	Scaling Factor
4	0mm	/Freq.(MHz)		1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	Factor
		\vee	S	AR Result	s for Body	/ Exposure	Condition	V		V
	Front side	79/2480	Edge 1	0.096	0.045	0.360	14.10	14.50	0.105	1.096
	Rear side	79/2480	Edge 2	0.098	0.053	-4.670	14.10	14.50	0.107	1.096
	Left side	79/2480	Edge 3	0.079	0.041	3.730	14.10	14.50	0.087	1.096
ſ	Right side	79/2480	Edge 4	0.074	0.026	-2.830	14.10	14.50	0.081	1.096
	Bottom side	79/2480	Bottom Face	0.089	0.043	1.470	14.10	14.50	0.098	1.096

115901

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen)Co.utg

1.91

sion & Test

WSET

PUOM * PT

up (Shen

es

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

1147418

For Question Please Contact with WSCT www.wsct-cert.com

13 Multiple Transmitter Information

The SAR measurement positions of each side are as below:

-	ANSIN	Distan	ce of the Anter	nna to the E	UT surface/e	dge	117
/	Antennas	Front Face	Rear Face	Left side	Right side	Bottom side	Top side
1	Wi-Fi/BT Antenna	≤25mm	≤25mm	≤25mm	≤25mm	≤25mm	≥25mm

Note: According to the above antenna location, when the antenna distance to the surface edge is larger than 25mm, SAR testing is not necessary.

世际检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

For Question, Please Contact with WSCT www.wsct-cert.com

13.1.1 Stand-alone SAR test exclusion

- The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:
- [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,
- mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where
- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine
- SAR test exclusion.
- Body-Worn position

non & Test

M * P

(She

	Mode	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	Calculation Result	exclusion Threshold	SAR test exclusion	
1	BT	14.50	28.18	5.00	2.45	8.820	3.00	No	2.0

世际检测以证股份 ADD:Building A-B Baoshi Science's Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86-755-26996192-26992306 FAX:96-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

Please Contact with WSCT www.wsct-cert.com

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine

simultaneous transmission SAR test exclusion

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm, where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine

SAR test exclusion.

non & Test

M * P

(She

5	Mode	Position	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	X	Estimated SAR(W/Kg)	
	BT	Body	14.50	28.18	10.00	2.45	7.50	0.588	
									-

13.1.2 Simultaneous Transmission Possibilities

The Simultaneous Transmission Possibilities are as below:

Simultaneous Transmission Possibilities

Simultaneous Tx Combination	Configuration	Head	Body	Hotspot
111	Wi-Fi	NO	YES	NO
2	BT	NO	YES	NO

Note: The device does not support simultaneous BT and Wi-Fi ,because the BT and Wi-Fi share the

same antenna and can't transmit simultaneously.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Ltd TEL:86,755-26998192 26992300 FAX 86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Hitp:www.wsci-cert.com

1151

non & Tesu

WSET

PHOM * PT

(Shen

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question Please Contact with WSCT www.wsct-cert.com

14 Measurement uncertainty evaluation

14.1 Measurement uncertainty evaluation for SAR test

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

Measurei	ment Un	certain	ty eval	uation for	SAR test			
Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g U _i (±%)	10g U _i (±%)	Vi
measurement system								
Probe Calibration	5.8	N	1	1	<u> </u>	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	(1-C _p) ^{1/2}	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√Cp	√Cp	2.41	2.41	∞
Boundary Effect	/ 1	R	$\sqrt{3}$	1	1	0.58	0.58	×
Linearity	4.7	R	$\sqrt{3}$	_ 1	1	2.71	2.71	×
system Detection Limits	1	R	$\sqrt{3}$	1	1 🖌	0.58	0.58	00
Modulation response	3	N			1/1/1	3.00	3.00	00
Readout Electronics	0.5	N	1	1	/1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	1	X 1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF Ambient Conditions-Noise	3	R	$\sqrt{3}$	111		1.73	1.73	∞
RF Ambient Conditions- Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	×
Probe Positioner Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to Phantom Shell	1.4	R	√3	1	/1	0.81	0.81	∞
Extrapolation, interpolation and Integration Algorithms for Max.SAR Evaluation	2.3	R	√3	1/12		1.33	1.33	∞
Test sample Related			_	-			_	
Test Sample Positioning	2.6	Ν	1 🗙	1	1	2.60	2.60	11
Device Holder Uncertainty	3	Ν	1	1	1	3.00	3.00	7
Output Power Variation-SAR drift measurement	5	R	√3		1	2.89	2.89	~
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
	1							

