

ion & Tesh

and zation Certification & Tacing

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate Number 5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-V8001 Product: Tablet Model No.: V8001 Trade Mark: VILLAON Report No.: WSCT-A2LA-R&E231200026A-LE Issued Date: 28 December 2023

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

世标检测认证股份 Group (Shenzhen) Co., Ltd. ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

KIE

Settleation & Testi

W5ET

BUOM * PT

rdizatic

Group (Shenzh

60

TABLE OF CONTENTS

				- 1 + 7 j
/1.	Test Certification			
2.				
3.	EUT Description	AWSET	507 5	
4.	Genera Information		6	\checkmark
	4.1. TEST ENVIRONMENT AND MODE		6	
-/	4.2. DESCRIPTION OF SUPPORT UNITS			510
5.	Facilities and Accreditations	<u> </u>	7	
1	5.1. FACILITIES	and the second s	7	
	5.2. ACCREDITATIONS	Allela	7	
	5.3. MEASUREMENT UNCERTAINTY	<u> </u>	8	X
	5.4. MEASUREMENT INSTRUMENTS		A	1
6.	Test Results and Measurement Data	<u> </u>		54
/	6.1. ANTENNA REQUIREMENT			
1	6.2. CONDUCTED EMISSION			
ETN	6.3. CONDUCTED OUTPUT POWER	ATTACA		
	6.4. EMISSION BANDWIDTH			1
	6.5. Power Spectral Density			
1	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION ME	EASUREMENT		sEi.
/	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT			

2.0

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE **1. Test Certification**

	WWW.WSCroon.com
Product:	Tabletyser wser wser
Model No.:	V8001
Trade Mark:	VILLAON
Applicant:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SH AN MEI STREET FOTAN NT HONGKONG
Manufacturer:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SH AN MEI STREET FOTAN NT HONGKONG
Date of Test:	08 December 2023 ~ 27 December 2023
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Checked By:

(Li Huaibi)

Approved By:

tion & Testi

15

(Liu Fuxin)

Date: 38

World Standard Stand Standard Stand Standard Stan

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China Group (Shenzhen) Co.,Ltd. TEL: 86-755-26996192 26992306 FAX: 86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Page 3 of 49

Member of the WSCT INC

& Test

WSE

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

2. Test Result Summary

	AUXIE AUXIE	T AUSTRY	AUSTR	AVIS OF
7	Requirement	CFR 47 Section	Result	
	Antenna requirement	§15.203/§15.247 (c)	PASS	
	AC Power Line Conducted Emission	§15.207	PASS	\checkmark
/	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS	WHIT
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	
	Power Spectral Density	§15.247 (e)	PASS	\bigtriangledown
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS	WHIT
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	

Note:

tion & Test

WSET

S PHOM * PT

Joup (Shenzh

60

Centific

Zah

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

世际检测认证股份 p(Shenzhen)Co.ttd TEL:86/755-26996192 26992306 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E231200026A-LE

EUT Description 3.

3. EUT Description		www.wsct-cert.com
Product:	Tablet WSCT WSCT	17574
Model No.:	V8001	
Trade Mark:	VILLAON	m
Operation Frequency:	2402MHz~2480MHz	\mathbf{X}
Channel Separation:	2MHz	
Number of Channel:	40	
Modulation Technology:	GFSK	
Antenna Type:	Integral Antenna	
Antenna Gain:	1.31dBi	\times
Rechargeable Li-Polymer Battery:	Rechargeable Li-ion Polymer Battery :BL-40PV Rated Voltage: 3.8V Rated Cpacity:4000mAh/15.2Wh Typical Capacity:4100mAh/15.58Wh Limited Charge Voltage: 4.35V	मन
WISET	Adapter: A18A-050100U-US2	
Adapter:	Input: 100-240V~50/60Hz Max. 0.2A Output:5V1A	$\mathbf{\nabla}$
Remark:	N/A	

Operation Frequency each of channel

Contreation & Testy

WSET

BUOM * PT

.60

izatio

Ş	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
-	N	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	\wedge		\wedge		\sim			
	8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
2	9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Channel 0, 19 & 39 have been tested.						X		

For Question, Please Contact with WSC

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

4. Genera Information

4.1. Test environment and mode

Operating Environment:

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

ilac-MR/

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	Adapter	/	1	ADAPTER

Note:

MOM * P

0º

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

(She

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

K快術认证設份
 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
 TEL:86,755-26996192-26992308 FAX:86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

For Question, Please Contact with WSC1

www.wsct-cert.com

Member of the WSCT IN

Report No.: WSCT-A2LA-R&E231200026A-LE

5. Facilities and Accreditations

5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

aon & Tes

WSE

PHOM * P

S

6.0

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

生体检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co, Ltd

tion & Tes

WSET

S PUOM * PT

E O

(Shenz

Test:

Cot

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Power Spectral Density	±3.2dB
2	Duty Cycle and Tx-Sequence and Tx-Gap	±1%
31150	Medium Utilisation Factor	±1.3%
4	Occupied Channel Bandwidth	±2.4%
5	Transmitter Unwanted Emission in the out-of Band	±1.3%
6	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%
7	Receiver Spurious Emissions	±2.5%
81150	Conducted Emission Test	±3.2dB
9	RF power, conducted	±0.16dB
10	Spurious emissions, conducted	±0.21dB
11	All emissions, radiated(<1GHz)	±4.7dB
12	All emissions, radiated(>1GHz)	±4.7dB
13 5	Temperature WSET	±0.5°C
14	Humidity	±2.0%

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltt. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E231200026A-LE **5.4.MEASUREMENT INSTRUMENTS**

