

For Question,
Please Contact with WSCT
www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OSW-811H

Product: Smart Watch

Model No.: OSW-811H

Trade Mark: oraimo

Report No.: WSCT-A2LA-R&E240600027A-LE

Issued Date: 20 June 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED
FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25
SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

W5CT

World Standardization Certification FeSDn

世标检测认证股份 roup (Shenzhen) Co., Ltd. ADD:Building A-B-Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guandong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

TABLE OF CONTENTS

/1.	Test Certification	3	
2.	Test Result Summary	4	
143.	EUT Description	5	
4.	Genera Information	6	
	4.1. TEST ENVIRONMENT AND MODE	6	
-/	4.2. DESCRIPTION OF SUPPORT UNITS	6	
5.	Facilities and Accreditations	7	
1	5.1. FACILITIES	7	
141	5.2. ACCREDITATIONS	7	
	5.3. MEASUREMENT UNCERTAINTY	8	
	5.4. MEASUREMENT INSTRUMENTS	9	
6.	Test Results and Measurement Data	10	
	6.1. ANTENNA REQUIREMENT	10	
	6.2. CONDUCTED EMISSION	11	
741	6.3. CONDUCTED OUTPUT POWER	14	
	6.4. EMISSION BANDWIDTH	16	
	6.5. Power Spectral Density	21	
/	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	26	
/	6.7. RADIATED Spurious Emission Measurement	37	

AVESTO AVESTO

Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240600027A-LE

Test Certification

Smart Watch Product:

Model No .: OSW-811H

Trade Mark:

Applicant: ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

ORAIMO TECHNOLOGY LIMITED Manufacturer:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL

CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Chongqing Zhouhai Intelligent Technology Co., Ltd. Factory:

4F, Building 9, Linkong Intelligent Industrial Park, No 6 Langyue

Road, Shuangfenggiao Subdistrict, Yubei District, Chongging, China

07 June 2024 to 20 June 2024 Date of Test:

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable**

KDB 558074 D01 DTS Meas Guidance v04 Standards:

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Chenx

Tested By: (Wang Xiang) Checked By:

(Chen Xu)

Approved By:

Date:

20

(Liu Fuxin)

noation & Testin

and zation Certification & Testin

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

2. Test Result Summary

	イリスチョウ イリスチョ	ATTE HOLD	AVA THE
7	Requirement	CFR 47 Section	Result
	Antenna requirement	§15.203/§15.247 (c)	PASS
	AC Power Line Conducted Emission	§15.207	PASS
	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
2	Power Spectral Density	§15.247 (e)	PASS
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
1	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS

Note:

S DUOM * PIT

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

W5191 W5191 W5191 W5191 W5191 W

OLD (Shep)

世标检测认证股份

by Sroup (Shenzhen) Co., ttst.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT Description**

Product Name:	Smart Watch
Model :	OSW-811H
Trade Mark:	oraimo
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type:	Wire antenna
Antenna Gain:	-1.74dBi
Operating Voltage	Rechargeable Li-ion Battery: 551925PN3 Voltage: 3.8V Rated Capacity: 290mAh Limited Charge Voltage: 4.35V
Remark:	N/A.

Operation Frequency each of channel

Operatio	peration Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
40	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	X		X		X		X
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	XCU32		1	/ /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. Facilities and Accreditations

5.1. Facilities

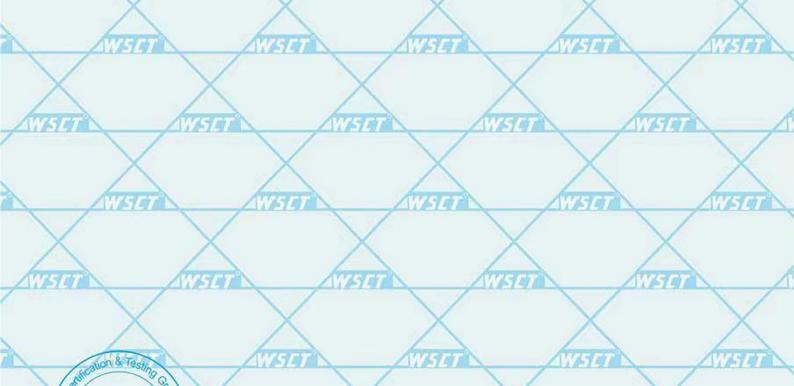
All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration


Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

世标检测认证数份 sroop (Shenzhen) Co., Ltd.