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 28992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

Member of the WSCT INC

For Question, Please Contact with WSCT www.wsct-cert.com

						1				
2	Phantom and Tissue Parameters									
Z	Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	100		2.31	2.31	∞	
	Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	N	1	1	0.84	2.00	1.68	8	7
	Liquid conductivity (meas.)	2.5	N	Kilza	0.64	0.43	1.60	1.08	5	
	Liquid conductivity (target.)	5	R	√3	0.64	0.43	1.85	1.24	5	
2	Liquid Permittivity (meas.)	2.5	×z	1	0.60	0.49	1.50	1.23	∞	
Z	Liquid Permittivity (target.)	5	S/R	√3	0.60	0.49	1.73	1.42	ø	_
	Combined Standard Uncertainly	/	Rss	V	/		10.63	10.54	V	/
	Expanded Uncertainty{95% CONFIDENCE INTERRVAL}		k	4	2	6	21.26	21.08		2
						111	FTTT N		11/572	

115

25

1

1251

WSEL

Selection & Testing

WSET

THE WOW

dizatio

Group (Shenzh

669

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份

12-12

1698

WSE

11/5

167

23

non & Tes

WSET

PUOM * PT

up (Shenz

es

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

Please Contact with WSCT www.wsct-cert.com

14.2 Measurement uncertainty evaluation for system check

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

by Calino. The breakdown of		1 1 1 1 1 1 1 1 1 1 1 1 1			1 m 12	-	1478		٦ -
Unce	rtainty	For Syste	em Perf	ormance (Check	1	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.		
Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i 1g	C _i 10g	1g U _i (±%)	10g U _i (±%)	Vi	
measurement system									
Probe Calibration	5.8	N			1/11	5.80	5.80	8	I
Axial Isotropy	3.5	R	$\sqrt{3}$	(1-C _p) ^{1/2}	$(1-C_p)^{1/2}$	1.43	1.43	8	
Hemispherical Isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41	8	
Boundary Effect	1	R	$\sqrt{3}$	1/	1	0.58	0.58	8	
Linearity	4.7	75R7	$\sqrt{3}$	1775	1771	2.71	2.71	8	
system detection Limits	1	R	$\sqrt{3}$	/ 1	1	0.58	0.58	∞	1
Modulation response	0	N	1	1	1	0.00	0.00	8	
Readout Electronics	0.5	N	1	1	1 /	0.50	0.50	8	1
Response Time	0	R	$\sqrt{3}$	71	1/17	0.00	0.00	0	17
Integration Time	1.4	R	$\sqrt{3}$	1	_1	0.81	0.81	∞	
RF ambient Conditions - Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	8	
RF ambient Conditions – Reflections	3	R	√3	1	1	1.73	1.73	8	
Probe positioned Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	8	/
Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	8	-
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	√3			1.33	1.33	8	F
Dipole									
Deviation of experimental source from numerical source	4	VSN-	1	1.00	1	4.00	4.00	∞	
Input power and SAR drift measurement	5	R	√3	1	1	2.89	2.89	8	/
Dipole axis to liquid Distance	2	R	√3	1	1	1.16	1.16	8	
formania forman	-		and the second	and the second second	free	A second s		hornor	-

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China pShenzhen Co. Ltd. TEL:86/755-25996192_26992306_FAX-86-759-86376605_E-mail: Fengbing Wang@wsct-cert.com_Http://www.wsct-cert.com