	3.4. MEROUNEMENT INOTICOMENTO					www.wsct-cert.com	
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibrati on Due.	सन
Ì	Test software	/ -	EZ-EMC	CON-03A	-	\checkmark	
1	Test software		MTS8310	\wedge	- /		
Ŋ	EMI Test Receiver	R&S	ISC ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	\checkmark
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	$ \land $
	Universal Radio Communication Tester	R&S	CMU 200	110 <mark>0.0008.02</mark>	11/05/2023	11/04/2024	'SET
	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
7	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	7
	Pre Amplifier	Н.Р.	HP8447E	2945A02715	11/05/2023	11/04/2024	Х
	Pre-Amplifier	CDSI	PAP-1G18-38	-	11/05/2023	11/04/2024	SIA
	Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	a forde
5	9*6*6 Anechoic		X	-X	11/05/2023	11/04/2024	
2	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	ATTE	11/05/2023	11/04/2024	
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	\checkmark
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	\wedge
	System-Controller	ccs	N/A 1//5/	N/A	N.C.R	N.C.R	rser
1	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
5	RF cable	Murata	MXHQ87WA3000	A	11/05/2023	11/04/2024	- /
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	\times
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	TSET
<	Power sensor	Anritsu	MX248XD	X	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	
100						100 I EU (100	

tion & Test

WSET

Cotific

Zatio

For Question, Please Contact with WSC1

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Se

FCC Part15 C Section 15.203 /247(c)

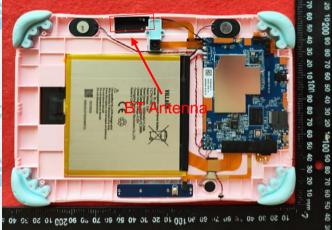
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:


on & Te

MOM * P

(She)

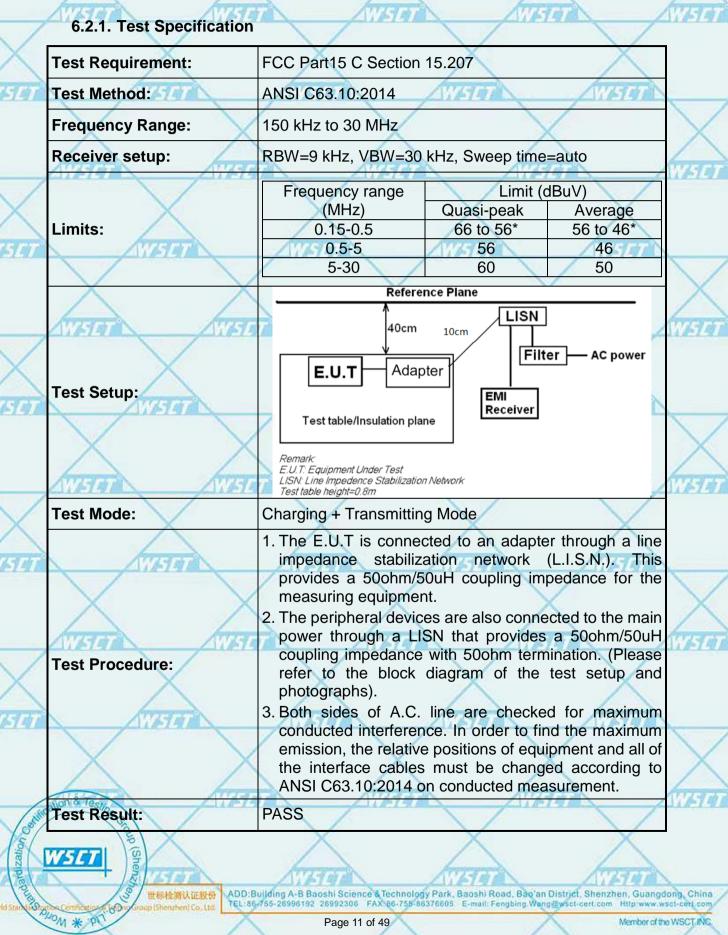
60

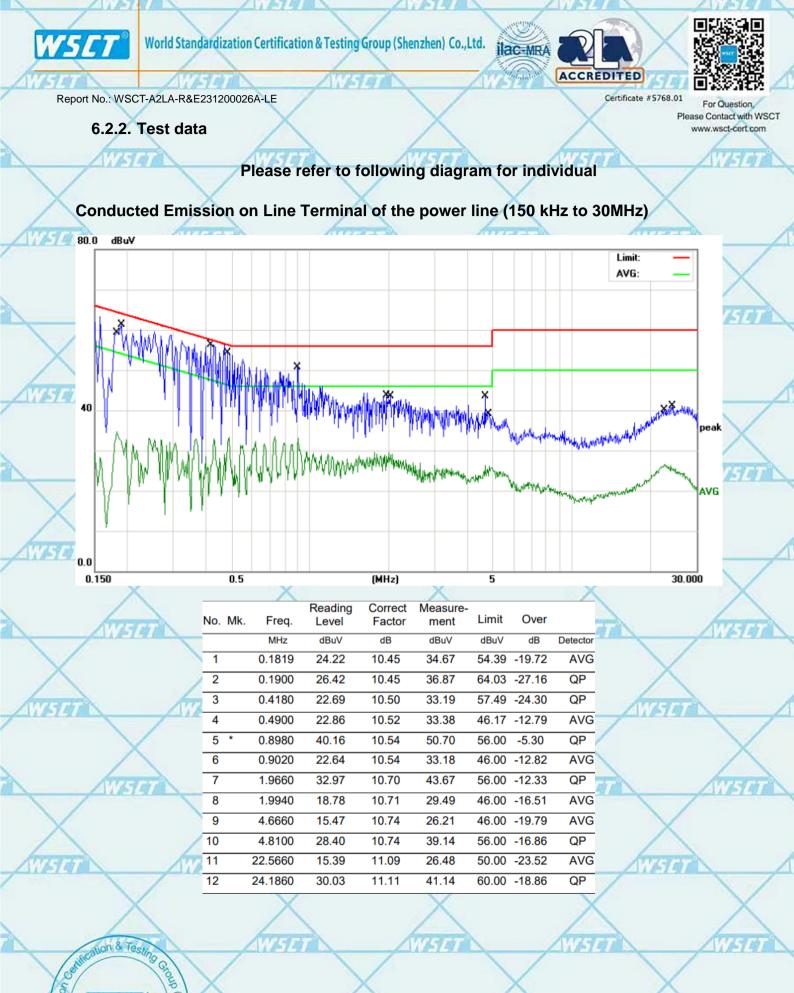
The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 1.31dBi.

