

For Question,
Please Contact with WSCT
www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OTW-330S-L

Product: True Wireless Earbuds

Model No.: OTW-330S

Trade Mark: oraimo

Report No.: WSCT-A2LA-R&E240400017A-BT

Issued Date: 19 April 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI

STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192 FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

WSCT

AMOM # PI

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http:www.wsct-cert.com

WSET

DuoM * PIT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240400017A-BT

Revision History

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC.

			,				
	Report Number	Revi	Descripti	Issue Date	Revised By	Remark	-
		sion	on				744
	WSCT-A2LA-R&E240400017A-BT	00	Original.	19 April 2024	Qin Shuiquan		
X	WSCT-A2LA-R&E240400017A-BT	01	Modify	07 May 2024	Qin Shuiquan	X	
	WSCT-A2LA-R&E240400017A-BT	02	Modify	09 May 2024	Qin Shuiquan		
7	ATTENDA	100	333	ATTI AND	ATT	144	
14		of the last	144	111111		-14	-

WEIGT	17474	WEIGH	NIE I I	NISIO
WETER AVETER	X	X	X	
	77674	N/E141	N.F.I.	WEIT
WETGE	WETGE	X	WESTER	
	WASTER	NVETE	NIETA B	NVET BE
WEIGH	Westign	X	X	
X	WESTER	NEIGI	WATER	NETTE
NIE STORY	NI FI FI	NVA101	X	
	WSI	VISTAT	N/SIE	NISTER
World Stark and Stark Contribution (Contribution Contribution Contrib	ADD:Building A-B Baoshi So	cience & Technology Park, Baoshi Ro 06 FAX-66-755-86376605 E-mail: Fe	WETER	

Page 2 of 72

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

TABLE OF CONTENTS

	1.	Test Certification	4
X	2.	Test Result Summary	5
9/1	3.	EUT Description	6
	4.	Genera Information	8
	••	4.1. TEST ENVIRONMENT AND MODE	8
	/	4.2. DESCRIPTION OF SUPPORT UNITS	
	6	Facilities and Accreditations	9
X		5.1. FACILITIES	9
5/1		5.2. ACCREDITATIONS	9
		5.3. MEASUREMENT UNCERTAINTY	
		5.4. MEASUREMENT INSTRUMENTS	11
	6.	Test Results and Measurement Data	12
	/	6.1. ANTENNA REQUIREMENT	
X		6.2. CONDUCTED EMISSION	13
570	2. 3. 4. 5.	6.3. CONDUCTED OUTPUT POWER	15
		6.4. 20DB OCCUPY BANDWIDTH	22
3. 4. 5.	6.5. CARRIER FREQUENCIES SEPARATION		
	,	6.6. HOPPING CHANNEL NUMBER	
	/	6.7. DWELL TIME	
X		6.8. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
2. T 3. E 4. G 4. 4. 5. F 5. 5. 6. T 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	6.9. CONDUCTED BAND EDGE MEASUREMENT		
-13		6.10. CONDUCTED SPURIOUS EMISSION MEASUREMENT	
	_	X X X X	
	1.	Test Setup Photographs	. 71

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240400017A-BT

1. Test Certification

Product: True Wireless Earbuds

Model No.: OTW-330S

Additional Model:

oraimo

ORAIMO TECHNOLOGY LIMITED

Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

ORAIMO TECHNOLOGY LIMITED

Manufacturer: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Date of receipt: 28 March 2024

Date of Test: 29 March 2024 ~ 18 April 2024

Applicable Standards:

FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Kiang

Checked By:

(Qin Shuiguan)

Approved By:

(Liu Fuxin)

(Wang Xiang)

Date:

April sonf

X

ion & Tes

WSET Shen

dan Ization Certification & Testin

112171

WSET

WSIT

4774

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of th

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

2. Test Result Summary

	ハリスマル南 ハリスマル		/ The state of
7	Requirement	CFR 47 Section	Result
-	Antenna Requirement	§15.203/§15.247 (c)	PASS
0	AC Power Line Conducted Emission	§15.207	N/A
	Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
	20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
	Carrier Frequencies Separation	§15.247 (a)(1)	PASS
	Hopping Channel Number	§15.247 (a)(1)	PASS
7	Dwell Time	§15.247 (a)(1)	PASS
1	Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
	Band Edge	§15.247(d) §2.1051, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

WSET

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT Description**

Product Name:	True Wireless Earbuds
Model:	OTW-330S
Trade Mark:	oraimo
Frequency Range:	2402-2480MHz(TX/RX)
Channel Separation:	1MHz
Number of Channel:	797 W.5747 W.5747
Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	FPC Antenna
Antenna Gain:	-0.18dBi
Operating Voltage	Li-ion Battery: 501012 Voltage: 3.7V Rated Capacity: 40mAh Limited Charge Voltage: 4.2V Charging Box: 902235 Output: 5V200mA Input:5V1A Capacity:600Ah/3.7V/2.22Wh
Remark:	N/A.

Note: 1. N/A stands for no applicable.

2. Antenna gain provided by the applicant

World Start 1107 21 Commonton (COnvisional Continued Con

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

Please Contact with WSCT

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK

						WWW		
C	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
	1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
		\wedge				\wedge		
3	10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
	11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	X		X		X		X	
	18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
Ž	19	2421MHz	39	2441MHz	59	2461MHz	1779	
		01 10/0	0 0 70 1			EOI // D/	2001/ 05	200

Remark: Channel 0, 39 &78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

WASTER	WHAT	WHITE	Wister	WHI	,
AVZ.	$\langle \hspace{0.1cm} \rangle$				
WEIGH	WETGE	WHITE	Wester	WESTER	
	(III) (VIII)		$\langle \ \rangle$		7
WEIGH	WSI II	William	W-STOT	N/ATINE	,
	WES				
WETA	WETER	WETTE	NVA-14	77.57.91	
catification & 7	and Ci				

世标检测认证股份 Group (Shenzhen) Co., Ltd.