1294

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

11510

For Question, Please Contact with WSCT www.wsct-cert.com

11.	And And And	10	I DE LESSE		Ann	See also be	1	and the sector of	~	
R	Phantom and Tissue Parameters									1
	Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2.31	2.31	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Uncertainty in SAR correction for	Ň		1	1				1	7
_	deviation	2	N	415/	1	0.84	2.00	1.68	∞	78
	(in permittivity and conductivity)				1	/				
1	Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5	
1	Liquid conductivity (target.)	5	R	√3	0.64	0.43	1.85	1.24	5	
1	Liquid Permittivity (meas.)	2.5	N	7	0.60	0.49	1.50	1.23	80	1
	Liquid Permittivity (target.)	5	R	√3	0.60	0.49	1.73	1.41	∞	
	Combined Standard Uncertainty	1	Rss	1	1	4	10.28	9.98	1	7
	Expanded Uncertainty (95% Confidence interval)		k	2741		All	20.57	19.95	W#14	T

115

151

14.7

WSE

Selection & Testing

WSET

THE WOW

dizatio

Group (Shenzh

69

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份

175

12-1

1.91

13

7.-

23

ion & Test

WSET

PHOM * PT

(Shen

ilac-MRA

te #5768.01 For Qu

with WSCT

15 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

	1						
/	1	Manufact urer	Device Type	Type(Model)	Serial number	calibi	
75		urer	AWSET	WSET N	AWSET	Last Cal.	Due Date
	\square	SATIMO	COMOSAR DOSIMETRIC E FIELD PROBE	SSE5	0123-EPGO-396	2023-01-30	2024-01-29
	\square	SATIMO	COMOSAR 750 MHz REFERENCE DIPOLE	SID750	SN 48/16 DIP0G750-444	2023-06-25	2026-06-24
\rangle		SATIMO	COMOSAR 835 MHz REFERENCE DIPOLE	SID835	SN 14/13 DIP0G835-235	2023-06-25	2026-06-24
75	\square	SATIMO	COMOSAR 900 MHz REFERENCE DIPOLE	SID900	SN 14/13 DIP0G900-231	2023-06-25	2026-06-24
	\boxtimes	SATIMO	COMOSAR 1800 MHz REFERENCE DIPOLE	SID1800	SN 14/13 DIP1G800-232	2023-06-25	2026-06-24
		SATIMO	COMOSAR 1900 MHz REFERENCE DIPOLE	SID1900	SN 14/13 DIP1G900-236	2023-06-25	2026-06-24
1	\boxtimes	SATIMO	COMOSAR 2000 MHz REFERENCE DIPOLE	SID2000	SN 14/13 DIP2G000-237	2023-06-25	2026-06-24
/	\boxtimes	SATIMO	COMOSAR 2450 MHz REFERENCE DIPOLE	SID2450	SN 14/13 DIP2G450-238	2023-06-25	2026-06-24
75	\boxtimes	SATIMO	COMOSAR 2600 MHz REFERENCE DIPOLE	SID2600	SN 28/14 DIP2G600-327	2023-06-25	2026-06-24
	\boxtimes	SATIMO	Software	OPENSAR	N/A	N/A	N/A
_		SATIMO	Phantom	COMOSAR IEEE SAM PHANTOM	SN 14/13 SAM99	N/A	N/A
>	\boxtimes	R & S	Universal Radio Communication Tester	CMU 200	119733	2023-11-02	2024-11-01
7.5	\boxtimes	R&S	Universal Radio Communication Tester	CMW500	144459	2023-11-02	2024-11-01
		R&S	UXM5G Wireless Test Platform	E7515B	MY60192341	2023-11-02	2024-11-01
	X	HP	Network Analyser	8753D	3410A08889	2023-11-02	2024-11-01
	\square	HP	Signal Generator	E4421B	GB39340770	2023-11-02	2024-11-01
	\square	Keithley	Multimeter	Keithley 2000	4014539	2023-11-02	2024-11-01
2	\boxtimes	SATIMO	Amplifier	Power Amplifier	MODU-023-A- 0004	2023-11-02	2024-11-01
125	\mathbf{X}	Agilent	Power Meter	E4418B	GB43312909	2023-11-02	2024-11-01
		Agilent	Power Meter Sensor	E4412A	MY41500046	2023-11-02	2024-11-01
					\checkmark	V	

