

For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OSW-821N Product: Smart Watch Model No.: OSW-821N Trade Mark: oraimo Report No.: WSCT-A2LA-R&E240500022A-15B Issued Date: 31 May 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

AW 51 T

75*1*7

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

WSLT I

175500

tion & Testi

WSE7

awitzation Certification & ToSDn

S

世标物测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China oup (Shenzhen) Co.,Ltd. TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC.

& Test

W5[]

Contration & Test

W5E7

SPUOM * PIT

60

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

TABLE OF CONTENTS

/	WATER WATER WATER AWATER AWATER
1.	Test Certification
2.	GENERAL DESCRIPTION OF EUT 4
3.	Test Result Summary
4.	TEST METHODOLOGY 6 4.1. CONFIGURATION OF SYSTEM UNDER TEST 7
- /	4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)
5.	MEASUREMENT INSTRUMENTS
6.	Facilities and Accreditations 10
CT N	6.1. FACILITIES
	6.2. ACCREDITATIONS
	6.3. MEASUREMENT UNCERTAINTY
7.	EMC EMISSION TEST
/	7.1. CONDUCTED EMISSION MEASUREMENT
1	7.2. TEST RESULTS
CT	7.3. RADIATED EMISSION MEASUREMENT
8.	Test Setup Photographs

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

lia Tested By: Checked By: (Wang Xiang) (Qin Shuiquan) & Test Approved By: Date: (Liu Fuxin) fication & Testin U. 1515 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份 World Standardization Certification & Testin oup (Shenzhen) Co., Ltd. Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E240500022A-15B

		RAL DESCRIPTION OF EUT
	Product Name:	Smart Watch 7 757
	Model :	OSW-821N
	Trade Mark:	oraimo
	Operating Voltage	Li-ion Battery: 592127 Voltage: 3.8V Rated Capacity: 340mAh 1.292Wh Limited Charge Voltage: 4.35V
-	Remark:	N/A.

Note: 1. N/A stands for no applicable.

23

1-11

mon & Tes

WSET

PHOM * PIT

60

Cettific

dizatio

2. Antenna gain provided by the applicant

16

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

3. Test Result Summary

	AULTRA AULTR	ATTENDA	ATTACK /	WSET
7	Requirement	CFR 47 Section	Result	
	CONDUCTED EMISSION	§15.107	PASS	
9	RADIATED EMISSION	WSCT §15.109 WSCT	PASS	

 W_{5}

Note:

Contration & Test

WSE1

S DUOM * PT

60

dizatio

1. PASS: Test item meets the requirement.

9.4

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 5 of 22

mon & Tes

W5E

PHOM * PT

oup (Sher

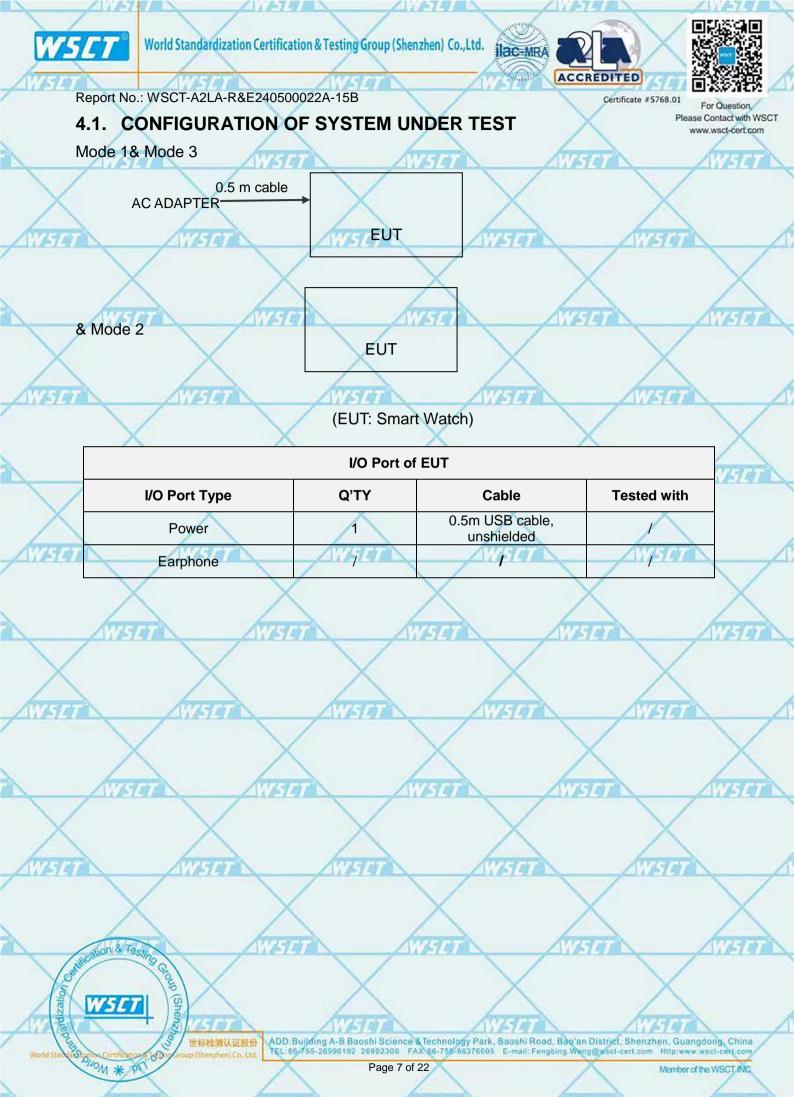
Cer

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B


4. TEST METHODOLOGY

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

١.						
/	Pretest Mode	Description				
	Mode 1	Charging	1			
	Mode 2	Bluetooth	/			
	Mode 3	Bluetooth + charging				
	Note: Bluetooth earphones cannot be turned on while charging in the charging compartment.					

Page 6 of 22

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

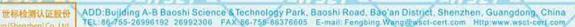
4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

					and the second se	and a little	
14	ltem	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note	5
	1	Adapter	itel	U180IED		/	
	2	Keyboard				/	2
-	3	Mouse		11414	11419	- 1 /	Ľ

Note: (1)

(2)


sion & Tee

WSCI

PHOM * PT

oup (She)

The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ^rLength_a column.

Page 8 of 22

1-10

Contration & Test

WSET

BUOM * PT

dizatio

aroup (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01 For

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

5. MEASUREMENT INSTRUMENTS

					/	
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until	
Test software		EZ-EMC	CON-03A		×	
ESCI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
LISN AVSI	AFJ	567 LS16	16010222119	11/05/2023	11/04/2024	_
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	/
pre-amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	1
System Controller	WCT7	SC1005/77	A - /	11/05/2023	11/04/2024	127
Bi-log Antenna	Chase	CBL6111C	2576	11/05/2023	11/04/2024	
Spectrum analyzer	R&S	FSU26	200409	11/05/2023	11/04/2024	
Horn Antenna	SCHWARZBECK	9120D	1141	11/05/2023	11/04/2024	
Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	1
Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	X
9*6*6 Anechoic	ATTA	Ann	N /	11/05/2023	11/04/2024	74

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenzhen (o. M.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

6. Facilities and Accreditations

6.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

on & Tes

MOM * P

S

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

6.3.

tion & Tee

WSE1

PHOM * PT

roup (Shen

Cestific

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240500022A-15B

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Measurement Uncertainty The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of

confic	dence of approximately 95 %.	
No.	Item	MU
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1GHz)	±4.7dB
5	All emissions, radiated(>1GHz)	±4.7dB
6	Temperature WSCT WS	±0.5°C/5/7
7	Humidity	±2.0%
· /	Turnuty	22.070

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世标枪测认证股份

114

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question,

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

7. EMC EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. POWER LINE CONDUCTED EMISSION LIMITS

					ALL AND THE MARK
FREQUENCY (MHz)	Class A	(dBuV)	Class B	(dBuV)	Standard
	Quasi-peak	Average	Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