DUOM * PIT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. Genera Information

4.1. Test environment and mode

Operating Environment:							
Temperature:	25.0 °C						
Humidity:	56 % RH						
Atmospheric Pressure:	1010 mbar						
Test Mode:							
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery						

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1	1	1	/ /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. Facilities and Accreditations

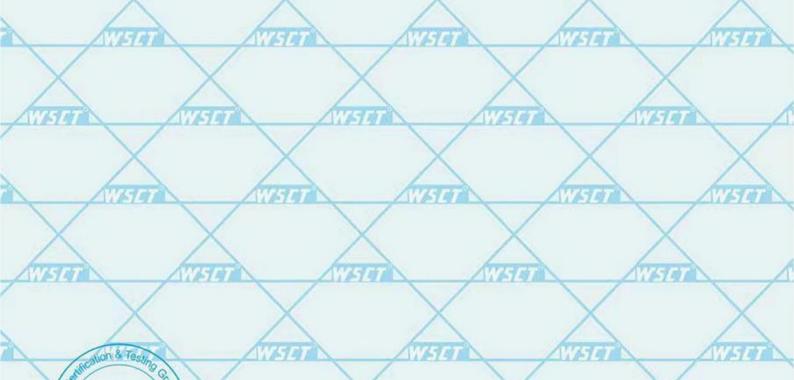
5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

置 世标检测认证数份 cyroup (Shenzhen) Co. Ltd.

ON * P

5.3. Measurement Uncertainty

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	No.	Item	MU
	1	Conducted Emission Test	±3.2dB
	2	RF power, conducted	±0.16dB
	3	Spurious emissions, conducted	±0.21dB
7	4	All emissions, radiated(<1GHz)	±4.7dB
	5	All emissions, radiated(>1GHz)	±4.7dB
	6	Temperature W507	±0.5°C
	7	Humidity	±2.0%

W293	STE	1775	T NY	99	1774
Wester	Wister	WHAT	WESTER	WHITE	
NVI-TA				798	Wester
W-5141	W/5197	WESTER	Wester	V/6-1-9-0	
NVE 18	$\langle \ \rangle$			700	Wester
WHI	WHEEL THE STREET	Y/65197	NV-STOP I	VI65191	
$\langle \ \rangle$				94	Wester
Saturation & Test	& Citamp (Sh	X	X	X	

Page 10 of 72

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.4. MEASUREMENT INSTRUMENTS

			Comment			www.ws	ct-c
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	Z
	Test software		EZ-EMC	CON-03A	-	X-	
100	Test software		MTS8310	(7274)	1	2744	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	/
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	Z
/	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
ý	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	/
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	/
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	Z
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
-	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	
MG-I	9*6*6 Anechoic	4 ·- /	15111	WEST	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	é
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
7	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
7	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	7
/	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
1	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
1	Power sensor	Anritsu	MX248XD	Alter	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	1
	^	^		¥-			

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a FPC Antenna. it meets the standards, and the best case gain of the antenna is -0.18 dBi.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.2. Conducted Emission

6.2.1. Test Specification

6.2.1. Test Specification			
Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2014		
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto		
Limits:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50		
X	Reference Plane		
N. 1515 N. 15	40cm 80cm LISN		
Test Setup:	E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m		
Test Mode:	Refer to item 4.1		
WETER WE	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH 		
Test Procedure:	coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of		
ation & Testo	the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.		
Test Result:	PASS		

世标检测认证数

DUOM * PT

Report No.: WSCT-A2LA-R&E240400017A-BT

6.2.2. Test data

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

	Note: EUT powered by battery not applicable	W/5/9/	NETTE	NET 4
NVF19	WETO WETO		NVES	4
	WEIGH	WETER	WEIGH	NEGO
NV 519			W/S	
	N/SIG N/SIG	Wister	NISA	7/5/8/8
N. S.				
	NYSIGI NYSIGI	NEIGH	N/F/4/	1510
VIST.	$\langle \times \times$			
	WSIG WSIG	WSI	WSGI	WSIGI
XIF1	\times			
	X	WETAT	N/65/41	VIETO
100	suication & Testino Ga			

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

	^ ^
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2014
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

WSET

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3.2. Test Data

7	GFSK mode			
	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	5.73	20.97	PASS
	Middle	4.58	20.97	PASS
I	Highest	3.54	20.97	PASS

_	ATTIVITIES	ATTI STATE ATT	111111	2 off on other	
	Pi/4DQPSK mode				
	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	7.84	20.97	PASS	
	Middle	6.62	20.97	PASS	
	Highest	5.75	20.97	PASS	

У	and A.S. A. A. March property of			A. A. Maring	
	8DPSK mode				
0	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	7.50	20.97	PASS	
	Middle	6.57	20.97	PASS	
	Highest	5.72	20.97	PASS	

Test plots as follows:

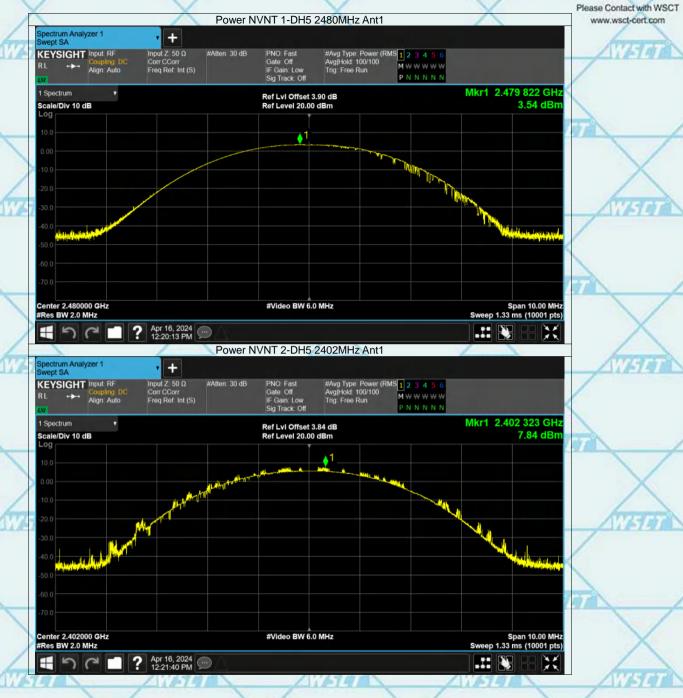
Warld Starker Design & Pil

Swiftcalion & Tes

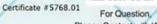
DOUGH * PT

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Report No.: WSCT-A2LA-R&E240400017A-BT

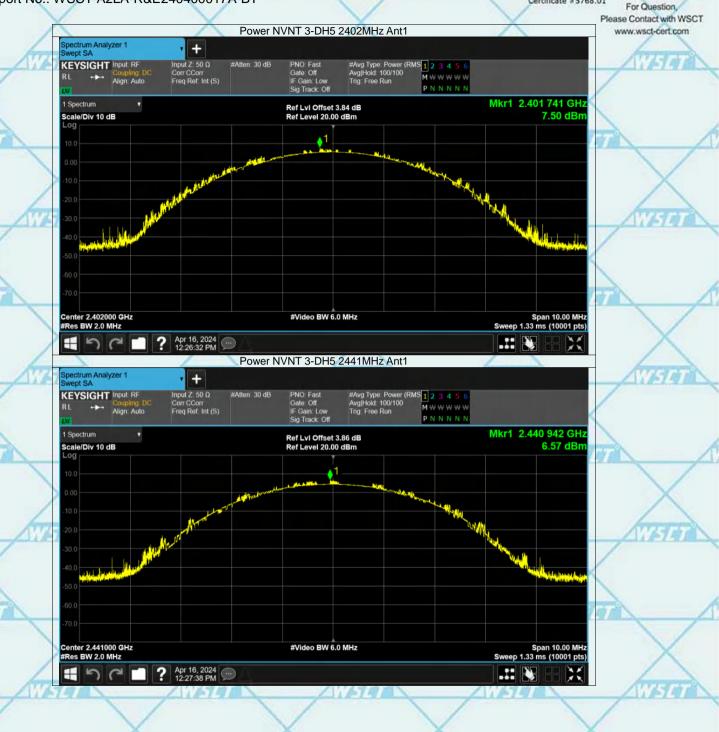


Report No.: WSCT-A2LA-R&E240400017A-BT

NISTATE NISTATE

MAIN MAIN

ela ela



Report No.: WSCT-A2LA-R&E240400017A-BT

.:: 🔖

世标检测认证股份

SO WOW * PT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2014
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS
	EUT transmit continuously. 4. Use the following spectrum analyzer settings for 2 Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW≤5% of the 20 dB bandwidth; VBW≥3RBW Sweep = auto; Detector function = peak; Trace = hold. 5. Measure and record the results in the test report.

WHAT

Report No.: WSCT-A2LA-R&E240400017A-BT

6.4.2. Test data

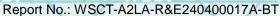
Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Test channel	20dB Occupy Bandwidth (MHz)			
	GFSK	π/4-DQPSK	8DPSK	Conclusion
Lowest	0.6284	1.121	1.053	PASS
Middle	0.6379	1.114	1.081	PASS
Highest	0.6570	1.081	1.107	PASS

Test plots as follows: Salincation & Test YOUP (Shenza

世标检测认证股份 o Group (Shenzhen) Co., Ltd.


DUOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

...

? Apr 16, 2024 12:21:47 PM

Report No.: WSCT-A2LA-R&E240400017A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

...

? Apr 16, 2024 12:24:09 PM

Report No.: WSCT-A2LA-R&E240400017A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

...



Report No.: WSCT-A2LA-R&E240400017A-BT

x dB Bandwidt

? Apr 16, 2024 12:27:45 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

-20 00 dB

...

**

For Question,

www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240400017A-BT

Page 28 of 72

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2014
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5.2. Test data

	GFSK mode				
1	Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result	
	Lowest	75140	2/3*20dB BW	PASS	
	Middle	0.998	2/3*20dB BW	PASS	
	Highest	1 /	2/3*20dB BW	PASS	

	Pi/4 DQPSK mode				
0	Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result	
	Lowest	1	2/3*20dB BW	PASS	
	Middle	1	2/3*20dB BW	PASS	
	Highest	0.998	2/3*20dB BW	PASS	

8DPSK mode				
6	Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
	Lowest	1	2/3*20dB BW	PASS
	Middle	1 /	2/3*20dB BW	PASS
7	Highest	AVERT A	2/3*20dB BW	PASS

Test plots as follows:

d Stanks Organic Common to the Organic Organic Comm

II 🔌

Report No.: WSCT-A2LA-R&E240400017A-BT

Report No.: WSCT-A2LA-R&E240400017A-BT

Report No.: WSCT-A2LA-R&E240400017A-BT

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question,
Please Contact with WSCT
www.wsct-cert.com

