

ation & Testing

NSCI

World Stantan Pratice Certification 550n

S

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd

For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OSW-803N Product: Smart Watch Model No.: OSW-803N Trade Mark: oraimo Report No.: WSCT-A2LA-R&E240300012A-15B Issued Date: 17 April 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

WSET

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Page 1 of 21

Member of the WSCT INC

WSET

150

Sentication & Testy

WSET

BUOM * PT

rdizatio

Group (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

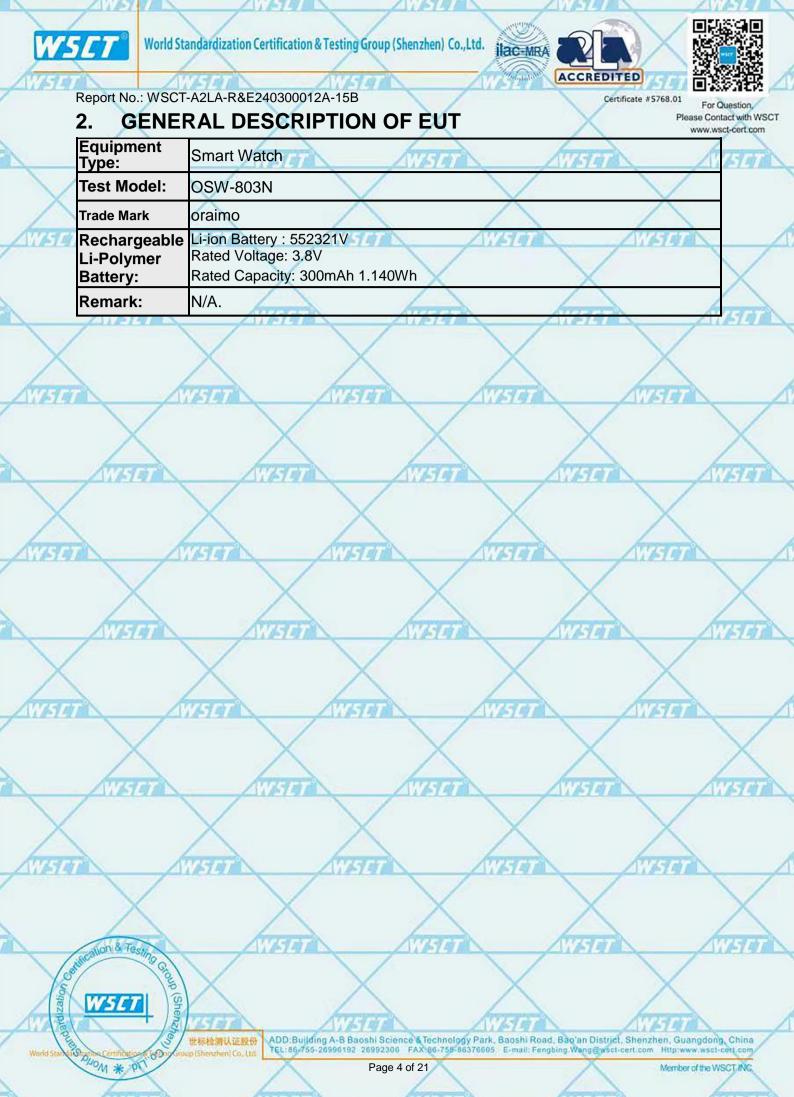
Report No.: WSCT-A2LA-R&E240300012A-15B

TABLE OF CONTENTS

	1	WATER WATER WATER	115 1
/	1.	Test Certification	3
5	2.	GENERAL DESCRIPTION OF EUT	4
E1	3.	Test Result Summary	5
	4.	TEST METHODOLOGY	6
		4.1. CONFIGURATION OF SYSTEM UNDER TEST	,7
_	1	4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	185C
1	5.	MEASUREMENT INSTRUMENTS	9
1	6.	Facilities and Accreditations 1	0
61		6.1. FACILITIES	10
		6.2. ACCREDITATIONS	10
		6.3. MEASUREMENT UNCERTAINTY	11
_	7.	EMC EMISSION TEST	250
1		7.1. CONDUCTED EMISSION MEASUREMENT	12
1		7.2. RADIATED EMISSION MEASUREMENT	16
	100	ATTACA ATTACA ATTACA	