10 80 80 100 10 50 30 90 90 90 10

标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China Shenzhen) Co. Ltd. TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

056 30 40 90

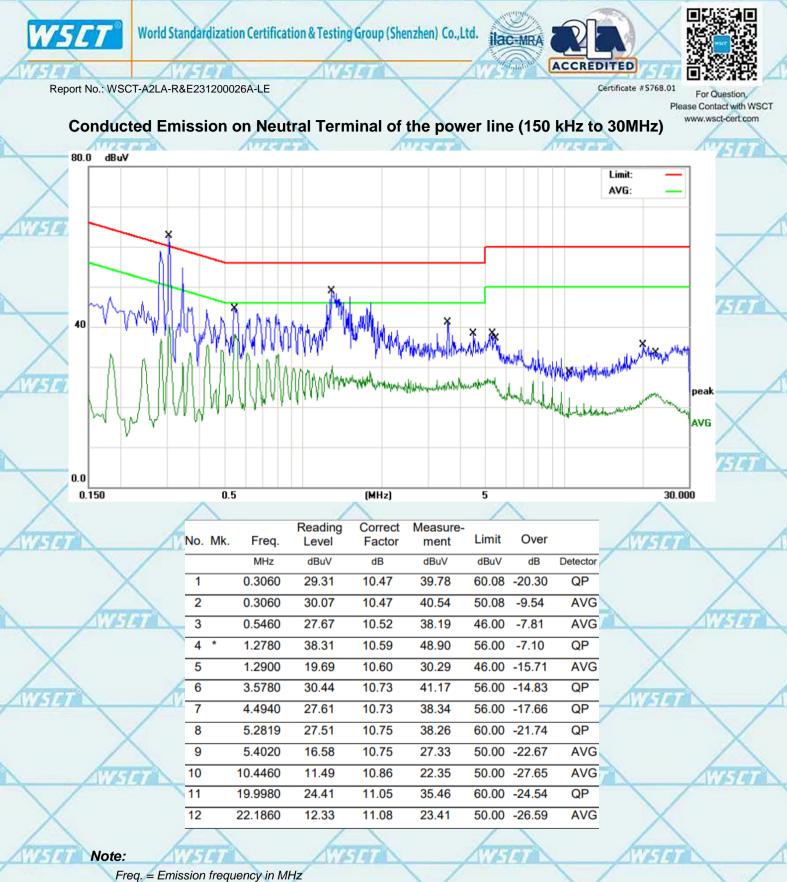




For Question Please Contact with WSC1 www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

6.2. Conducted Emission


世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ita

Member of the WSCT INC

(Shenz

60

PHOM * PT

- Reading level $(dB\mu V) = Receiver reading$
- Corr. Factor (dB) = Antenna factor + Cable loss
- Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)
- Limit (dBuV) = Limit stated in standard
- Margin (dB) = Measurement (dB μ V) Limits (dB μ V)
- Q.P. =Quasi-Peak AVG =average

Certif

S PLOM * PT

s meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86/755-25996192 26992306 FAX 86-755-86376605 E-mail: Fengbing:Wang@wscl-cert.com Http://www.wscl-cert.com

15 1

ATE

ation & Test

WSET

BUOM * PT

Joup (Shenzh

.60

Cotific

dizatic

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

6.3. Conducted Output Power

6.3.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
À	Test Method:	KDB558074
	Limit:	30dBm
7	Test Setup:	
8		Spectrum Analyzer EUT
2	Test Mode:	Refer to item 4.1
	Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple.
		 e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
	Test Result:	PASS

Ζ.

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co.tta. TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

For Question, Please Contact with WSCT

www.wsct-cert.com

165

15

Report No.: WSCT-A2LA-R&E231200026A-LE

6.3.2. Test Data

BLE 1M							
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result				
Lowest	10.87	30.00	PASS				
Middle	10.1	30.00	PASS				
Highest	9.08	30.00	PASS				
harmond har and har an	hanna ha		and the second s				

BLE 2M						
Test channel	Result					
Lowest	10.94	30.00	PASS			
Middle	10.15	30.00	PASS			
Highest	9.15	30.00	PASS			

Test plots as follows:

150

Selecation & Testing

W5ET

BUOM * PT

addization

Group (Shenzh

60

6.5

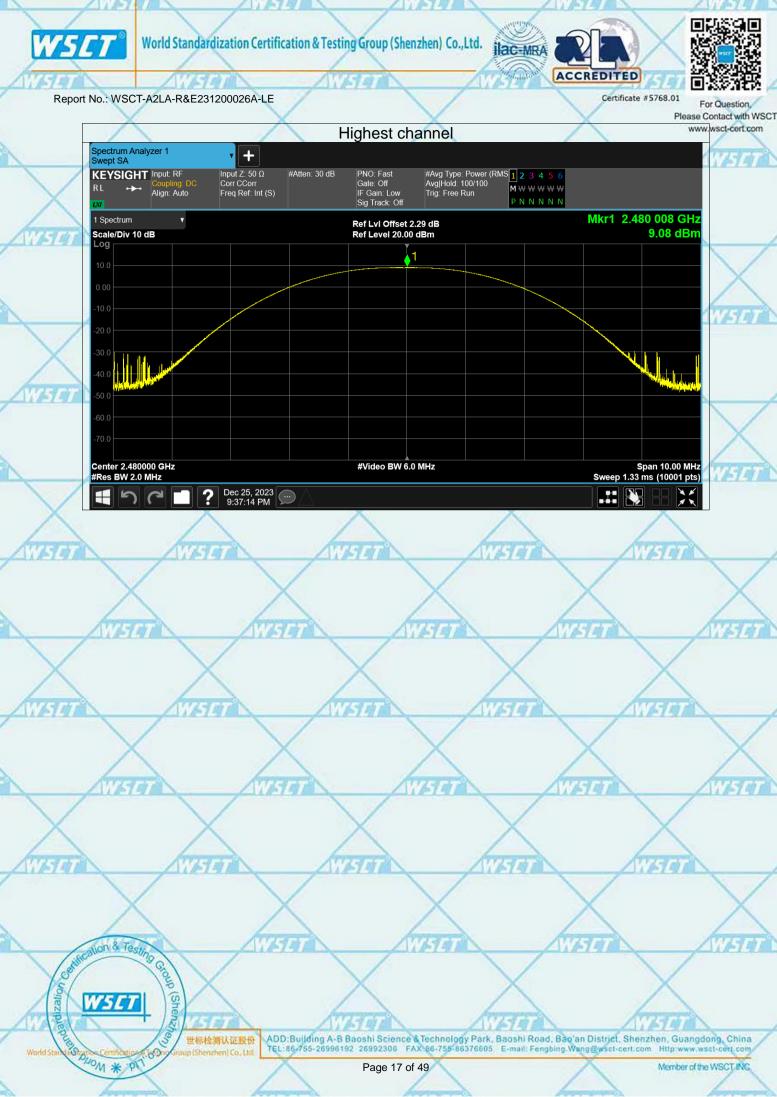
1512

1

1.

zat

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Certificate #5768.01

For Ouestion

Report No.: WSCT-A2LA-R&E231200026A-LE



Certificate #5768.01

Report No.: WSCT-A2LA-R&E231200026A-LE

Page 19 of 49

151

110

ation & Tesh

WSET

BUOM * PT

Group (Shenzh

60

Centific

rdizatic

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

105

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

6.4. Emission Bandwidth

7	6.4.1. Test Specification		
	Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
7	Test Method:	KDB558074	
	Limit:	>500kHz	X
7	Test Setup:		WHI I
0		Spectrum Analyzer EUT	
\vec{r}	Test Mode:	Refer to item 4.1	
7		 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's 	X VIII 4
R	Test Procedure:	resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.	
		4. Measure and record the results in the test report.	V
	Test Result:	PASS	\wedge
	AVE AVE		WSE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co.tta

1512

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

6.4.2. Test data

EIM	NATATA AVAIAN	AW5		WSE
Tost channel	6dB Emission	Bandwidth (kHz)		
	BT LE mode	Limit	Result	
Lowest	0.651	>500k	WISTER	
Middle	0.652	>500k	PASS	V
Highest	0.667	>500k		\wedge
E 2M		ATT		WSE
	Middle	Test channel6dB EmissionBT LE modeLowestMiddle0.652Highest0.667	6dB Emission Bandwidth (kHz)Test channelBT LE modeLimitLowest0.651>500kMiddle0.652>500kHighest0.667>500k	6dB Emission Bandwidth (kHz)Test channelBT LE modeLimitResultLowest0.651>500kMiddle0.652>500kPASSHighest0.667>500k

	Test channel	6dB Emission I	Bandwidth (kHz)	
	Test channel	BT LE mode	Limit	Result
2	Lowest	1.174	>500k	WSET
	Middle	1.174	>500k	PASS
	Highest	1.174	>500k	

Test plots as follows:

150

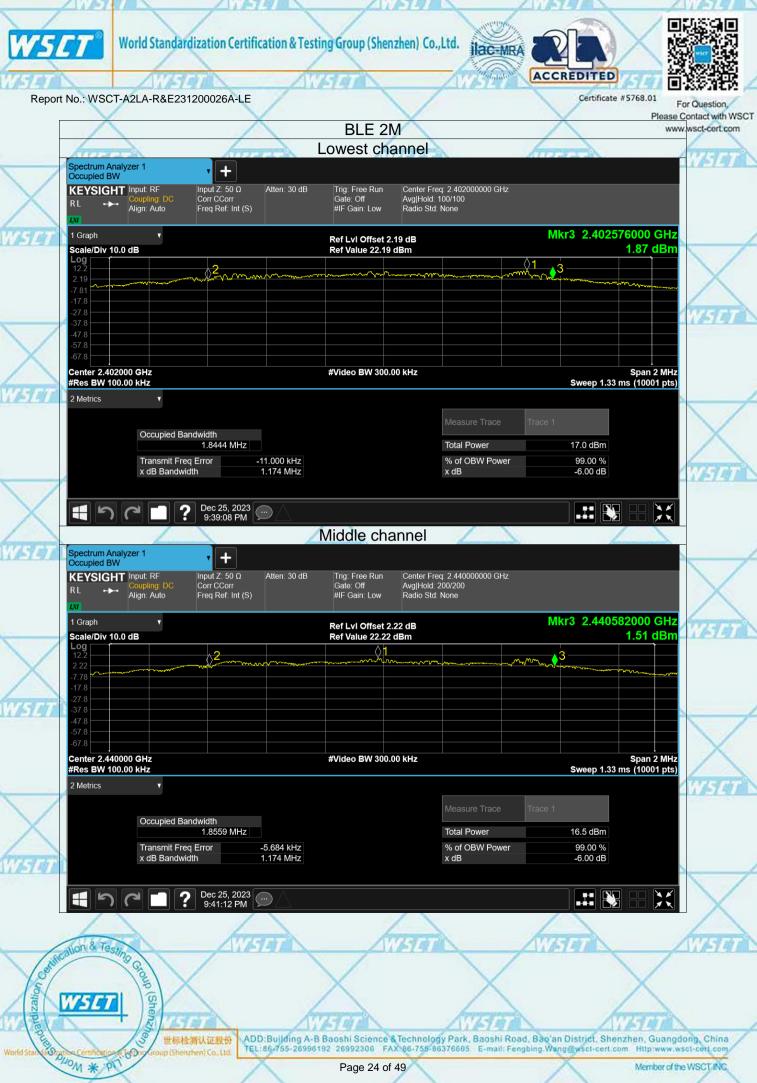
Selecation & Testing

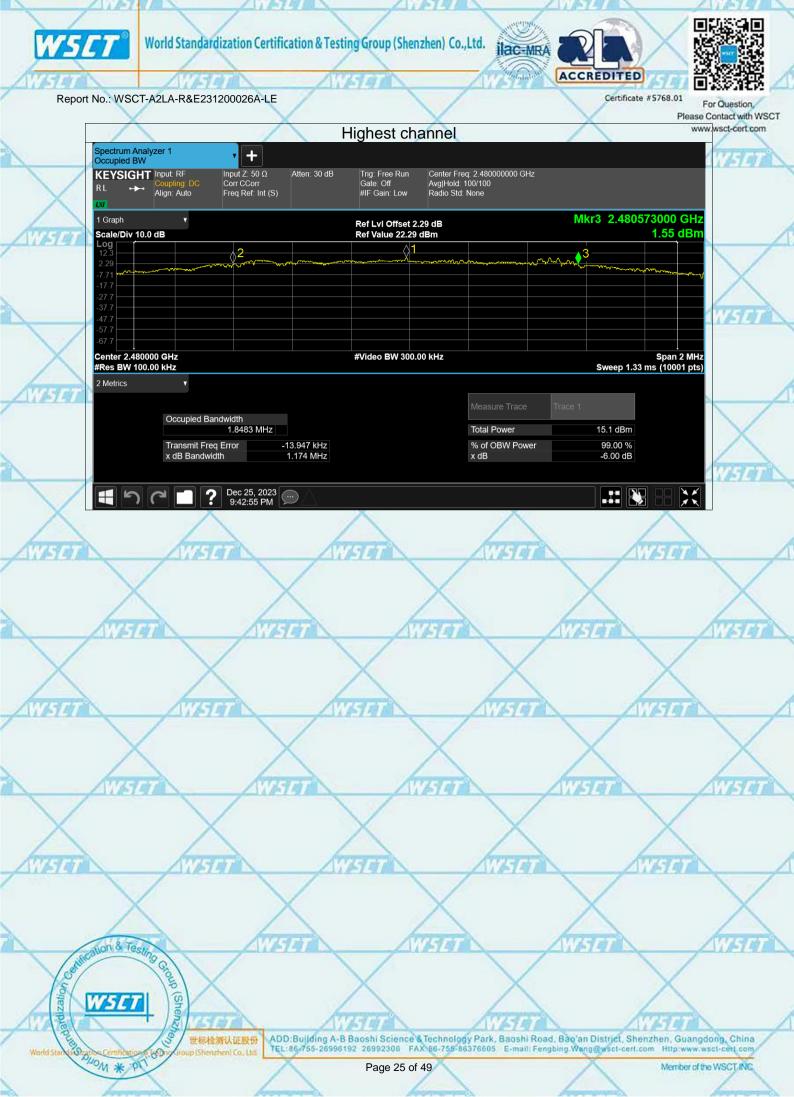
Group (Shenzh

60

6.5

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen)Co.ttg


1512


2.0

7.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

6.5. Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	KDB558074	
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.	
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Refer to item 4.1	
Test Procedure:		
Test Result:	PASS	

6.5.2. Test Instruments

e

PHOM * PT

	RI	F Test Room	Ì	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to **USC international** system unit (SI).

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China ang (Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

75

75)

Report No.: WSCT-A2LA-R&E231200026A-LE

6.5.3. Test data

Please Contact with WSCT www.wsct-cert.com

_					W	vww.ws
	Test channel	Power	Spectral D	ensity (dBm/3kH	łz)	1
	Test channel	BLE 1M		Limit	Result	
	Lowest	-5.35		8 dBm/3kHz	\wedge	
2	Middle	-6.13	- /	8 dBm/3kHz	PASS	
	Highest	-7.13	\sim	8 dBm/3kHz		
	\wedge	\wedge	\wedge	/		

1	Test channel	Power Spectral D	ensity (dBm/3kH	Hz)
1	Test channel	BLE 2M	Limit	Result
	Lowest	-8.33	8 dBm/3kHz	\sim
2	Middle	-9.15	8 dBm/3kHz	PASS
	Highest	-10.21	8 dBm/3kHz	/

F5 F

Test plots as follows:

150

Selfication & Testino

Group (Shenzh

60

6.5

世际检测认证股份 p(Shenzhen)Co.Ltd

NSE

2.0

1050

Page 27 of 49

BIS BLOM * PT

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E231200026A-LE

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

Certificate #5768.01

Report No.: WSCT-A2LA-R&E231200026A-LE

60

Page 30 of 49

Certificate #5768.01

Report No.: WSCT-A2LA-R&E231200026A-LE

Co

WSET

Phone * PT

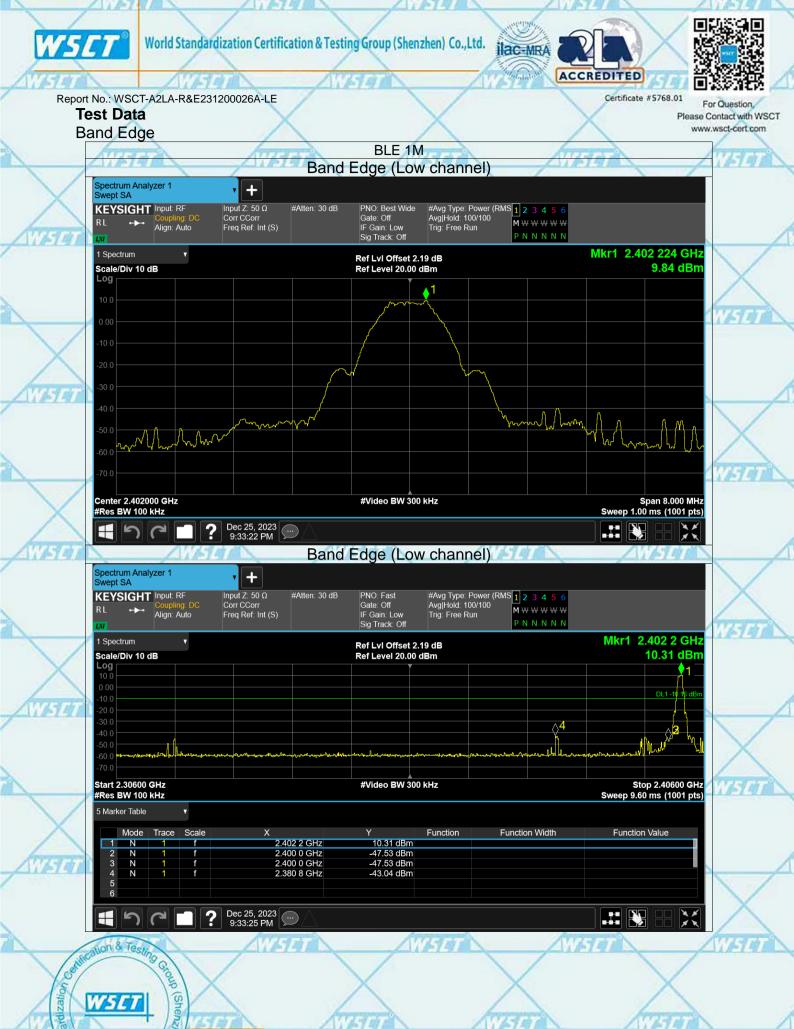
up (Shenz

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com


Report No.: WSCT-A2LA-R&E231200026A-LE

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wong@wscl-cert.com Http://www.wscl-cert.com

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a (Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 33 of 49

BIS BLOM * PT

60

ilac-MRA

Report No.: WSCT-A2LA-R&E231200026A-LE

Group

60

NSL

BUOM * PT

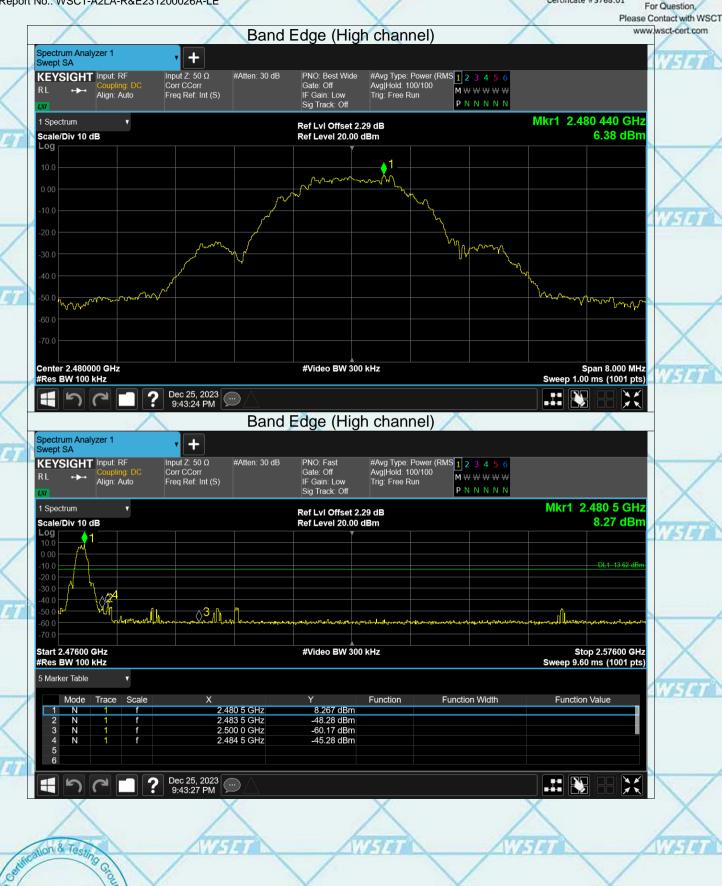
(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

Certificate #5768.01

Report No.: WSCT-A2LA-R&E231200026A-LE

Report No.: WSCT-A2LA-R&E231200026A-LE


Group

60

NSL

BUOM * PT

(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

NSL

BIS BLOM * PT

Group

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E231200026A-LE

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltd. TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

NSL

BIS BLOM * PT

Group

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

ilac-MRA

Report No.: WSCT-A2LA-R&E231200026A-LE

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltd. TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Page 40 of 49

NSL

BIS BLOM * PT

Group

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E231200026A-LE

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltd. TEL:86/755-25996192 26992306 FAX 86-755-86376605 E-mail: Fengbing:Wang@wscl-cert.com Http://www.wscl-cert.com

NSL

BIS BLOM * PT

Group

60

(Shenz)

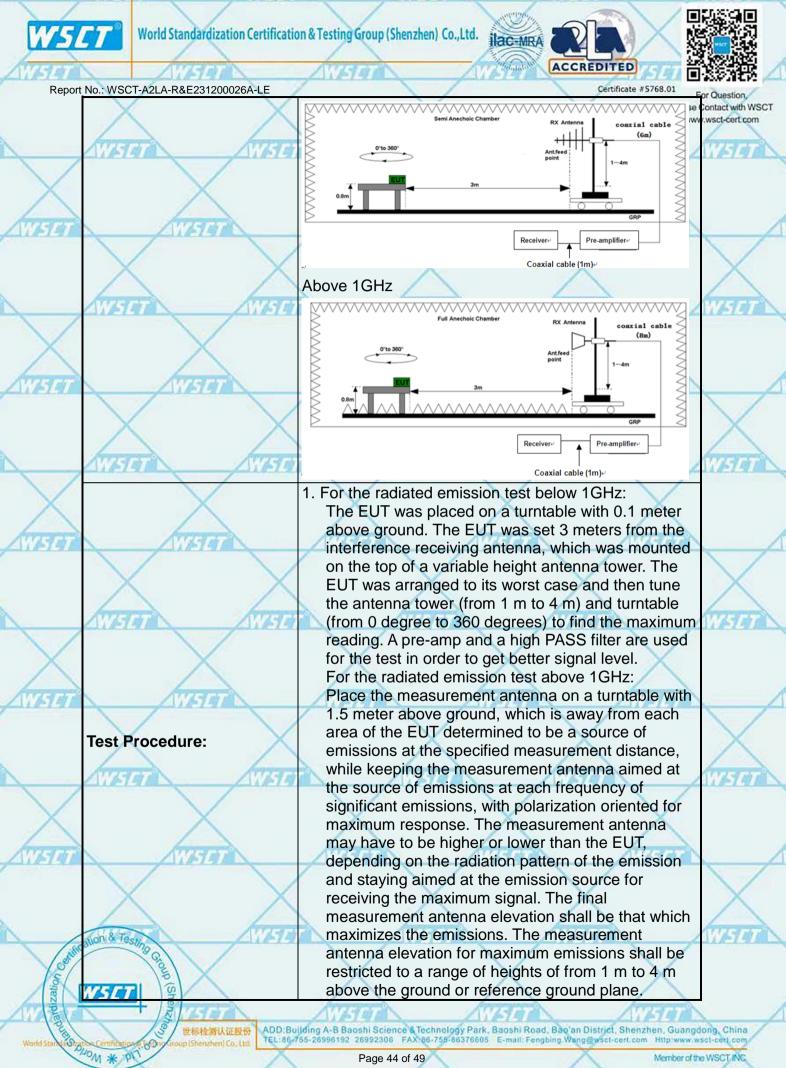
World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E231200026A-LE