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co.(Itt

Member of the WSCT INC

non & Test

WSET

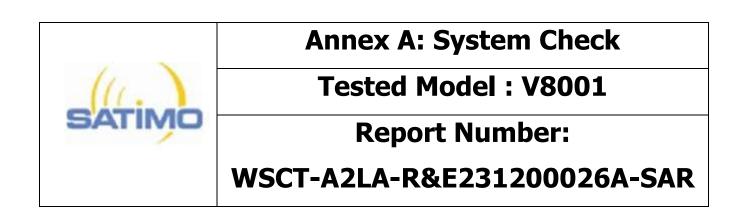
PUOM * PT

up (Shen

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ReportNo.: WSCT-A2LA-R&E231200026A-SAR

Please Contact with WSCT www.wsct-cert.com


Annex A: System performance verification (Please See the SAR Measurement Plots of annex A.)

Annex B: Measurement results (Please See the SAR Measurement Plots of annex B.)

Annex C: Calibration reports (Please See the Calibration reports of annex C.)

> 世际检测认证股份 ADD:Building A-B Baoshi Science's Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China pShenzhen Co. Ltd. TEL:86-755-26996192-26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

MEASUREMENT 1

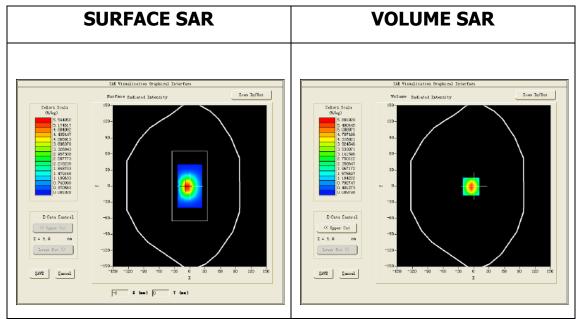
BODY

Type: Validation measurement (Complete)

Date of measurement: 29/12/2023

Measurement duration: 13 minutes 46 seconds

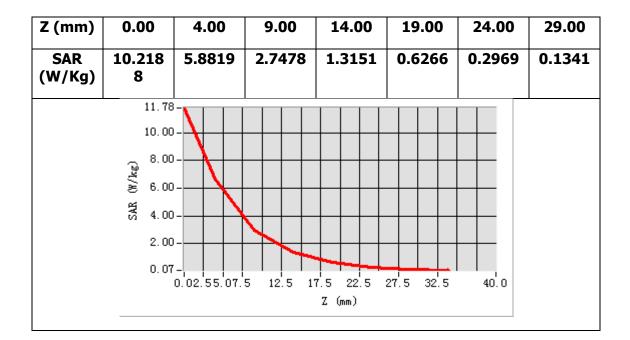
A. Experimental conditions.


<u>Area Scan</u>	<u>dx=8mm dy=8mm</u>
<u>ZoomScan</u>	<u>5x5x7,dx=8mm dy=8mm</u> <u>dz=5mm,Complete</u>
<u>Phantom</u>	Validation plane
Device Position	<u>Dipole</u>
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	Middle
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

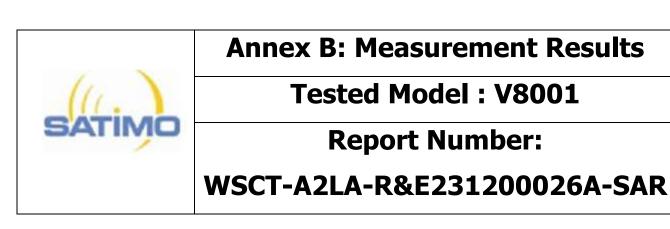
Middle Band SAR (Channel -1):