Please Contact with WSCT www.wsct-cert.com

3	Report No.: WSCT-A2LA-R&E240300	0012A-15B
1	Tool Contificat	


lest Certification

	Product:	Smart Watch
	Model No.:	OSW-803N
	Trade Mark:	oraimo
	Applicant:	ORAIMO TECHNOLOGY LIMITED
	Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
	Manufacturer:	ORAIMO TECHNOLOGY LIMITED
	Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
1	Date of Test:	02 April 2024 to 16 April 2024
00	Applicable Standards:	FCC CFR Title 47 Part 15 Subpart B

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

WEIT				WSET
Tested By:	Way Xiay (Wang Xiang)	Checked By:	(Mo Peiyun)	1
Approved By:	Linfuen	Date;	7 Aun 2014	WSCT)
	(Liu Fuxin)			MOM * PT
an R T-	WISTOT	NUS AL		
South Certifications Testing Croup South Certifications Testing Group It Standard Testing Group				517
d Standardization Certifications Tasting Strong	标检测认证股份 (Shenzhen) Co. Ltd. TEL: 86-755-26996192 269923	ience & Technology Park, Baos 06 FAX:86-755-86376605 E-m	hi Road, Bao'an District, Shenzh ail: Fengbing.Wang@wsct-cert.com	en, Guangdong, China Http:www.wsct-cert.com
PHOM * PIT	Page 3	of 21	X	Member of the WSCT/INC.

Worle

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

3. Test Result Summary

	AULANA AULAN	TA ATTACA	ATTACK /	WSET
7	Requirement	CFR 47 Section	Result	
	CONDUCTED EMISSION	§15.107	PASS	
2	RADIATED EMISSION	4W507 §15.109 4W507	PASS	-/

145

Note:

1.11

Controlion & Test

WSET

S PHON * PT

Zatio

IOUP.