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltd. TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Report No.: WSCT-A2LA-R&E231200026A-LE

6.7. Radiated Spurious Emission Measurement

For Question, Please Contact with WSCT www.wsct-cert.com

	ATTEN ATTEN		WISET		AVIST	JA .	- /	WISICI
$\langle \rangle$	6.7.1. Test Specification			\backslash				
X	Test Requirement:	FCC Part15	C Section	15.209			X	
AVISIA	Test Method:	ANSI C63.10):2014	AWSIOT	1	1	WISTER	
a to an annual to an an an	Frequency Range:	9 kHz to 25 0	GHz		1	/		
	Measurement Distance:	3 m	X		X	X		X
	Antenna Polarization:	Horizontal & Vertical						
	Operation mode:	Refer to item	4.1				\checkmark	
X	Ň	Frequency	Detector	RBW	VBW	R	emark	
AUST	TIST	9kHz- 150kHz	Quasi-peak	200Hz	1kHz		peak Value	
ALIPED .		150kHz-	Quasi-peak	9kHz	30kHz		peak Value	
	Receiver Setup:	30MHz 30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-	peak Value	\sim
	A A		Peak	1MHz	3MHz		k Value	
	AWSET AWSE	Above 1GHz	Peak	1MHz	10Hz	Avera	age Value	WSET
				Field Stre	anath	Meas	surement	
X	XX		Frequency		/meter)	Distance (meters)		
	harris	0.009-0.490		2400/F(KHz)		300		
ZYATA	TUEST			24000/F(30	
			30-88		30 100		3	\sim
	Limit:	88-216		150		3		\wedge
		216-960 200				3		
1		Above 9	FILER	3				
\sim	\sim				Measurement			
\wedge	\sim	Frequency		Strength	Distand		Detector	
WIST	AVIS OF	Austan		olts/meter)	(meter	s)	WASTER	
		Above 1GHz	7	500	3	1	Average	
	- X - X		X	5000	3		Peak	X
	AVERA AVERA	For radiated emissions below 30MHz						
1		Di	stance = 3m			Compute	/	110-1-41
X	X	+				compute		
		Pre - Amplifier						
AWSET	Test setup:	EUT					7 1	-
			⊐ Turn table					1/
	XX				_ L _T ,	Dagaiyar		\times
		Receiver						harris
- Alle	allion & Testing Gill		Ground	Plane	/		1	10-14
00	Jan	30MHz to 10	SHz	\sim			\mathbf{X}	J
Catio	WSCT OF						//	
AVE	+ 3 30	AVISION		AWSEN	A	1	WSET	
World Star Day	3 世标检测认证股份 ADD:Bu TEL:86-7	Iding A-B Baoshi Scie 55-26996192 26992306	nce & Technology FAX 86-755-863	Park, Baoshi R 76605 E-mail: F	oad, Bao'an D engbing Wange	istrict, She Dwsct-cert.	com Http://www.w	dong, China
World Star Law 20	M * PT	Page 4			X			e WSCT INC