NOW * PI

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Cormuc	FILE OF APPLOXIMATELY 95 78.	V
No.	Item	MU
1	Power Spectral Density	±3.2dB
2	Duty Cycle and Tx-Sequence and Tx-Gap	±1%
3//5/	Medium Utilisation Factor	±1.3%
4	Occupied Channel Bandwidth	±2.4%
5	Transmitter Unwanted Emission in the out-of Band	±1.3%
6	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%
7	Receiver Spurious Emissions	±2.5%
8	Conducted Emission Test	±3.2dB
9	RF power, conducted	±0.16dB
10	Spurious emissions, conducted	±0.21dB
11	All emissions, radiated(<1GHz)	±4.7dB
12	All emissions, radiated(>1GHz)	±4.7dB
13	Temperature	±0.5°C
14	Humidity	±2.0%

A1614

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.4. MEASUREMENT INSTRUMENTS

						WWW.Was	
,	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	E
	Test software		EZ-EMC	CON-03A	-	X-	
	Test software		MTS8310	V214	- /	4744	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	7
/	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
9	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	1
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	1
	Pre Amplifier	HP	HP8447E	2945A02715	11/05/2023	11/04/2024	7
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
\	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	
7	9*6*6 Anechoic	4	ISUT -	WSLT	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	1
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	_
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	£
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
7	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	7
1	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
5	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
7	Power sensor	Anritsu	MX248XD	Allera	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	-
			_				

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

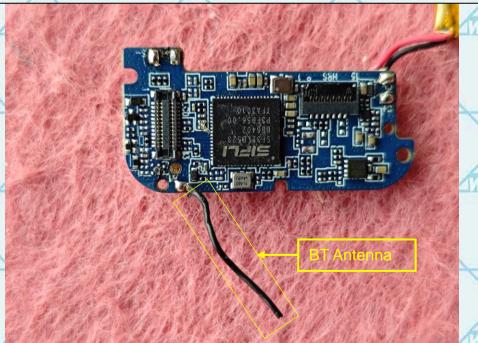
6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Wire Antenna. it meets the standards, and the best case gain of the antenna is -1.74dBi.

19 N/514

1791

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

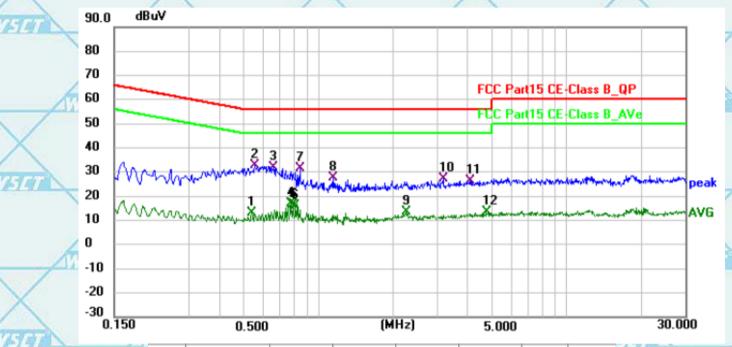
6.2. Conducted Emission

.2.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2014
Frequency Range:	150 kHz to 30 MHz
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto
Limits:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50
X	Reference Plane
NIFE STEE	40cm LISN Filter AC power
Test Setup:	Test table/Insulation plane Remark
AVE OF THE OWNER	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m
Test Mode:	Charging + Transmitting Mode
WASTON	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main
Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
WETAT	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.
Test Result:	N/A
18/	

SOUND WITH MAN

世标检测认证股份

Report No.: WSCT-A2LA-R&E240600027A-LE


6.2.2. Test data (worst case)

The worst mode is BLE 1M

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
	1	0.5370	-7.54	20.52	12.98	46.00	-33.02	AVG	
	2 *	0.5550	12.08	20.52	32.60	56.00	-23.40	QP	
	3	0.6585	11.45	20.53	31.98	56.00	-24.02	QP	
ľ	4	0.7710	-3.43	20.57	17.14	46.00	-28.86	AVG	
1	5	0.7890	-4.26	20.58	16.32	46.00	-29.68	AVG	
1	6	0.8070	-4.44	20.59	16.15	46.00	-29.85	AVG	É
	7	0.8430	11.11	20.60	31.71	56.00	-24.29	QP	
	8	1.1490	7.15	20.66	27.81	56.00	-28.19	QP	
ĺ	9	2.2559	-7.00	20.61	13.61	46.00	-32.39	AVG	
1	10	3.1785	6.44	20.59	27.03	56.00	-28.97	QP	
	11	4.0830	5.96	20.58	26.54	56.00	-29.46	QP	1
	12	4.7399	-7.21	20.57	13.36	46.00	-32.64	AVG	1