60

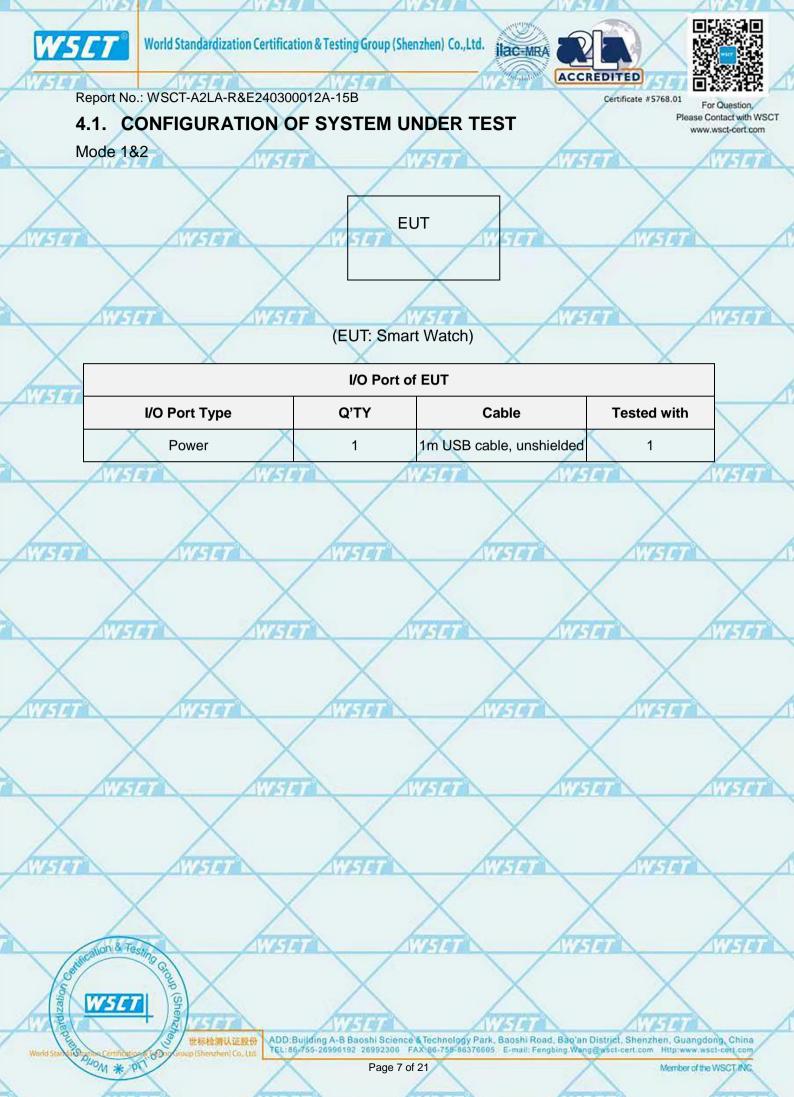
(Shenz

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o.ltr. TEL:86/755-26996192_26992306_FAX-86-755-86376605_E-mail: Fengbing.Wang@wsci-cert.com_Http://www.wsci-cert.com_

75

For Question, Please Contact with WSCT


www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

4. TEST METHODOLOGY

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

/	Pretest Mode	Descrip	otion	
A AVE		Blueto	Z I INT MIN	WIST
	Model 2	Idle		
X	X	X	X	\langle
WISTER	WEIT	AVE A	WEAT AVE	TTA A
	/			
	K)	X X	X	X
		ATT AVISIT	WEIGH	WEITER
		and the second		Parena
X	X	X	X	\times
			And the	
AVISION	WISTER	AVISET		190
		XX	X	X
		Δ	\square	\square
AVE		SIT AVSET	AVISTO	WEIT
\sim			\vee	
\wedge	\wedge	\wedge	\wedge /	
WISET	AVISION	WSET	AWSTOT AWS	10
/		\land	\wedge	\wedge
AVIS		SET AVSET	WEIT	WSET
X	X	X	X	X
WISTER	WISTER	NIST I	WINTER MY	100
	X ,	X X	X	X
1.85		जन जिन	WIST	WEIT
World Star 109 Billion & T	estino G			- FURIA
5	O O	X	X	X
TE WSL	Shee		harrow har	
	3 世标检测认证数份 A	DD:Building A-B Baoshi Science & Technology P EL:86/755-26996192 26992306 FAX 66-755-86376	Park, Baoshi Road, Bao'an District, Shenzhe	
World Star Val Digitie Cermical	toric (Ong sroup (Shenzhen) Co., Ltd.	EL:86-755-26996192 26992306 FAX-86-755-86376 Page 6 of 21		Http://www.wsct-cont.com Member of the WSCT INC.
	\leq \angle			

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

14	ltem	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1			× 1	X	/

Note: (1) Th

Contration & Test

Zati

WSE7

PHOM * PT

up (Sher

- The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in "Length" column.

Certificate #5768.01 For C

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

2

NSE

Sentication & Test

WSET

BUOM * PT

rdizatio

Group (Shenzy

.60

5. MEASUREMENT INSTRUMENTS

						1	
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until	i ch
2	Test software		EZ-EMC	CON-03A		×	
	ESCI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
1	LISN 4454	AFJ	567 LS16	16010222119	11/05/2023	11/04/2024	
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	/
	pre-amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	1
	System Controller	WCT7	SC100		11/05/2023	11/04/2024	iE7
	Bi-log Antenna	Chase	CBL6111C	2576	11/05/2023	11/04/2024	
5	Spectrum analyzer	R&S	FSU26	200409	11/05/2023	11/04/2024	
7	Horn Antenna	SCHWARZBECK	9120D	1141	11/05/2023	11/04/2024	
	Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	11/05/2023	11/04/2024	1
	Pre Amplifier	H.R.	HP8447E	2945A02715	11/05/2023	11/04/2024	X
	9*6*6 Anechoic	AVEST	AVISION		11/05/2023	11/04/2024	74