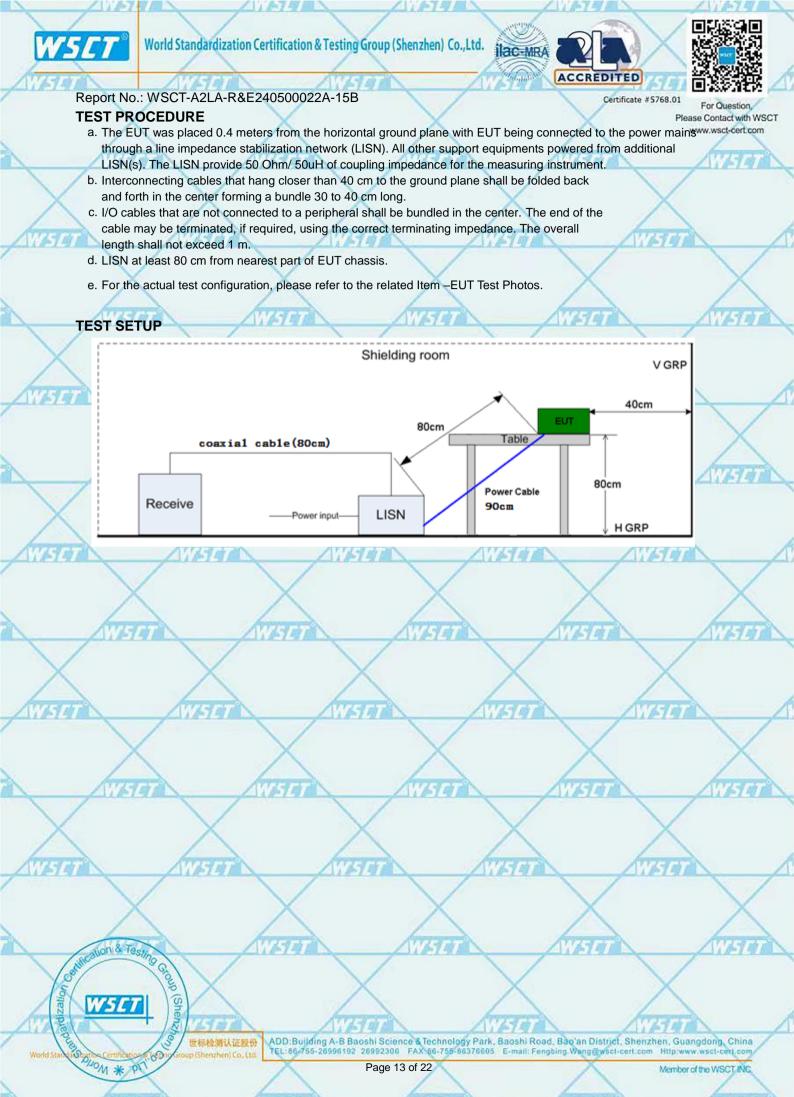
ion & Tes

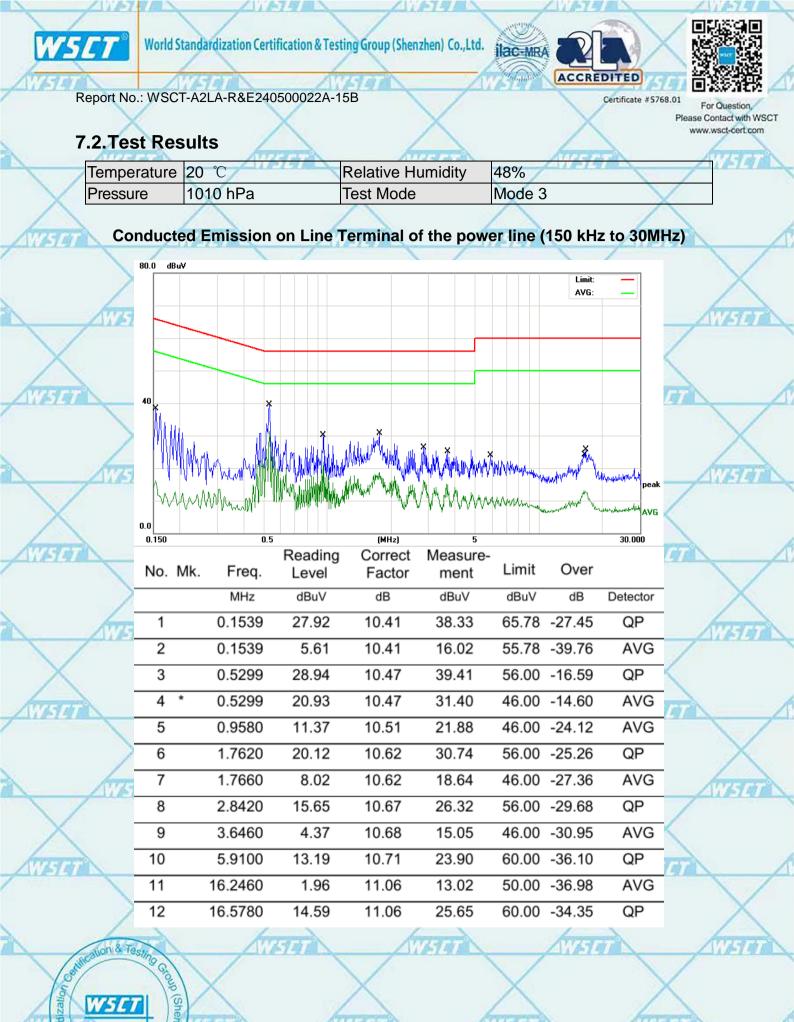
W5E

PHOM * PT

up (Shen

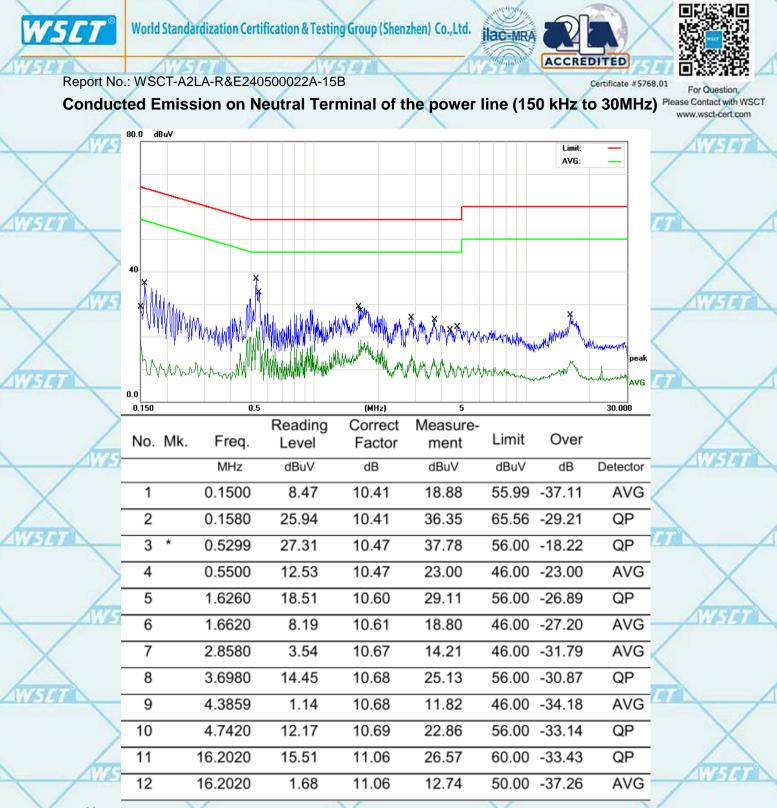
e


Zatio


- (1) The tighter limit applies at the band edges.
 - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following	table is the	e settina of	the receiver
---------------	--------------	--------------	--------------

(1			
X	Receiver Parameters	Setting	
-	Attenuation	10 dB	
19	Start Frequency	0.15 MHz	
	Stop Frequency	30 MHz	V
	IF Bandwidth	9 kHz	
			/



世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992300 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

PHOM * P

Note1:

PHOM * PT

Certifi

Freq. = Emission frequency in MHz

- Reading level ($dB\mu V$) = Receiver reading
- Corr. Factor (dB) = LISN Factor + Cable loss
- Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)
- Limit $(dB\mu V) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V) Limits (dB μ V)
- Q.P. =Quasi-Peak AVG =average
- * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

7.3. RADIATED EMISSION MEASUREMENT

7.3.1. Radiated Emission Limits

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	X 3 X
Above 960	500	3
	ACCOUNT OF A DECK	Contraction of the Contraction o

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

on & Te

MOM * P

up (St

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average				
barra)					