世标检测认证股份

DUOM * PIT

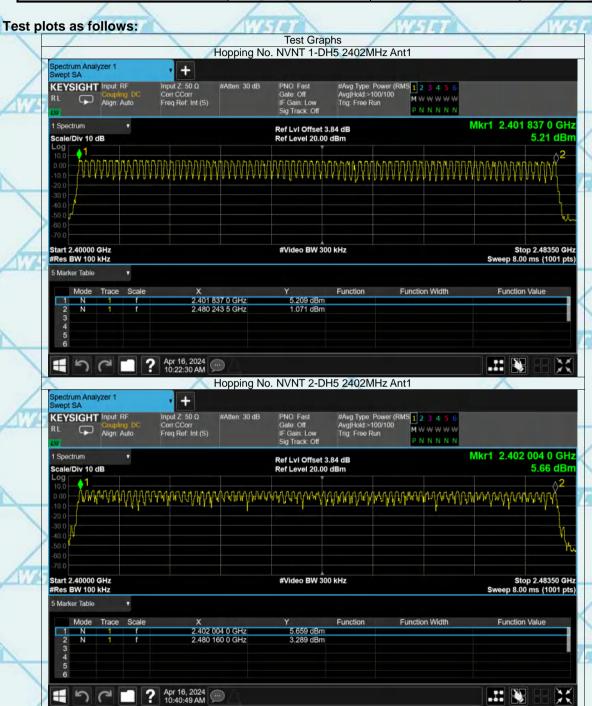
Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.6. Hopping Channel Number

6.6.1. Test Specification

2	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2014
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
7	Test Setup:	
ì		Spectrum Analyzer EUT
	Test Mode:	Hopping mode
		 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the
	Test Procedure:	 EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. The number of hopping frequency used is defined as the number of total channel. 7. Record the measurement data in report.
	Test Result:	PASS
	Annual An	


Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

Please Contact with WSCT
www.wsct-cert.com

6.6.2. Test data

Mode	Hopping channel numbers	Limit	Result
GFSK, P/4-DQPSK, 8DPSK	79	15	PASS

2.402 004 0 GHz 2.479 993 0 GHz

? Apr 16, 2024

+

Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)

Stop 2.48350 GHz Sweep 8.00 ms (1001 pts)

.: 🔊

Report No.: WSCT-A2LA-R&E240400017A-BT


KEYSIGHT Input RF

Scale/Div 10 dB

Start 2.40000 GHz #Res BW 100 kHz

YOUP (Shenza

DOMON * PIT

confication & Tes

Page 38 of 72

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

#Video BW 300 kHz

5.605 dBm 3.482 dBm

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7. Dwell Time

6.7.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
ò	Test Method:	ANSI C63.10:2014
	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Setup:	Spectrum Analyzer EUT
	Test Mode:	Hopping mode
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Test Result:	PASS
	Value Bridge Co.	

Report No.: WSCT-A2LA-R&E240400017A-BT

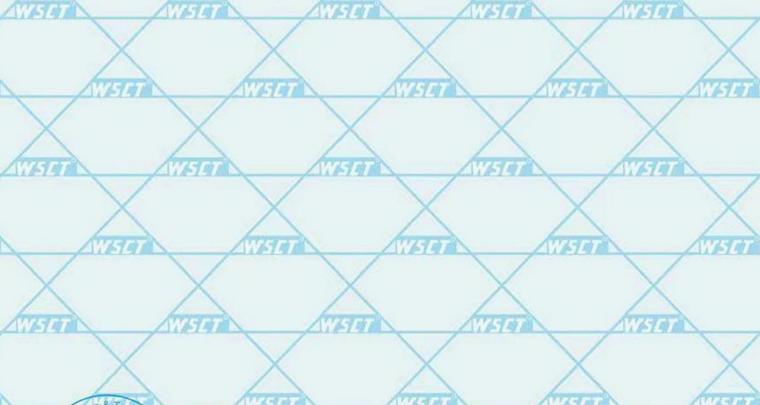
Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7.2. Test Data

Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.398	126.166	317	31600	400	Pass
1-DH1	2441	0.399	127.281	319	31600	400	Pass
1-DH1	2480	0.397	126.246	318	31600	400	Pass
1-DH3	2402	1.655	259.835	157	31600	400	Pass
1-DH3	2441	1.654	264.64	160	31600	400	Pass
1-DH3	2480	1.655	264.8	160	31600	400	Pass
1-DH5	2402	2.904	339.768	117	31600	400	Pass
1-DH5	2441	2.9	287.1	99	31600	400	Pass
1-DH5	2480	2.9	307.4	106	31600	400	Pass

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.


For DH1, With channel hopping rate (1600/2/79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600/2/79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160 \text{ hops}$

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

WSET Stand Grand Comments of Manager Stands

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question, Please Contact with WSCT Test Graphs www.wsct-cert.com Dwell NVNT 1-DH1 2402MHz Ant1 One Burst pectrum Analyzer 1 wept SA + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Video Trig Delay: -500.0 µs KEYSIGHT Input RF ΔMkr1 398.0 μs Ref LvI Offset 3.84 dB Ref Level 20.00 dBm 4.48 dE Scale/Div 10 dB Span 0 Hz Sweep 10.0 ms (10001 pts) Center 2.402000000 GHz Res BW 1.0 MHz #Video BW 3.0 MHz Apr 16, 2024 10:12:28 AM Dwell NVNT 1-DH1 2402MHz Ant1 Accumulated + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) KEYSIGHT Input RF #Avg Type: Power (RMS 1 2 3 4 5 6 PNNNNN Ref LvI Offset 3.84 dB Ref Level 20.00 dBm Scale/Div 10 dB