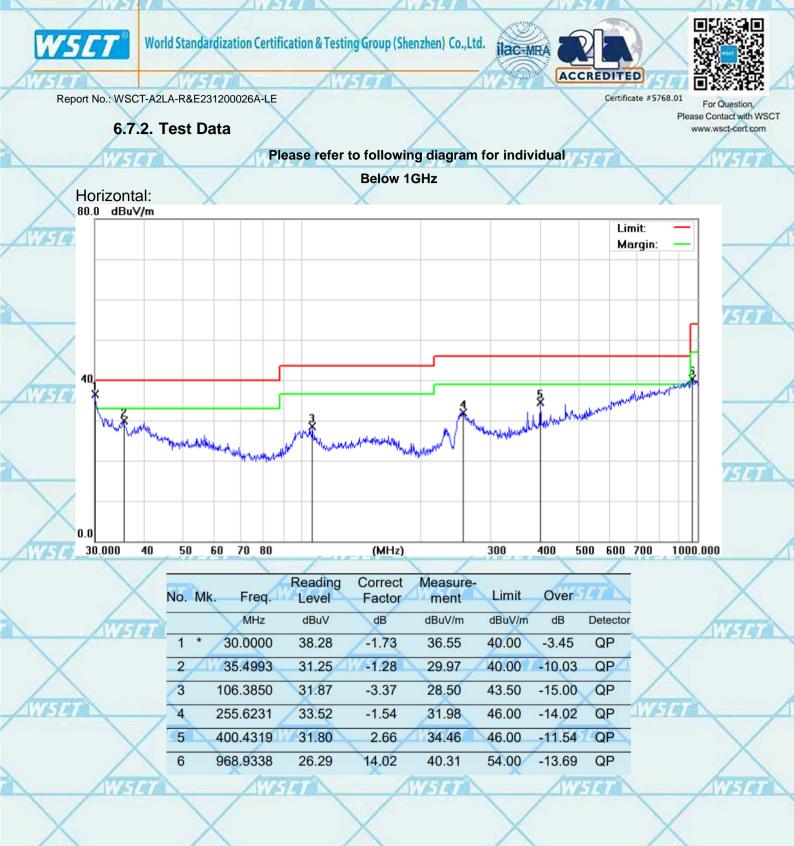
ion & Tes

WSE

PHOM * P

(Sher

Co


World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ACCREDITED

Report No.: WSCT-A2LA-R&E231200026A-LE Certificate #5768.01 Question 2. Corrected Reading: Antenna Factor + Cable Loss Phase ontact with WSCI wsct-cert.com Read Level - Preamp Factor = Level 3. For measurement below 1GHz. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW;</p> Sweep = auto: Detector function = peak; Trace = max hold: (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details Test results: PASS

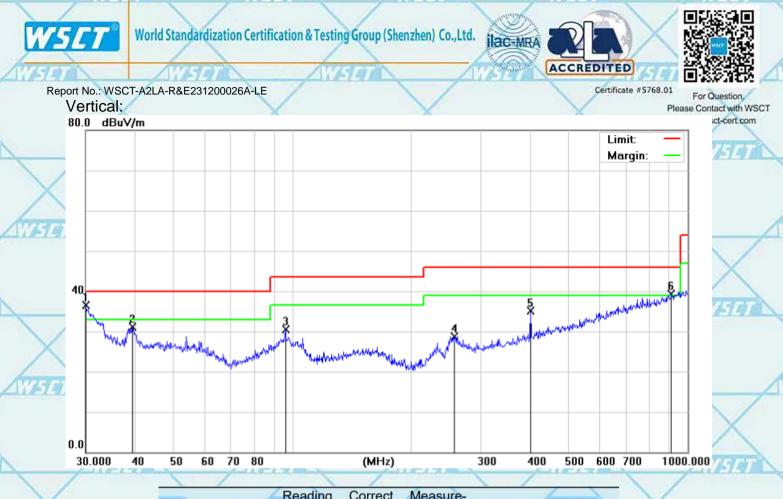
> 世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Lu. TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

ation & Tes

W5E


PHOM * PT

OUP

60

(Shenz

Cotific

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	म
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
7	1	*	30.0000	38.33	-1.73	36.60	40.00	-3.40	QP
	2	1	39.4371	31.67	-0.58	31.09	40.00	-8.91	QP
5	3		96.0986	34.72	-4.30	30.42	43.50	-13.08	QP
21	4		257.4222	30.20	-1.49	28.71	46.00	-17.29	QP
	5	4	400.4319	32.45	2.66	35.11	46.00	-10.89	QP
	6	!	909.6667	26.16	13.19	39.35	46.00	-6.65	QP

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

AWSET

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

 Reading level (dBμV) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dBμV) = Reading level (dBμV) + Corr. Factor (dB) Limit (dBμV) = Limit stated in standard Margin (dB) = Level (dBμV) – Limits (dBμV)

1545117

on & Tes

WSL

S PLOM * PT

up (Sher

60

Certif

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

19051

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200026A-LE

				Above 10	GHz			W			
	Frog	Low channel: 2402MHz									
Freq. (MHz)		Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)			
		H/V	PK	AV	PK	AV	PK	AV			
	4804	V	59.28	41.33	74	54	-14.72	-12.67			
X	7206	V	58.06	39.55	74	54	-15.94	-14.45			
-	4804	H	58.77	39.74	74	54	-15.23	-14.26			
	7206	Н	58.44	39.44	74	54	-15.56	-14.56			
	Y		X		X		SXC.				

Гтоя	Middle channel: 2440MHz									
Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)				
	H/V	PK	AV	PK	AV	PK	AV			
4880	V	60.45	41.36	74	54	-13.55	-12.64			
7320	V	58.48	40.66	74	54	-15.52	-13.34			
4880	W5H7	59.71	39.74	74	54	-14.29	-14.26			
7320	Н	59.83	40.83	74	54	-14.17	-13.17			

Free	High channel: 2480 MHz									
Freq. (MHz)	Ant.Pol	Emission l	_evel(dBuV)	Limit 3m	(dBuV/m)	Over(dB)				
(IVI⊓∠)	H/V	PK	AV	PK	AV	PK	AV			
4960	V	58.85	40.11	74	54	-15.15	-13.89			
7440	V	58.35	39.30	74	54	-15.65	-14.70			
4960	E H	59.13	39.27	74	54	-14.87	-14.73			
7440		58.51	39.51	74	54	-15.49	-14.49			

Note:

tion & Tes

WSE7

PHOM * PT

OUP

60

(Shenz

Cotific

Zath

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

www.wsct-cert.com

For Question, Please Contact with WSCT

15

Report No.: WSCT-A2LA-R&E231200026A-LE

Restricted Bands Requirements

Test result	for GFSK M	ode (the	worst case) AUSEN	A.	AUG	A A
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
\sim	AWSET	1	Low Cha	nnel	ATTA	EN .	AUS
2390	66.61	-8.73	57.88	74	-16.12	H	PK
2390	51.18	-8.73	42.45	54	-11.55	н 🗡	AV
2390	69.88	-8.73	61.15	74	-12.85	V	PK
2390	46.36	-8.73	37.63	54	-16.37	V	AV
			High Cha	nnel	\sim		
2483.5	67.91	-8.17	59.74	74	-14.26	Н	PK
2483.5	49.86	-8.17	41.69	54	-12.31	ТН	AV//S
2483.5	68.19	-8.17	60.02	74	-13.98	V	PK
2483.5	45.70	-8.17	37.53	54	-16.47	V	AV

*****END OF REPORT*****

16

45

WEIT

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

1517

Contraction of the

Contration & Test

WSET

rdizatic

1/5 E

Page 49 of 49