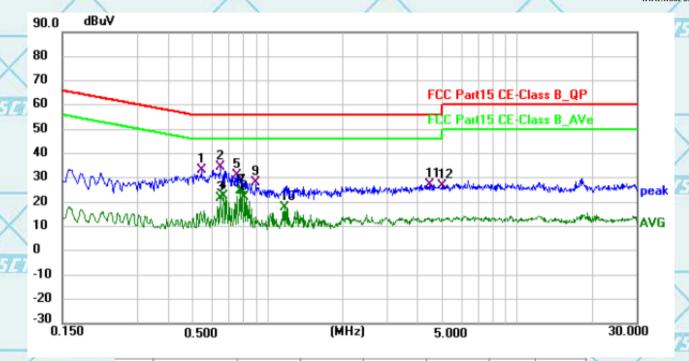
World Stand in Rights Commission (SOno Group IS

1773

AWSET

ATTE MA

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240600027A-LE

For Question, Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MH2)ntact with WSCT wsct-cert.com

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
	1	0.5415	12.70	20.52	33.22	56.00	-22.78	QP
7	2	0.6450	14.09	20.53	34.62	56.00	-21.38	QP
	3	0.6450	1.10	20.53	21.63	46.00	-24.37	AVG
	4	0.6630	1.81	20.53	22.34	46.00	-23.66	AVG
	5	0.7530	10.43	20.56	30.99	56.00	-25.01	QP
	6 *	0.7710	4.24	20.57	24.81	46.00	-21.19	AVG
	7	0.7890	4.07	20.58	24.65	46.00	-21.35	AVG
	8	0.8070	1.69	20.59	22.28	46.00	-23.72	AVG
	9	0.8970	7.23	20.63	27.86	56.00	-28.14	QP
/	10	1.1670	-2.70	20.66	17.96	46.00	-28.04	AVG
	11	4.4430	6.48	20.58	27.06	56.00	-28.94	QP
7	12	4.9875	6.31	20.57	26.88	56.00	-29.12	QP

Note:

Freg. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Lisn factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

AVG =average Q.P. =Quasi-Peak

(She)

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

DUOM * PI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.2	247 (b)(3)
Test Method:	KDB558074	WHO
Limit:	30dBm	X
Test Setup:		•
	Spectrum Analyzer	EUT
Test Mode:	Refer to item 4.1	VSI WSI
Test Procedure:	FCC KDB No. 558074 I v04. 2. Set spectrum analyzer a a) Set the RBW ≥ DTS b) Set VBW ≥ 3 x RBV c) Set span ≥ 3 x RBW d) Sweep time = auto co e) Detector = peak. f) Trace mode = max hol g) Allow trace to fully sta	S bandwidth. V. / uple. d.
Test Result:	PASS	\vee

Report No.: WSCT-A2LA-R&E240600027A-LE

6.3.2. Test Data

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

BLE 1M					
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result		
Lowest	7.02	30.00	PASS		
Middle	6.99	30.00	PASS		
Highest	6.88	30.00	PASS		

All the same of th	ACCUPATION AND ADDRESS OF THE PARTY OF THE P	And the second s				
	BLE 2M					
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	7.00	30.00	PASS			
Middle	6.99	30.00	PASS			
Highest	6.88	30.00	PASS			

Test plots as follows:

NISTED AVES	WIFIE	WSI	WS	
NVETO	WEIGH	WEIGH	Wiston	WETER
WEST OF THE STATE	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
NVE 191	NIE I II	Wester	WASTER	WESTER
WEIGHT WEI	$\langle \rangle$			
scalion & Testino	WSW	Wister	WEIGH	N/SI W

允许认证股份 nzhen) Co. Ltd. TEL:86

Toup (Shenz)

MONOW * PIT

MONOW * DIT

Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.4. Emission Bandwidth

6.4.1. Test Specification

FCC Part15 C Section 15.247 (a)(2)
KDB558074
>500kHz
Structure de de constitution de la constitution de
Refer to item 4.1
 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
PASS

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com Page 16 of 43

Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.4.2. Test data

BL	E	1	M	r
		200		

		7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F A A AREA E	AND AND A		
7	Toot obannal	6dB Emission Bandwidth (kHz)				
	Test channel	BT LE mode	Limit	Result		
	Lowest	0.690	>500k	114141		
	Middle	0.679	>500k	PASS		
	Highest	0.705	>500k			

BLE 2M

4			100	7/ 100 /
	Test channel	6dB Emission I	Bandwidth (kHz)	
	rest channel	BT LE mode	Limit	Result
ì	Lowest	1.066	>500k	WSET
	Middle	1.085	>500k	PASS
	Highest	1.092	>500k	

Test plots as follows:

Toup (Shenz)

MONOW * PIT

WEIGH	WSI	N/FI 41	WEIGH	WEIGH	
NV-5				THE WIST	
X	X	X	X	X	7.R.
WSET	WSET WES	WSIII	Wister	WASTER WAST	
WEIT	WATER	WEI H	WATER	WATER OF	
incalion & 7e				747	