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.735699
Relative permittivity (imaginary part)	14.017300
Conductivity (S/m)	1.907910
Variation (%)	0.390000



Maximum location: X=5.00, Y=-1.00

SAR Peak: 10.96 W/kg


SAR 10g (W/Kg)	2.333453
SAR 1g (W/Kg)	5.433343

3D screen shot	Hot spot position

MEASUREMENT 1

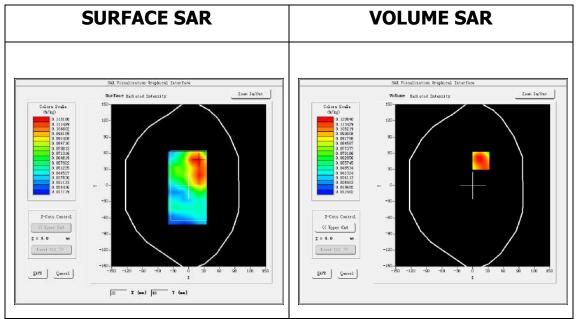
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 29/12/2023

Measurement duration: 11 minutes 22 seconds

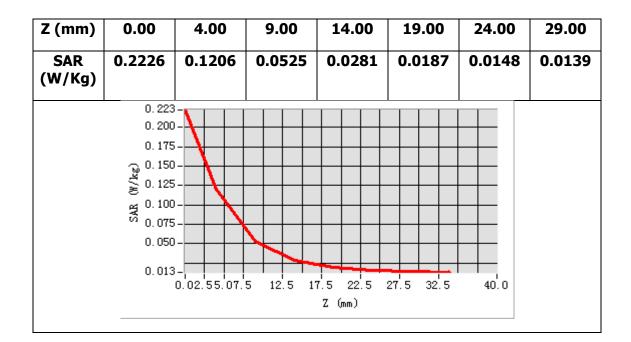
A. Experimental conditions.


<u>Area Scan</u>	<u>dx=15mm dy=15mm</u>
<u>ZoomScan</u>	<u>5x5x7,dx=8mm dy=8mm</u> <u>dz=5mm,Complete</u>
<u>Phantom</u>	Validation plane
Device Position	Body
Band	IEEE 802.11b ISM
<u>Channels</u>	Middle
Signal	IEEE802.b (Crest factor: 1.0)

B. SAR Measurement Results

Middle Band SAR (Channel 6):

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.566399
Relative permittivity (imaginary part)	14.468200
Conductivity (S/m)	1.962852
Variation (%)	-0.360000



Maximum location: X=16.00, Y=46.00

SAR Peak: 0.23 W/kg

SAR 10g (W/Kg)	0.349126
SAR 1g (W/Kg)	1.005322

3D screen shot	Hot spot position

MEASUREMENT 2

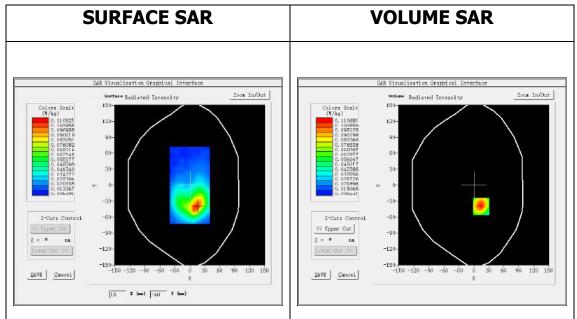
Rear-side-middle

Type: Phone measurement

Date of measurement: 29/12/2023

Measurement duration: 8 minutes 26 seconds

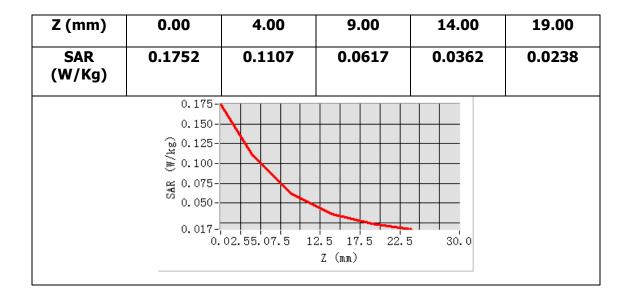
A. Experimental conditions.