Center 2.402000000 GHz Res BW 1.0 MHz

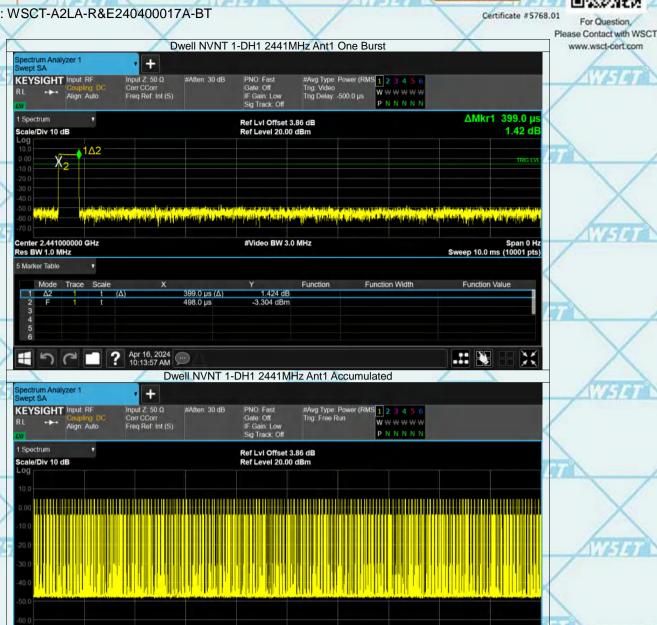
? Apr 16, 2024 10:13:02 AM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 3.0 MHz

Span 0 Hz Sweep 31.6 s (10001 pts)

III 🦠



Report No.: WSCT-A2LA-R&E240400017A-BT

Res BW 1.0 MHz

? Apr 16, 2024 10:14:31 AM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 3.0 MHz

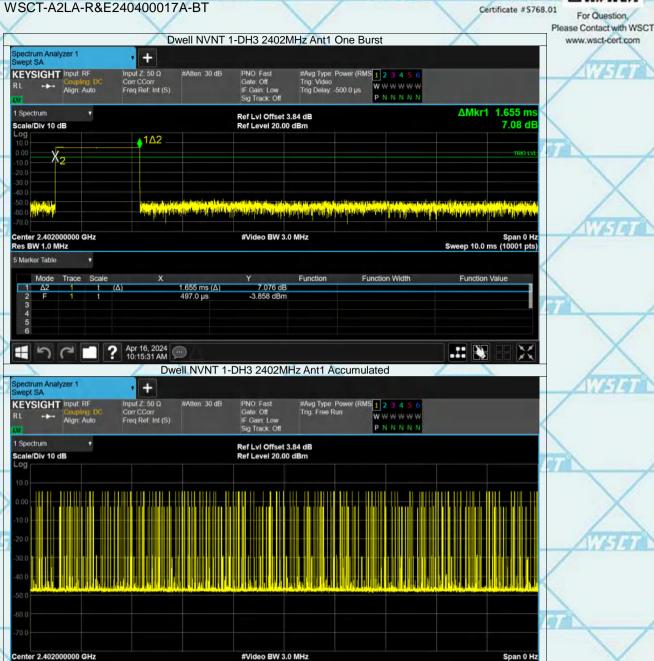
Span 0 Hz Sweep 31.6 s (10001 pts)

... 🐧



Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01



Report No.: WSCT-A2LA-R&E240400017A-BT

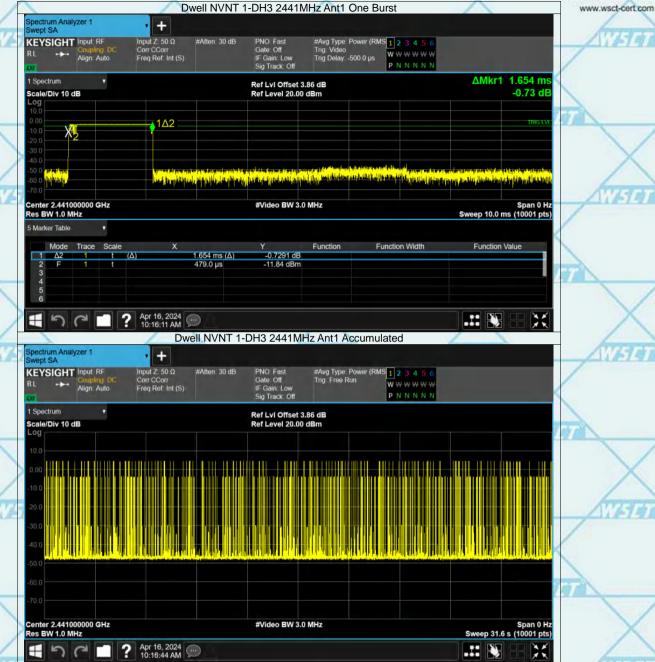
Res BW 1.0 MHz

? Apr 16, 2024 10:16:05 AM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

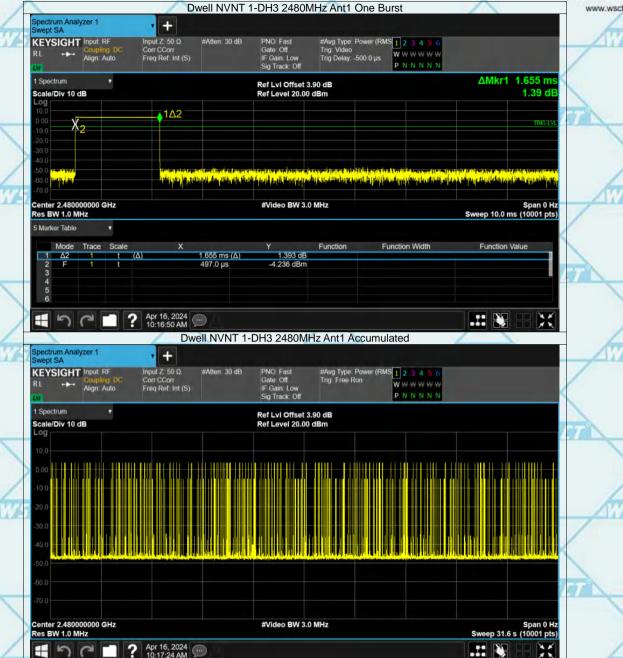
Sweep 31.6 s (10001 pts)