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com Page 17 of 43

Transmit Freq Error

x dB Bandwidth

-6.962 kHz

679.3 kHz

% of OBW Power

99.00 %

-6.00 dB

Report No.: WSCT-A2LA-R&E240600027A-LE

Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5. Power Spectral Density

6.5.1. Test Specification

	Z 1674 Z 1674	
	Test Requirement:	FCC Part15 C Section 15.247 (e)
_	Test Method:	KDB558074
	Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
	Test Setup:	Spectrum Analyzer EUT
1	Test Mode:	Refer to item 4.1
	Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
	Test Result:	PASS

6.5.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018	
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018	
Antenna Connector	TCT	RFC-01	N/A W	Sep. 27, 2018	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

世标检测认证股份 Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E240600027A-LE

6.5.3. Test data

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Test channel	Power Spectral Density (dBm/3kHz)			
rest channel	BLE 1M	Limit	Result	
Lowest	-8.44	8 dBm/3kHz		
Middle	-8.47	8 dBm/3kHz	PASS	
Highest	-8.58	8 dBm/3kHz		

Test channel	Power Spectral D	ensity (dBm/3kl	Hz)
rest charmer	BLE 2M	Limit	Result
Lowest	-7.22	8 dBm/3kHz	
Middle	-7.26	8 dBm/3kHz	PASS
Highest	-7.31	8 dBm/3kHz	

Test plots as follows:

oup (Shenz

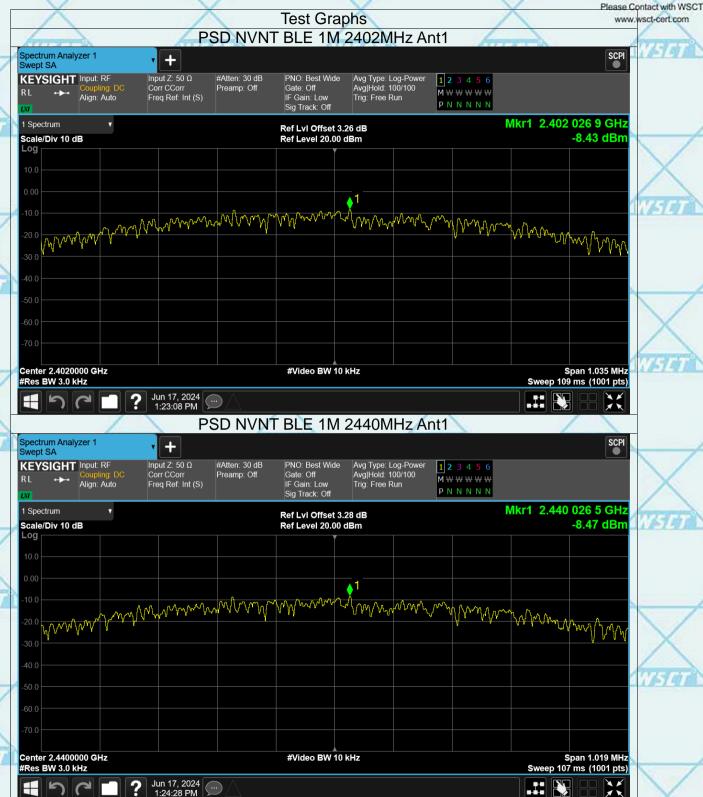
BOUNN * DIT

WHITE	Wester	WHITE	Wester	Wester	
NV.				14 6	AVE I III
WATER OF	Wister	WESTER	W/5141	Wester	
				74	AVISION
WETGE	Wister	WEIGH	NV-STATE OF	WETA	
				747	NISTED A
attication & 7	ome				