<u>Area Scan</u>	dx=15mm dy=15mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	Bluetooth
<u>Channels</u>	<u>High</u>
<u>Signal</u>	Bluetooth (Crest factor: 1.0)

B. SAR Measurement Results

Higher Band SAR (Channel 78):

Frequency (MHz)	2480.000000
Relative permittivity (real part)	39.160000
Relative permittivity (imaginary part)	13.290000
Conductivity (S/m)	1.831067
Variation (%)	-4.670000



Maximum location: X=15.00, Y=-40.00

SAR Peak: 0.18 W/kg

SAR 10g (W/Kg)	0.052865
SAR 1g (W/Kg)	0.098246

Hot spot position

Annex C: Calibration Reports

Tested Model : V8001

Report Number:

WSCT-A2LA-R&E231200026A-SAR

SAR Reference Dipole Calibration Report

Ref: ACR.178.18.20.MVGB.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT SHENZHEN 518108,P.R. CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 14/13 DIP2G450-238

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 06/25/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2023	72
Checked by :	Jérôme LUC	Technical Manager	6/26/2023	24
Approved by :	Yann Toutain	Laboratory Director	6/26/2023	- The

	Customer Name World	
	World	
	Standardization	
Distribution :	Certification &	
	Testing Group Co	
	.,Ltd	

Issue	Name	Date	Modifications
A	Jérôme LUC	6/26/2023	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test4	
3	Proc	luct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	oration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID2450				
Serial Number	SN 14/13 DIP2G450-238				
Product Condition (new / used)	Used				

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Expanded Uncertainty on Return Loss
0.08 LIN

5.2 **DIMENSION MEASUREMENT**

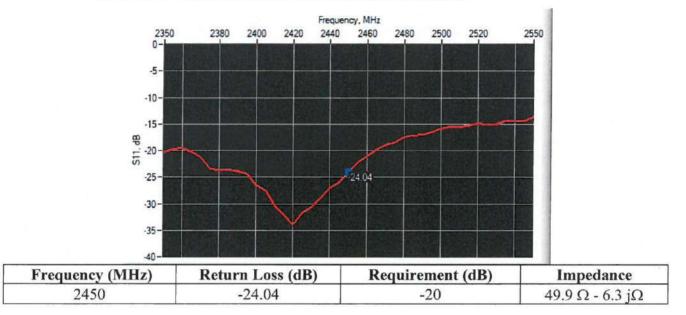
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

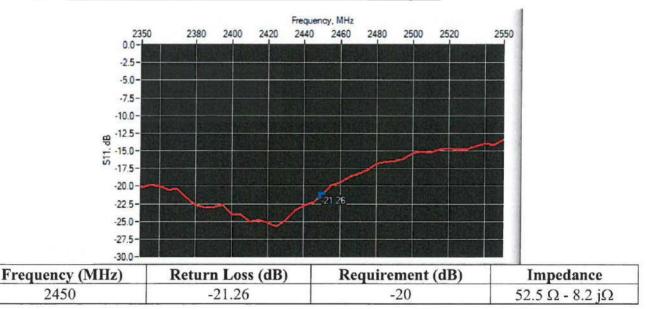
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		


Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


1 g	19 % (SAR)	
10 g	19 % (SAR)	

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L	nm	hn	nm	di	mm
	required	measured	required	measured	required	measured

Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1±1%.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.	11120-00	3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.	_	32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	-	30.4 ±1 %.	1 7 56	3.6 ±1 %.	1.5
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.	other for our co	26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m		
	required	measured	required	measured	
300	45.3 ±10 %		0.87 ±10 %		
450	43.5 ±10 %		0.87 ±10 %		
750	41.9 ±10 %		0.89 ±10 %		
835	41.5 ±10 %		0.90 ±10 %		
900	41.5 ±10 %		0.97 ±10 %		
1450	40.5 ±10 %		1.20 ±10 %		
1500	40.4 ±10 %		1.23 ±10 %		
1640	40.2 ±10 %		1.31 ±10 %		