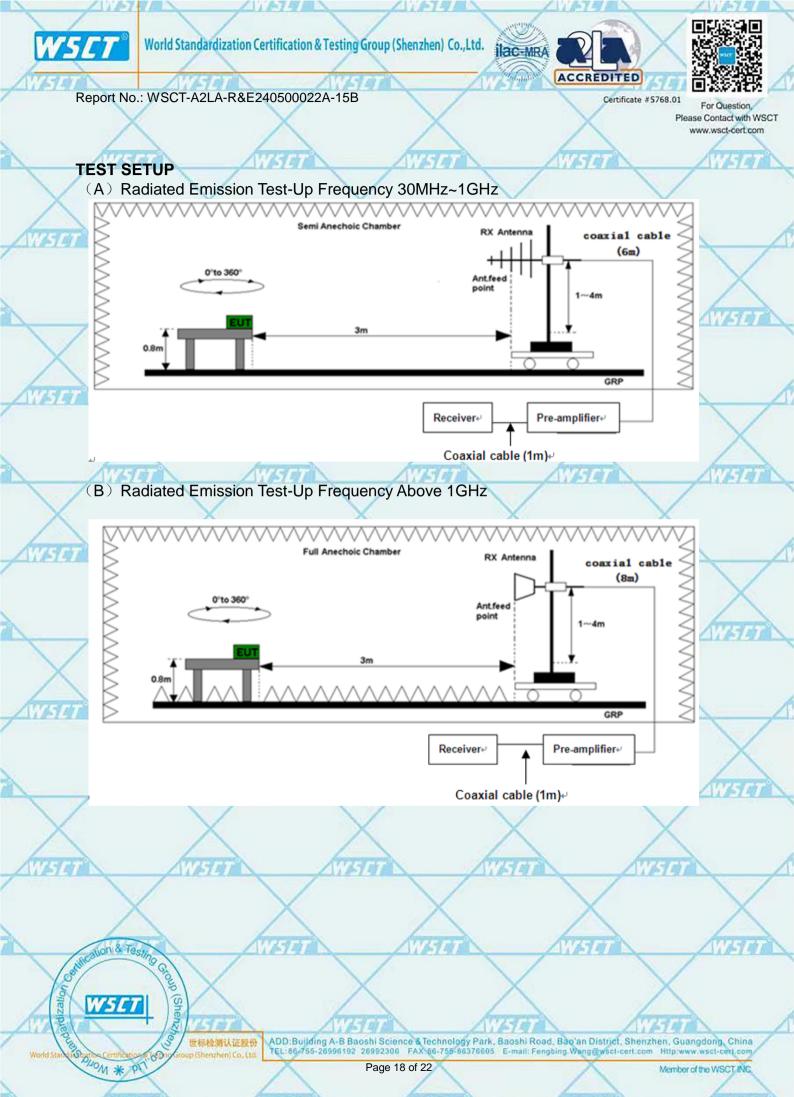
Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

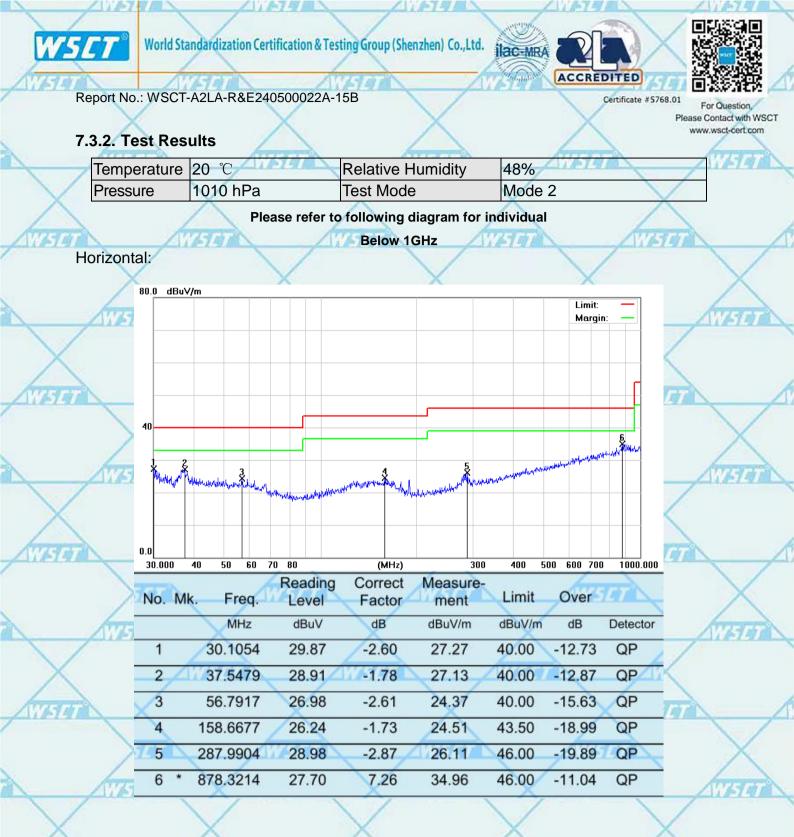
For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