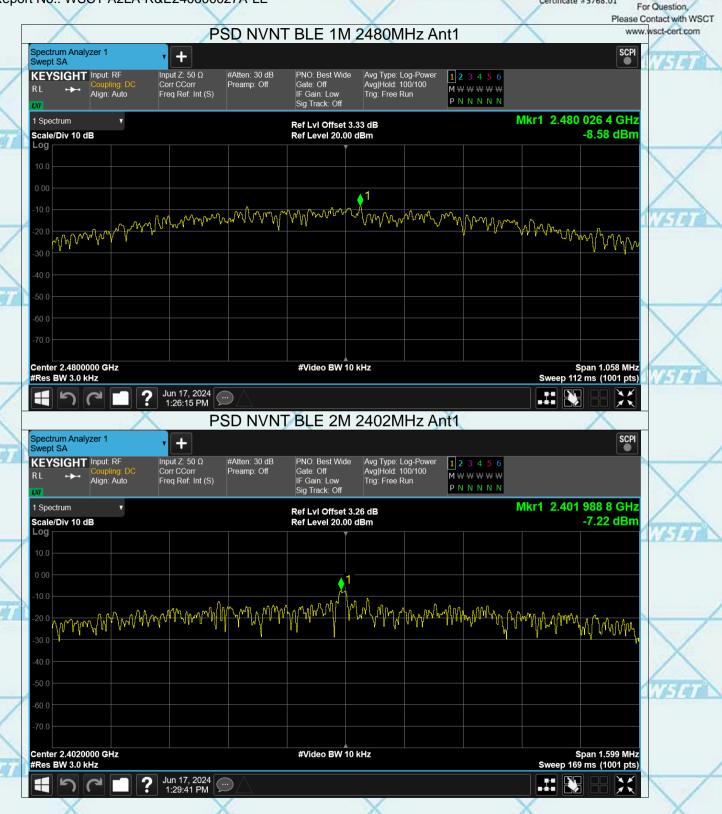
Page 22 of 43

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.



Report No.: WSCT-A2LA-R&E240600027A-LE



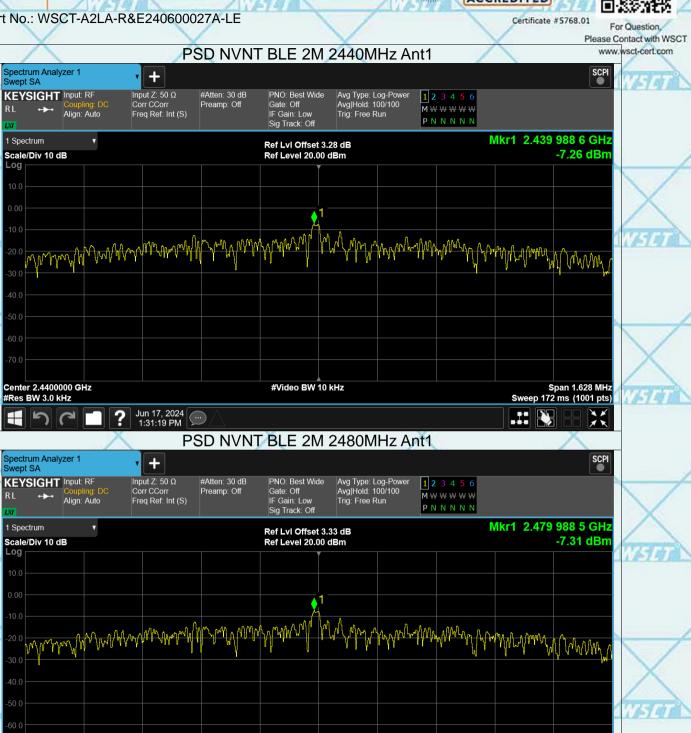
Report No.: WSCT-A2LA-R&E240600027A-LE

1 Spectrum

wept SA

Log

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Report No.: WSCT-A2LA-R&E240600027A-LE

Center 2.4800000 GHz

Jun 17, 2024 1:20:35 PM

#Res BW 3.0 kHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 10 kHz

Span 1.638 MHz Sweep 173 ms (1001 pts)

Į.

ertificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification	1414
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Report No.: WSCT-A2LA-R&E240600027A-LE

Test Data

Certificate #5768.01

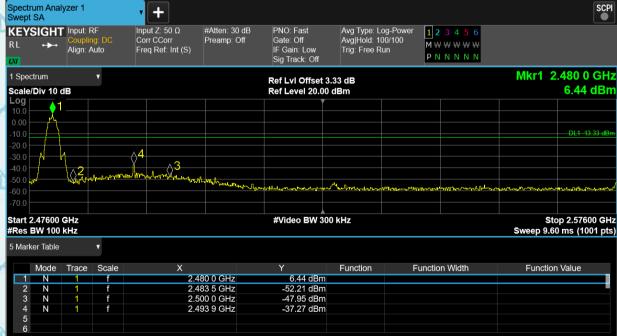
For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Spectrum Analyzer 1

1 Spectrum

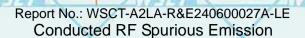
Scale/Div 10 dB



Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01 For Question, Please Contact with WSCT Band Edge NVNT BLE 2M 2480MHz Ant1 Ref www.wsct-cert.com SCPI + Input Z: 50 Ω #Atten: 30 dB Preamp: Off PNO: Best Wide Gate: Off Avg Type: Log-Power Avg|Hold: 100/100 KEYSIGHT Input: RF Corr CCorr $\mathsf{M} \times \mathsf{W} \times \mathsf{W} \times \mathsf{W}$ IF Gain: Low Sig Track: Off Align: Auto Freq Ref: Int (S) Trig: Free Run PNNNNN Mkr1 2.480 000 GHz Ref LvI Offset 3.33 dB Ref Level 20.00 dBm 6.67 dBm waydymphyman wwwww