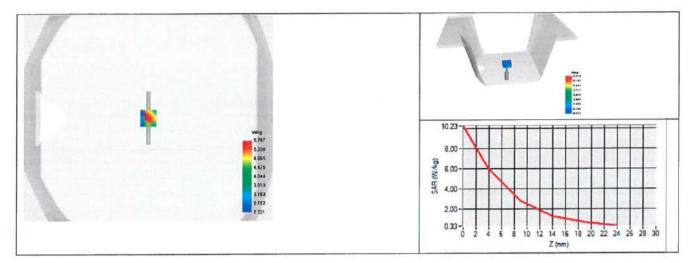
7.1 HEAD LIQUID MEASUREMENT

	1.37 ±10 %		40.1 ±10 %	1750
	1.40 ±10 %		40.0 ±10 %	1800
	1.40 ±10 %		40.0 ±10 %	1900
	1.40 ±10 %		40.0 ±10 %	1950
	1.40 ±10 %		40.0 ±10 %	2000
	1.49 ±10 %		39.8 ±10 %	2100
	1.67 ±10 %		39.5 ±10 %	2300
1.88	1.80 ±10 %	41.9	39.2 ±10 %	2450
	1.96 ±10 %		39.0 ±10 %	2600
	2.40 ±10 %		38.5 ±10 %	3000
	2.91 ±10 %		37.9 ±10 %	3500

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Head Liquid Values: eps': 41.9 sigma: 1.88	
Distance between dipole center and liquid 10.0 mm		
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution dx=5mm/dy=5mm/dz=5mm		
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	


Frequency MHz	1 g SAR (W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	

Page: 8/11

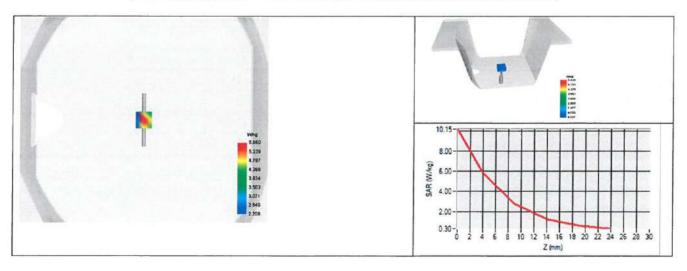
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.25 (5.33)	24	23.94 (2.39)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	
2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %	53.4	1.95 ±10 %	2.14

Page: 9/11



2600	52.5 ±10 %	2.16 ±10 %
3000	52.0 ±10 %	2.73 ±10 %
3500	51.3 ±10 %	3.31 ±10 %
3700	51.0 ±10 %	3.55 ±10 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Body Liquid Values: eps' : 53.4 sigma : 2.14	
Distance between dipole center and liquid 10.0 mm		
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	55.24 (5.52)	23.83 (2.38)

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2022	05/2025	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025	
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025	
Reference Probe	MVG	EPGO333 SN 41/18	05/2023	05/2024	
Multimeter	Keithley 2000	1160271	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	05/2022	05/2025	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2022	11/2025	

COMOSAR E-Field Probe Calibration Report

Ref : ACR.30.6.23.BES.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT SHENZHEN 518108,P.R. CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: 0123-EPGO-396

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 01/30/2023

Accreditations #2-6789 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	1/30/2023	B
Checked & approved by:	Jérôme Luc	Technical Manager	1/31/2023	Jz
Authorized by:	Yann Toutain	Laboratory Director	1/31/2023	Yann TOUTAAN

	Customer Name
	World Standardization
Distribution :	Certification & Testing Group Co
	.,Ltd