世标检测认证数册 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen)Co, Ltd TEL:86/755-26998192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

610

1510

Page 9 of 21

Member of the WSCT INC

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

6. Facilities and Accreditations

6.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

tion & Tes

W5E

PHOM * P

S

60

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Lta

15E

ation & Tes

WSET

SPHOM * PT

oup (Shenz

60

Centific

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E240300012A-15B

6.3. Measurement Uncertainty

For Question, Please Contact with WSCT www.wsct-cert.com

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

				<u>_</u>
	No.	Item	MU	
7	Y	Conducted Emission Test	±3.2dB	
	2	RF power, conducted	±0.16dB	\times
	3	Spurious emissions, conducted	±0.21dB	WIST
7	4	All emissions, radiated(<1GHz)	±4.7dB	
	5	All emissions, radiated(>1GHz)	±4.7dB	
7	6	Temperature ///SCI	±0.5°C	
	7	Humidity	±2.0%	\times

1610

For Question

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

7. EMC EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. POWER LINE CONDUCTED EMISSION LIMITS

		The self and a self to	PLUT V off and		ALL A State and and	
FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)		Standard	
	Quasi-peak	Average	Quasi-peak	Average	Standard	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

mon & Tes

WSE7

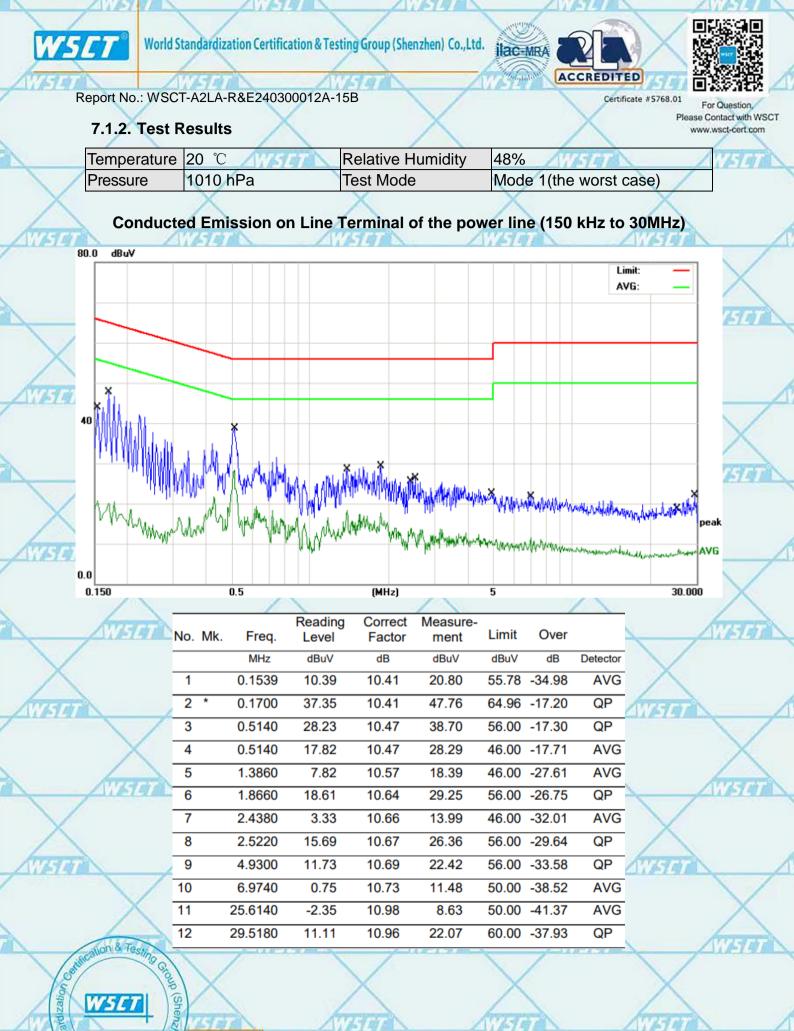
PLOM * PT

up (Shen

60

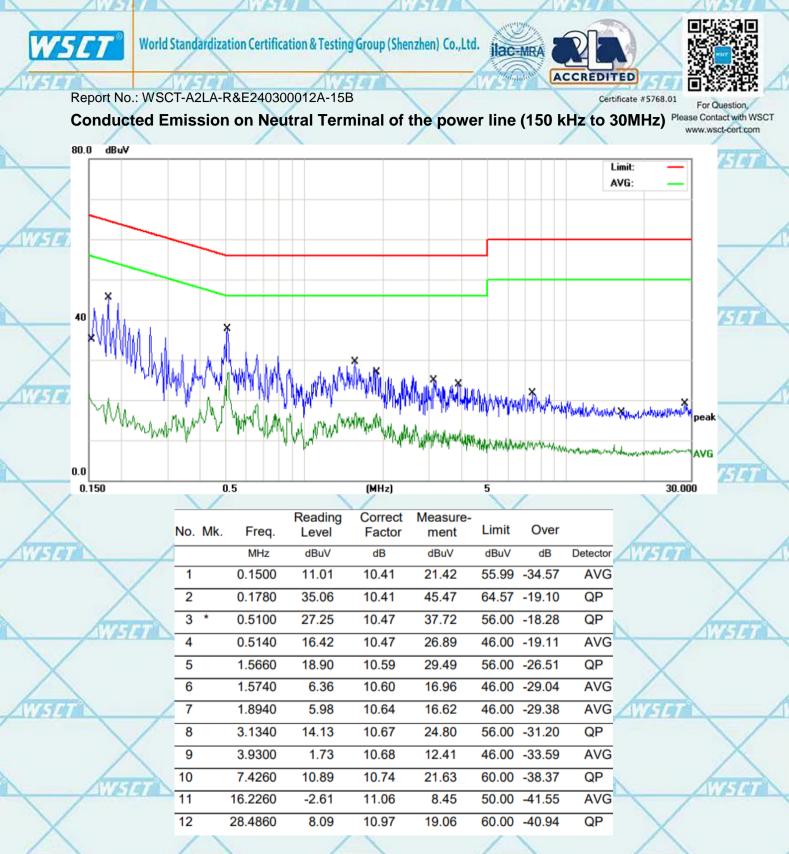
Cot

Zahi


- (1) The tighter limit applies at the band edges.
 - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following	table is the	setting of	the receiver

	Receiver Parameters	Setting	
	Attenuation	10 dB	
<u>C</u> 1	Start Frequency	0.15 MHz	-
	Stop Frequency	30 MHz	V
	IF Bandwidth	9 kHz	
			/



世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Int

SPHOM * PT

Member of the WSCT INC

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

Limit ($dB\mu V$) = Limit stated in standard Margin (dB) = Measurement ($dB\mu V$) – Limits ($dB\mu V$)

Q.P. =Quasi-Peak AVG =average

标检测认证授份

When the second second

SPLOM * PT

Cettifi

Page 15 of 21

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

7.2. RADIATED EMISSION MEASUREMENT

7.2.1. Radiated Emission Limits

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	X 3 X
Above 960	500	3
A standard and stand	And a	Sub-headman

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

non & Tes

WSE7

PHOM * PT

(She

68

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Report No.: WSCT-A2LA-R&E240300012A-15B