Span 8.000 MHz Sweep 1.00 ms (1001 pts) Center 2.480000 GHz #Res BW 100 kHz #Video BW 300 kHz Jun 17, 2024 1:20:39 PM 噩 Band Edge NVNT BLE 2M 2480MHz Ant1 Emission



Certificate #5768.01

For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

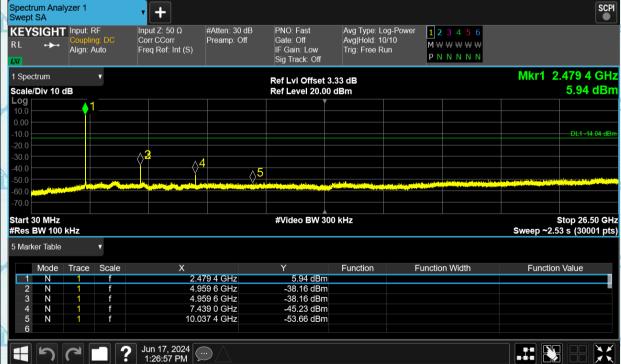
Report No.: WSCT-A2LA-R&E240600027A-LE

Jun 17, 2024 1:25:02 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

1 Spectrum

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

For Question, Please Contact with WSCT Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref www.wsct-cert.com Spectrum Analyzer 1 SCPI + Input Z: 50 Ω #Atten: 30 dB Preamp: Off Avg Type: Log-Power Avg|Hold: 100/100 KEYSIGHT Input: RF PNO: Best Wide Corr CCorr $\mathsf{M} \times \mathsf{W} \times \mathsf{W} \times \mathsf{W}$ IF Gain: Low Sig Track: Off Align: Auto Freq Ref: Int (S) Trig: Free Run PNNNNN Mkr1 2.480 228 0 GHz Ref LvI Offset 3.33 dB Ref Level 20.00 dBm 5.96 dBm Scale/Div 10 dB Center 2.4800000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 1.00 ms (1001 pts) #Video BW 300 kHz Jun 17, 2024 1:26:26 PM 噩 Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission SCPI Avg Type: Log-Power Avg|Hold: 10/10 Input Z: 50 Ω #Atten: 30 dB PNO: Fast 1 2 3 4 5 6 Corr CCorr Freq Ref: Int (S) Preamp: Off Gate: Off IF Gain: Low Sig Track: Off M W W W W Align: Auto Trig: Free Run PNNNNN Mkr1 2.479 4 GHz Ref Lvi Offset 3.33 dB 5.94 dBm Ref Level 20.00 dBm

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240600027A-LE

Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240600027A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

6.	7.1. Test Specification	1		1		
	Test Requirement:	FCC Part15	C Sectio	n 15.209		X
1	Test Method:	ANSI C63.10):2014	17274	1	11474
	Frequency Range:	9 kHz to 25 (GHz			/
	Measurement Distance:	3 m	\wedge			
	Antenna Polarization:	Horizontal &	Vertical	1	1767	4
	Operation mode:	Refer to item	4.1			
1	Water	Frequency 9kHz- 150kHz	Detector Quasi-pea		VBW 1kHz	Remark Quasi-peak Value
	Receiver Setup:	150kHz- 30MHz	Quasi-pea	N .	30kHz	Quasi-peak Value
	(VA) (VA) (VA) (VA)	30MHz-1GHz Above 1GHz	Quasi-pea Peak Peak	ak 100KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value
	X	Frequen 0.009-0.4	190	Field Str (microvolts 2400/F(s/meter) KHz)	Measurement Distance (meters) 300
	Wifted	0.490-1.7 1.705-3 30-88	0	24000/F 30		30 30 3
	Limit:	88-216 216-96		150		3 3
7	CIPITAL CIPITAL	Above 9	60	500	/ IFT	3
1	WSI	Frequency		eld Strength rovolts/meter)	Measure Distan (meter	ce Detector
		Above 1GHz		500 5000	3	Average Peak
	VISTA VISTA	For radiated	emission	s below 30	OMHz	
7	1614	Di	stance = 3m			Computer
4	X				Pre -	-Amplifier

Test setup:

Distance = 3m

Computer

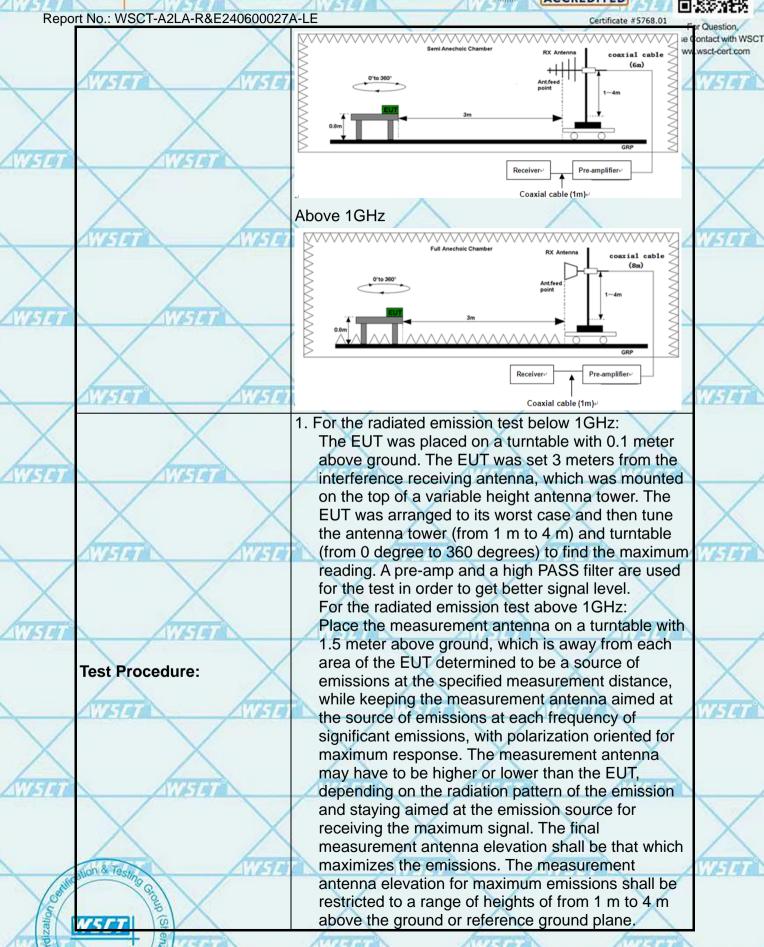
Pre - Amplifier

Receiver

30MHz to 1GHz

W5ET

MONOW * PIT


世标检测认证股份

(Shenz

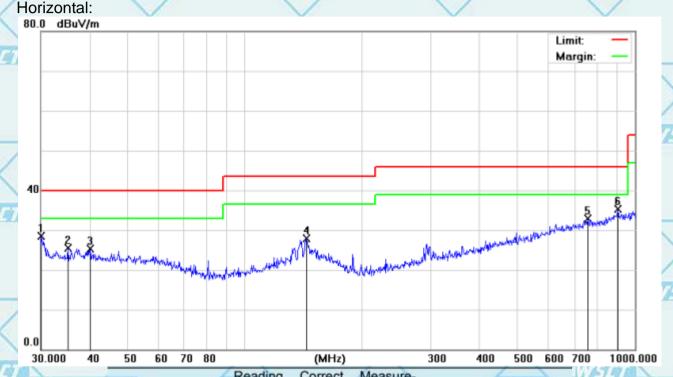
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wangs@wsci-cert.com Http://www.wsci-cert.com

Repo	rt No.: WSCT-A2LA-R&E24060002	A-LE Certificate #5768.01	or Question.
h .	X		ontact with WS
		Read Level - Preamp Factor = Level	wsct-cert.com
	17690	3. For measurement below 1GHz, If the emission level	WSIT
		of the EUT measured by the peak detector is 3 dB	A.R A - A - A00
		lower than the applicable limit, the peak emission	
		level will be reported. Otherwise, the emission	
AUGHE	AUGOD	measurement will be repeated using the quasi-peak	
211-1-1	11013	detector and reported.	
	\vee	4. Use the following spectrum analyzer settings:	/
		(1) Span shall wide enough to fully capture the	
	Amaza Amaza	emission being measured;	111333
	CIEI TIEIS	(2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW;	16148
		Sweep = auto; Detector function = peak; Trace =	
\wedge		max hold;	
Anna	ATTENDED TO	(3) Set RBW = 1 MHz, VBW= 3MHz for f □ 1 GHz	
217-21-1	10019	for peak measurement.	
		For average measurement: VBW = 10 Hz, when	/
		duty cycle is no less than 98 percent. VBW ≥ 1/T,	
X	Arrasa Arras	when duty cycle is less than 98 percent where T is	177333
	CIFIA CIFIA	the minimum transmission duration over which the	IP/4E
		transmitter is on and is transmitting at its maximum	
		power control level for the tested mode of operation.	
WESTER	Test mode:	Refer to section 4.1 for details	
placed A. R. J. A. 1885	Test results:	PASS	
	Note: Freq. = Emission frequency in MH	7	X
	Reading level (dBµV) = Receiver readin	g	
	Corr. Factor (dB) = Attenuation factor + Level (dBµV) = Reading level (dBµV) +		WSET
	Limit (dBµV) = Reading level (dBµV) +	Con. Factor (db)	
	Margin (dB) = Level (dBµV) – Limits (dE	μV)	
AVISTAT	WSTAT	WSIAT AWSIAT AWSIAT	
			/
	X	X	X
	ATTITUTE OF THE PARTY OF THE PA	ATTYCK ATTYCK	COLUMN TWO ISSUES