TEST PROCEDURE

tion & Tes

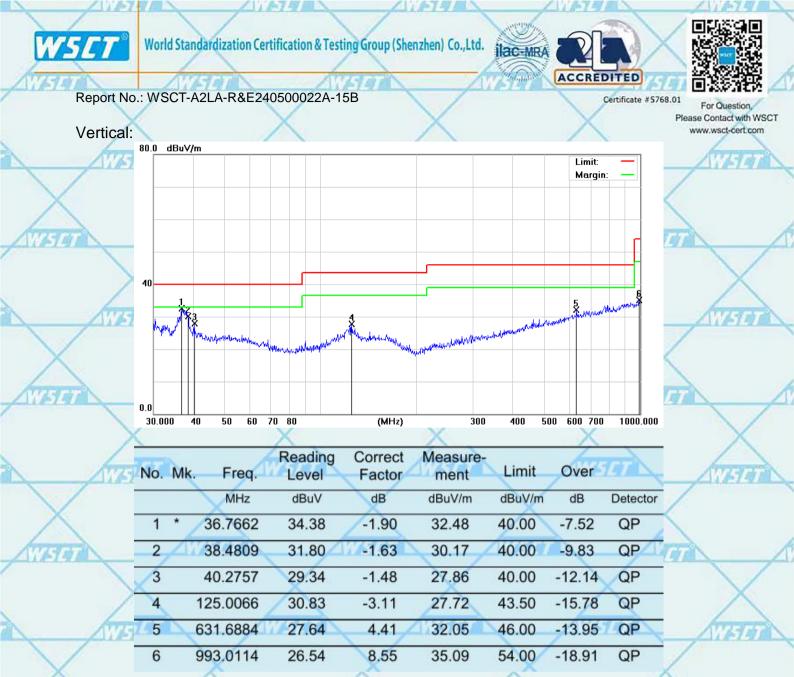

MOM * P


Jup (St

Cer

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test
- antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com


Member of the WSCT INC

on & Tes

MOM * PIT

up (Sher

Cestifu

Note1:

on & Tes

PHOM * P

up (Sher

Certifit

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

> 世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 28992308 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500022A-15B

TEST RESULTS

Above 1GHz(1~26GHz) :(Mode 2-worst case)

Ant.	Emission		Limit 🔨		Over(dB)		
Pol.	Level(dBuV)		3m(dBuV/m)		A A A A A A A A A A A A A A A A A A A		
H/V	PK	AV	PK	AV	PK	AV	
Н	57.03	40.47	74	54	-16.97	-13.53	
V	63.98	39.63	74	54	-10.02	-14.37	\wedge
Н	63.24	39.57	74	54	-10.76	-14.43	17.0
V	58.95	42.95	74	54	-15.05	-11.05	
	Pol.	Pol. Level(H/V PK H 57.03 V 63.98 H 63.24	Pol. Level(dBuV) H/V PK AV H 57.03 40.47 V 63.98 39.63 H 63.24 39.57	Pol. Level(dBuV) 3m(dBu) H/V PK AV PK H 57.03 40.47 74 V 63.98 39.63 74 H 63.24 39.57 74	Pol. Level(dBuV) 3m(dBuV/m) H/V PK AV PK AV H 57.03 40.47 74 54 V 63.98 39.63 74 54 H 63.24 39.57 74 54	Pol. Level(dBuV) 3m(dBuV/m) H/V PK AV PK AV PK H 57.03 40.47 74 54 -16.97 V 63.98 39.63 74 54 -10.02 H 63.24 39.57 74 54 -10.76	Pol. Level(dBuV) 3m(dBuV/m) H/V PK AV PK AV H 57.03 40.47 74 54 -16.97 -13.53 V 63.98 39.63 74 54 -10.02 -14.37 H 63.24 39.57 74 54 -10.76 -14.43

Remark:

nion & Tes

W5E

PHOM * PIT

up (Sher

e

Zatio

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Freq. = Emission frequency in MHz

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