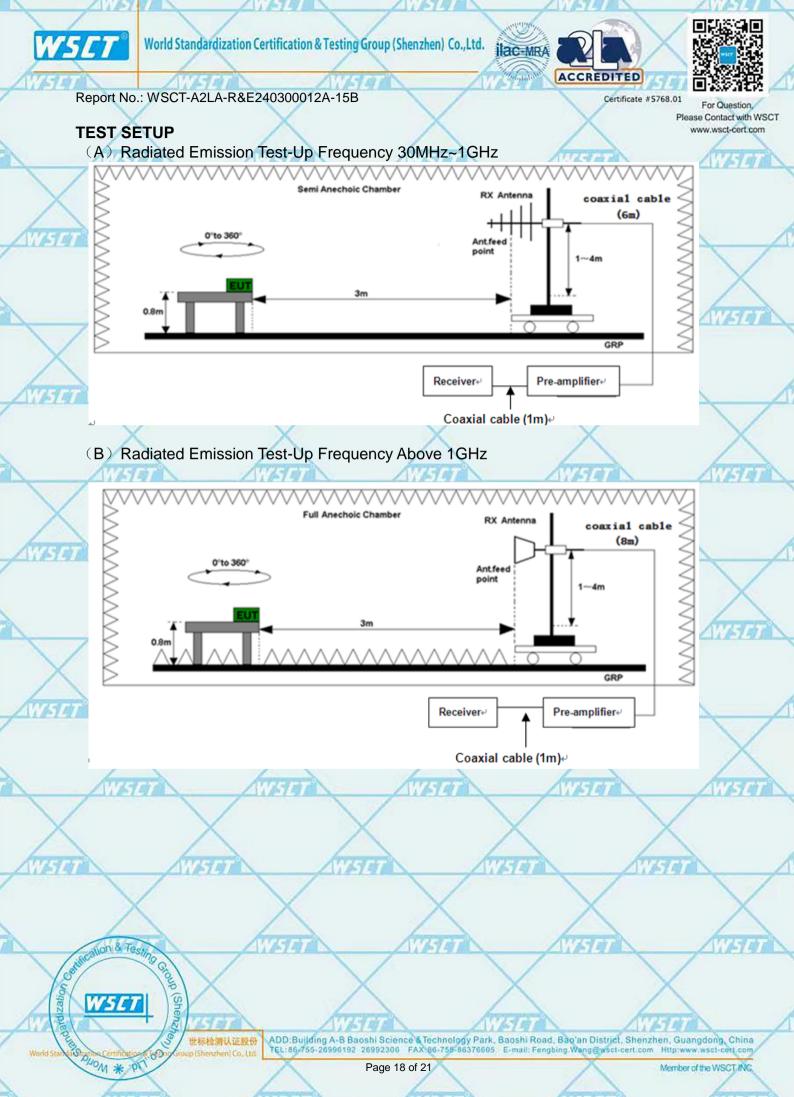
TEST PROCEDURE

ation & Tes

W5E

PHOM * PT

up (Sher


Contifict

Certificate #5768.01 For Question, Please Contact with WSCT

ACCREDITED

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For www.wsct-cert.com frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
 c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test
- antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

世际检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co.Ltd. TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

世际检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Itt

Member of the WSCT INC

non & Tes

WSE

PLOM * PT

up (Sher

Cettifi

		1	Ð		
N	n	+	5		
		15	-	_	

tion & Tes

WSE7

PLOM * PT

up (Sher

Contific

4

5

6 !

148.9625

618.5369

955.4381

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

26.85

26.99

27.26

0.06

8.14

13.83

26.91

35.13

41.09

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ita

-16.59

-10.87

-4.91

43.50

46.00

46.00

QP

QP

QP

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300012A-15B

TEST RESULTS

Above 1GHz(1~26GHz) :(Mode 1—worst case)

	Freq.	Ant.	Emission Level(dBuV)		Limi	t /	Over(dB)		
	(MHz)	Pol.			3m(dBuV/m)		ATTACK A		
4	$\langle /$	H/V	PK	AV	PK	AV	PK	AV	
	1766.48	V	60.44	40.70	74	54	-13.56	-13.30	\searrow
	2234.56	V	58.79	39.83	74	54	-15.21	-14.17	\wedge
	1754.33	Н	58.83	39.35	74	54	-15.17	-14.65 📈	-
	2379.42	H	59.75	40.75	74	54	-14.25	-13.25	141

Remark:

ation & Tes

WSE7

PHOM * PT

up (Sher

Cot

Zahi

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Freq. = Emission frequency in MHz

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

*****END OF REPORT*****