Warld Start and Start and Mary stroup (S

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Report No.: WSCT-A2LA-R&E240600027A-LE


6.7.2. Test Data(worst case)

The worst mode is BLE 1M

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	THE REAL PROPERTY.
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	/3	0.1054	31.16	-2.60	28.56	40.00	-11.44	QP
2	///3	5.2512	27.73	-2.25	25.48	40.00	-14.52	QP
3	4	0.1347	26.68	-1.46	25.22	40.00	-14.78	QP
4	14	3.8295	29.99	-2.12	27.87	43.50	-15.63	QP
5	75	5.3873	27.28	5.70	32.98	46.00	-13.02	QP
6	* 90	3.3094	27.69	7.61	35.30	46.00	-10.70	QP

WILTER A

SINT (WESTER)

941 NV-941

WSGT

S DUOM * PIT

世标检测认证股份

oup (Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Note1:

Freq. = Emission frequency in MHz

5

6

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

30.19

26.95

-2.42

7.96

27.77

34.91

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

138.3873

929.0082

World Standard Standa

WSET

WSET

DIFT 1

43.50

46.00

-15.73

-11.09

QP

QP

Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Above 1GHz

	Erog	Low channel: 2402MHz								
4	Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
1	(IVITZ)	H/V	PK	AV	PK	AV	PK	AV		
	4804	V	59.55	41.28	74	54	-14.45	-12.72		
×	7206	V	59.27	39.14	74	54	-14.73	-14.86		
	4804	THE STATE OF THE S	58.67	40.91	74	54	-15.33	-13.09		
	7206	Н	58.42	39.42	74	54	-15.58	-14.58		

_						The state of the s				
	Lro «	Middle channel: 2440MHz								
2	Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
	(IVITZ)	H/V	PK	AV	PK	AV	PK	AV		
	4880	V	58.46	41.08	74	54	-15.54	-12.92		
6	7320	V	58.81	39.71	74	54	-15.19	-14.29		
	4880	7/5H7	59.41	39.67	74	54	-14.59	-14.33		
	7320	Н	59.75	40.75	74	54	-14.25	-13.25		

					^					
	Eroa	High channel: 2480 MHz								
_	Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
	(IVITIZ)	H/V	PK	AV	PK	AV	PK	AV		
	4960	V	60.58	39.78	74	54	-13.42	-14.22		
	7440	V	58.40	40.58	74	54	-15.60	-13.42		
1	4960	MET 7	58.17	40.44	74	54	-15.83	-13.56		
	7440	H	58.61	39.61	74	54	-15.39	-14.39		

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

WEIGH	WASING	WEIDT	NY 5191	Water	
			X	X	X
WET	77	74 AV	70	WSET	W5ET
X	X	X	X	X	
AVETER	N/STATE	NIETHT .	NIET A	TETAL	
\rightarrow		X)	X	X	X

世际检测认证数份 proup (Shenzhen) Co., Ltd.

oup (Shen

S DUOM * PIT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240600027A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Restricted Bands Requirements

Test result for GFSK Mode(the worst case)

	Test result	OI OI OK W	oue(the w	Uisi Case)	1111111111	200	1777-3	and the same
/	Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
2	1	AUGUS		Low Cha	nnel	Amas	1	Aug
7	2390	63.57	-8.76	54.81	74	19.19	F	PK
	2390	56.44	-8.76	47.68	54	6.32	н	AV
	2390	59.82	-8.73	51.09	74	22.91	V	PK
	2390	56.42	-8.73	47.69	54	6.31	VIT	AV
1				High Cha	nnel			
/	2483.5	64.09	-8.76	55.33	74	18.67	Н	PK
	2483.5	55.22	-8.76	46.46	54	7.54	Н	AV
	2483.5	61.92	-8.73	53.19	74	20.81	V	PK
	2483.5	56.40	-8.73	47.67	54	6.33	V	AV

Wiston	Wester	*****END OF RE	PORI	Wister	
			\times	744	WEIER
WEIGH	W501	Wester	AV6-149	N/-191	
	W	W	STOP W	747	WETUT
NVETO I	WATER	WEIGH	NIETO I	775-7-0	
autration &			\times	711	NH H
AMICO	100				

Page 43 of 43

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.