Issue	Name	Date	Modifications
А	Cyrille ONNEE	1/30/2023	Initial release

Page: 2/10

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Sensitivity	4
	3.2	Linearity	5
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Calil	oration Results	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Veri	fication Results9	
7	List	of Equipment9	

1 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	MVG			
Model	SSE2			
Serial Number	0123-EPGO-396			
Product Condition (new / used)	New			
Frequency Range of Probe	0.15 GHz-7.5GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.232 MΩ			
	Dipole 2: R2=0.250 MΩ			
	Dipole 3: R3=0.248 MΩ			

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

3.2 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 <u>ISOTROPY</u>

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

$$\text{SAR}_{\text{uncertainty}}[\%] = \delta \text{SAR}_{\text{be}} \frac{\left(d_{\text{be}} + d_{\text{step}}\right)^2}{2d_{\text{step}}} \frac{\left(e^{-d_{\text{be}}/(\delta/2)}\right)}{\delta/2} \quad \text{for } \left(d_{\text{be}} + d_{\text{step}}\right) < 10 \text{ mm}$$

where

SAR _{uncertainty}	is the uncertainty in percent of the probe boundary effect
$d_{\rm be}$	is the distance between the surface and the closest zoom-scan measurement
	point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that
-	are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent
	liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
⊿SAR _{be}	in percent of SAR is the deviation between the measured SAR value, at the
	distance d_{be} from the boundary, and the analytical SAR value.

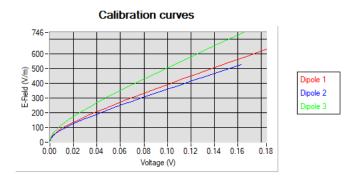
The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/10

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/10

		Normz dipole 3 $(\mu V/(V/m)^2)$
1.27	1.51	0.77

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	104	104

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

 σ =the conductivity of the liquid

 ρ =the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

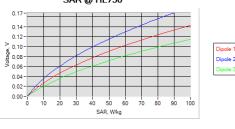
where c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{ab\delta}e^{\frac{-2z}{\delta}}$$

where

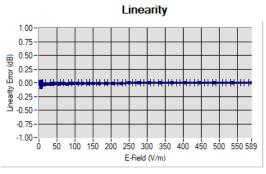
a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid


Page: 7/10

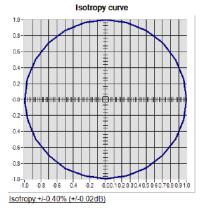


The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

Liquid	Frequency (MHz*)	<u>ConvF</u>		
HL750	750	2.11		
BL750	750	2.19		
HL850	835	1.99		
BL850	835	2.14		
HL900	900	1.93		
BL900	900	2.18		
HL1800	1800	2.13		
BL1800	1800	2.30		
HL1900	1900	2.26		
BL1900	1900	2.35		
HL2000	2000	2.40		
BL2000	2000	2.53		
HL2450	2450	2.43		
BL2450	2450	2.66		
HL2600	2600	2.23		
BL2600	2600	2.35		
HL3300	3300	2.00		
BL3300	3300	1.79		
HL3900	3900	2.23		
BL3900	3900	2.17		
HL4200	4200	2.27		
BL4200	4200	2.25		
HL4600	4600	2.18		
BL4600 HL4900	4600	2.12		
	4900	2.14		
BL4900	4900	2.13		
HL5200	5200	1.90		
BL5200	5200	1.73		
HL5400	5400	2.10		
BL5400	5400	1.81		
HL5600	5600	2.13		
BL5600	5600	1.98		
HL5800	5800	2.11		
BL5800	5800	1.85		
(*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6				


Page: 8/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL



6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is ± -0.2 dB for linearity and ± -0.15 dB for axial isotropy.

Linearity:+/-1.88% (+/-0.08dB)

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA		Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	NI-USB 5680	170100013	06/2021	06/2024

Page: 9/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG		Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 W/(44 1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1		Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1		Validated. No cal required.
Waveguide	MVG	SN 37/16 W/1210 1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 37/16 W/(=17/1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG			Validated. No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG			Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 10/10