.: N



Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question,
Please Contact with WSCT

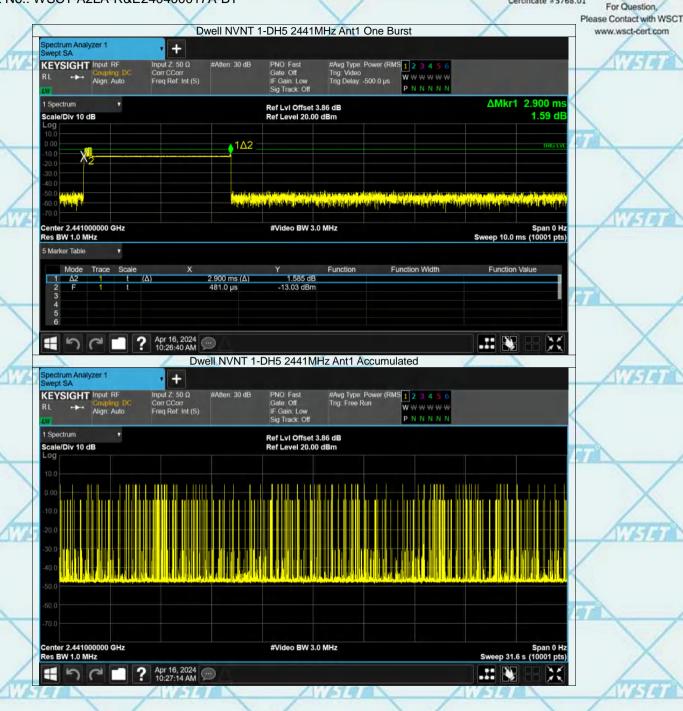


Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question,
Please Contact with WSCT
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question, Please Contact with WSCT



Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01



Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question, Please Contact with WSCT Dwell NVNT 1-DH5 2480MHz Ant1 One Burst www.wsct-cert.com + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) PNO: Fast Gate: Off IF Gain: Low Sig Track: Off KEYSIGHT Input RF #Avg Type: Power (RMS 1 2 3 4 5 6 Align: Auto PNNNNN ΔMkr1 2.900 ms Ref LvI Offset 3.90 dB Ref Level 20.00 dBm 0.54 dB Scale/Div 10 dB <u>1</u>Δ2 #Video BW 3.0 MHz Span 0 Hz Sweep 10.0 ms (10001 pts) Center 2.480000000 GHz Res BW 1.0 MHz 5 Markor Table Function Value 481.0 µs -12.59 dBm ? Apr 16, 2024 10:31:42 AM II 🔊 Dwell NVNT 1-DH5 2480MHz Ant1 Accumulated Input Z: 50 Ω

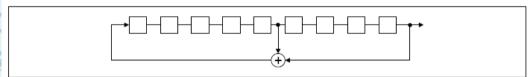
Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

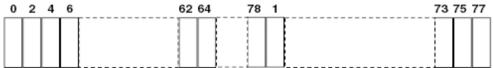
6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
ANSI C63.10:2014
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer EUT
Transmitting mode with modulation
 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

 \times

Report No.: WSCT-A2LA-R&E240400017A-BT

Test Data

GFSK Modulation (the worst case)

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com

? Apr 16, 2024

Report No.: WSCT-A2LA-R&E240400017A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-758-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

... 💸

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.10. Conducted Spurious Emission Measurement

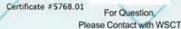
6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240400017A-BT

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question,

Report No.: WSCT-A2LA-R&E240400017A-BT

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01 For Question

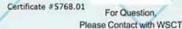
Report No.: WSCT-A2LA-R&E240400017A-BT

NISTO I

Wister

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400017A-BT



Report No.: WSCT-A2LA-R&E240400017A-BT

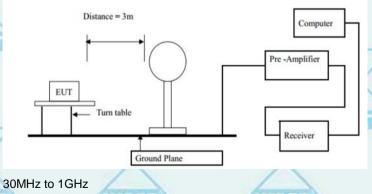
Report No.: WSCT-A2LA-R&E240400017A-BT

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.11. Radiated Spurious Emission Measurement


6.11.1. Test Specification

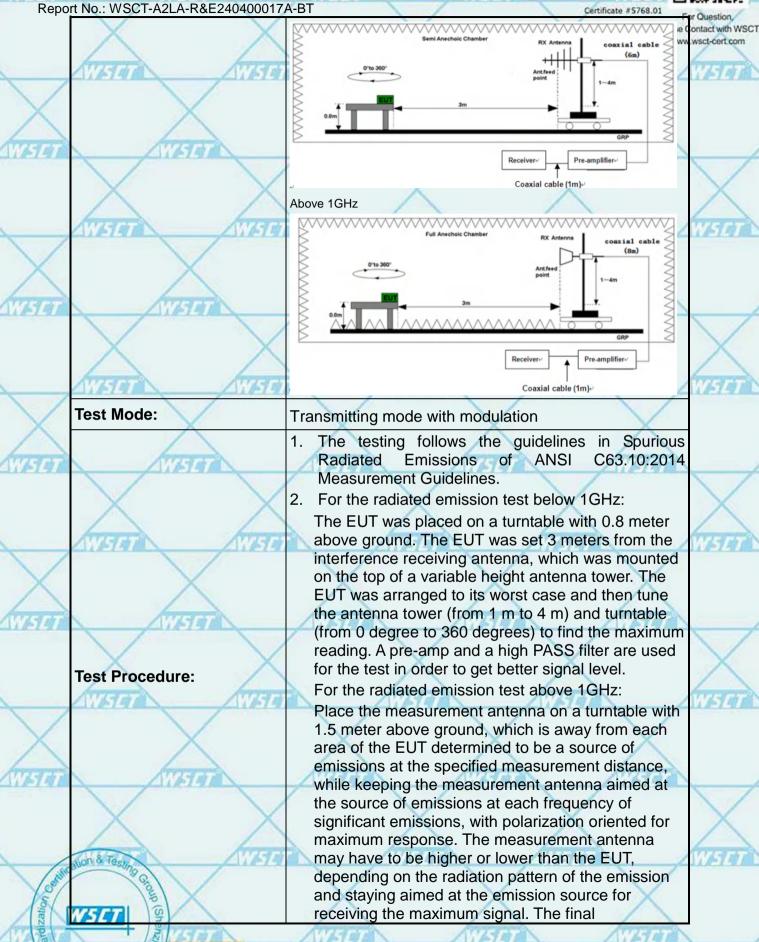
7	6.11.1. Test Specification	\ /		1			
	Test Requirement:	FCC Part15	C Sectio	n 15.209		X	Ī
1	Test Method:	ANSI C63.10):2014	17270	1	17674	
	Frequency Range:	9 kHz to 25 (GHz		1	/	
	Measurement Distance:	3 m	X		X	\.	1
	Antenna Polarization:	Horizontal &	Vertical		AVE	41	10
		Frequency	Detecto	r RBW	VBW	Remark	1
	X	9kHz- 150kHz	Quasi-pea	ak 200Hz	1kHz	Quasi-peak Value	1
		150kHz-	Quasi-pea	ak 9kHz	30kHz	Quasi-peak Value	1
	Receiver Setup:	30MHz		1825		AUGHA	
		30MHz-1GHz	Quasi-pea	ak 100KHz	300KHz	Quasi-peak Value	5
		Above 1GHz	Peak	1MHz	3MHz	Peak Value	
	\wedge	Above Toriz	Peak	1MHz	10Hz	Average Value	4
2	WETER SWETER	Frequen	cy /5/7	Field Stre (microvolts		Measurement Distance (meters)	Ć
		0.009-0.4	190	2400/F(KHz)	300	
	X	0.490-1.7	705	24000/F	(KHz)	30	
5		1.705-3	0	30		30	
	176747	30-88		100		3	L
		88-216	3	150		3	
	Limit:	216-96		200		3	1
		Above 9	60	500		3	
	Annual An	1	· biomorphism	2	Lancon		

Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)	Detector
Above 1GHz	500	3	Average
	5000	3	Peak

For radiated emissions below 30MHz

Test setup:

WSGT


世标检测认证股份 pup (Shenzhen) Co., Ltd.

Repo	rt No.: WSCT-A2LA-R&E240400017.	A-BT		Certificate #5768.01	For Ossetion
1	Y	me	asurement antenna ele	vation shall be that which	Contact with WSCT
		ma	ximizes the emissions.	The measurement www	w.wsct-cert.com
	ATTLANTA TOTAL	ant	enna elevation for max	imum emissions shall be	(1727 de la
	CIFIAN DIEIS	res	tricted to a range of hei	ights of from 1 m to 4 m	LEITE.
		abo	ve the ground or refere	ence ground plane.	
		3. Se	t to the maximum pow	er setting and enable the	
ATTION	America	EU	T transmit continuously	y.	
211-19	11813	4. Us	e the following spectrui	m analyzer settings:	
		(1	Span shall wide enou	gh to fully capture the	/
	\wedge	,	emission being measi		
	Anna Anna	(2		r f < 1 GHz, RBW=1MHz	1000
	11-14	1	for f>1GHz ; VBW≥RE		TATE OF
		1		ctor function = peak; Trace	
		1	= max hold for peak		
Anna	(max)	40	B) For average measure	ement: use duty cycle	
ZIE	1079	/ III	correction factor met		/
				On time/100 milliseconds	/
				L2++Nn-1*LNn-1+Nn*Ln	
	Amaza Amaz			r of type 1 pulses, L1 is	Anna de
	11-14 TIPLE		length of type 1 pulse		11579
		1		evel = Peak Emission	
		1	Level + 20*log(Duty		
house	ATT	km	The same of the sa	The second second	
ZIAIA	11779	/ III		ntenna Factor + Cable	/
			Loss + Read Level - F	Preamp Factor = Level	//
	Test results:	PASS			
N	AUGGE AUGGE		AVE THE	WATER OF THE PARTY	(V23 # d
1	111111111111111111111111111111111111111	-	- Comment	1	JAR LELAN
X	\times		×	\sim	
		/			
AVISTA	WSET	AUX	141	11/4/19	
		110			
	\times		X	X	X
	AVETO		WSGT	WSET	WSET
1		1		/	

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.11.2. Test Data

Please refer to following diagram for individual

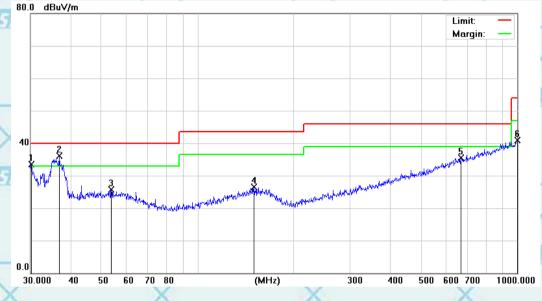
Horizontal:

Below 1GHz

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	ag/
\rangle			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	- /	30.0000	31.84	-1.73	30.11	40.00	-9.89	QP
2	2	*	36.0007	34.17	-1.12	33.05	40.00	-6.95	QP
	3		49.0145	25.93	-1.10	24.83	40.00	-15.17	QP
	4		142.3243	26.62	-0.38	26.24	43.50	-17.26	QP
	5	D,	590.9737	26.97	7.44	34.41	46.00	-11.59	QP
>	6		1000.000	26.21	14.33	40.54	54.00	-13.46	QP

World Start And Popular Committee of the Committee of the

THE STATE OF THE S



Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	red .
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	30.2111	35.20	-1.72	33.48	40.00	-6.52	QP
2	*	36.8953	37.07	-0.97	36.10	40.00	-3.90	QP
3		53.6932	27.22	-1.44	25.78	40.00	-14.22	QP
4		150.0108	26.51	0.07	26.58	43.50	-16.92	QP
5		665.8035	26.26	9.25	35.51	46.00	-10.49	QP
6		1000.000	26.53	14.33	40.86	54.00	-13.14	QP

Note1:

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

AW5[4]

AWSET

A11-14

Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Above 1GHz

GFSK

4	Eroa		Low channel: 2402MHz								
	Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)				
	(IVIIIZ)	H/V	PK	AV	PK	AV	PK	AV			
1	4804	V	57.85	39.33	74	54	-16.15	-14.67			
	7206	V	65.19	39.16	74	54	-8.81	-14.84			
	4804	Η	65.75	39.37	74	54	-8.25	-14.63			
	7206	I	57.70	41.70	74	54	-16.30	-12.30			

4		Middle channel: 2441MHz							
Freq.		Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	(MHz)	H/V	PK	ÁV	PK	AV	PK	ÁV	
	4882	WeV -	63.28	40.92	74	54	-10.72	-13.08	
	7323	V	58.91	39.87	74	54	-15.09	-14.13	
	4882	Η	63.74	39.87	74	54	-10.26	-14.13	
	7323	Η	59.77	43.77	74	54	-14.23	-10.23	

ATTI		A S. S. of all and with a	-61	The state of the s		The day and the first		
Freq. (MHz)	High channel: 2480MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4960	V-V	58.49	41.53	74	54	-15.51	-12.47	
7440	V	56.06	39.19	74	54	-17.94	-14.81	
4960	Τ	62.22	40.60	74	54	-11.78	-13.40	
7440	Η	57.13	41.13	74	54	-16.87	-12.87	

Note:

- The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

(Shen MOM * PI

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400017A-BT **Restricted Bands Requirements**

Test result for GESK Mode(the worst case)

rest result for GFSK Mode(the worst case)							
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
1	ATTERIOR		Low Cha	nnel	Konga	1	ATTE
2390	64.76	-8.76	56.00	74	18.00	H	PK
2390	56.14	-8.76	47.38	54	6.62	н	AV
2390	59.46	-8.73	50.73	74	23.27	V	PK
2390	56.54	-8.73	47.81	54	6.19	V	AV
			High Cha	nnel			1
2483.5	62.55	-8.76	53.79	74	20.21	Н	PK
2483.5	54.95	-8.76	46.19	54	7.81	Н	AV
2483.5	63.76	-8.73	55.03	74	18.97	V	PK
2483.5	57.68	-8.73	48.95	54	5.05	V	AV

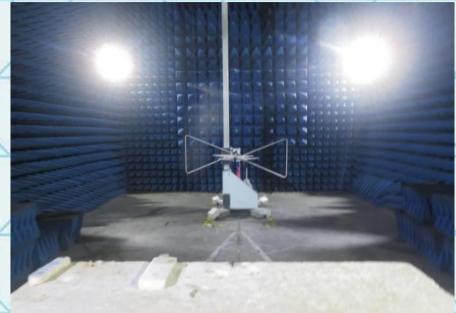
Note: Freq. = Emission frequency in MHz Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard Margin (dB) = Level (dB μ V) – Limits (dB μ V)

W/5/47	17474	AVISTO	WSCT	AVETER	
NV-FI			HAI	WEIGH	AVE TO BE
WEIGH	Wiston	WSTAT	Waster	N/F19	
WS			\times	WESTER	AVV5701
WETER	NV-STOP IN	WEITE	NIST 4 A	WAT IN	
ification & Tes			5747	Wister	N/F100
iffCollection	ung l				-

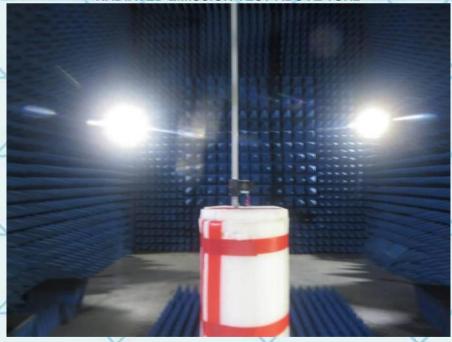
DOMON * PIT


Report No.: WSCT-A2LA-R&E240400017A-BT

7. Test Setup Photographs

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com



WSET

WESTER

RADIATED EMISSION TEST ABOVE 1GHz

X

WSET

AVISET

WSET

AWSET

WSET Steps

DUOM * PIT

世标检测认证股份



Report No.: WSCT-A2LA-R&E240400017A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

WSET

WSET

****END OF REPORT****

WSGT WSGT WSGT

AVETO AVETO AVETO

WSI WSI WSI

WHITE WHITE WHITE

WATER WATER

WEST WESTER WESTER

STORE ATTENDED

YOUP (Shenza

DONON * PIT