

RF Test Report

For

Applicant Name:

ORAIMO TECHNOLOGY LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Smart Watch oraimo **OSW-801** Series Model Number: Refer to section 2

Issued By

Company Name:

Address:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

BTF230816R00102 47 CFR Part 15.247

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2AXYP-OSW-801 2023-07-21 to 2023-07-31 2023-08-04

Prepared By:

Date:

Approved By:

Date:

Chris Liu / Project Engineer	
Chris Liu / Project Engineer	
2023-08-04	
Fran CI * STO *	
Ryan.CJ / EMC Manager	
2023-08-04	

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 54

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-08-04	Original	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	ODUCTIO)N	5
	1.1	Identifica	ation of Testing Laboratory	5
	1.2		ation of the Responsible Testing Location	
	1.3		cement	
2	PRO	DUCT INF	ORMATION	6
	2.1	Applicati	ion Information	6
	2.2		turer Information	
	2.3		Description of Equipment under Test (EUT)	
	2.4		al Information	
3	SUM		TEST RESULTS	
	3.1		ndards	
	3.2		nty of Test	
	3.3		y of Test Result	
4	TES		URATION	
	4.1		lipment List	
	4.2		kiliary Equipment	
_	4.3			
5			RESULTS (EVALUATION)	
	5.1		requirement	
			onclusion:	
6	RAD	IO SPECT	RUM MATTER TEST RESULTS (RF)	14
	6.1	Occupie	d Bandwidth	14
			.U.T. Operation:	
			est Setup Diagram:	
			est Data:	
	6.2		m Conducted Output Power	
			.U.T. Operation:	
			est Setup Diagram: est Data:	
	6.3		pectral Density	
	0.0		U.T. Operation:	
			est Setup Diagram:	
			est Data:	
	6.4	Emissior	ns in non-restricted frequency bands	18
			.U.T. Operation:	
			est Setup Diagram:	
			est Data:	
	6.5		ge emissions (Radiated)	
			.U.T. Operation: est Data:	
	6.6			
	6.6		ns in restricted frequency bands (below 1GHz) .U.T. Operation:	
			est Data:	
	6.7		ns in restricted frequency bands (above 1GHz)	
			.U.T. Operation:	
			est Data:	
APP	ENDIX			27

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.			
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China			
Phone Number:	+86-0755-23146130			
Fax Number:	+86-0755-23146130			
FCC Registration Number:	518915			
Designation Number:	CN1330			

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 General Description of Equipment under Test (EUT)

EUT Name:	Smart Watch
Test Model Number:	OSW-801
Series Model Number:	N/A

2.4 Technical Information

Power Supply:	Rechargeable Li-ion Battery: 552123V Nominal Voltage: 3.8V Rated Capacity: 300mAh 1.140Wh Limited Charge Voltage: 4.35V
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Wire antenna
Antenna Gain [#] :	-0.62 dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
The following measurement uncertainty levels have been estimated for tests	s performed on the EUT as
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty	ainty expressed at approximately

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2.

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23

Occupied Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum Conducted	Output Power				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Power Spectral Densi	ty				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 54

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Band edge emissions	Band edge emissions (Radiated)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 54

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (below 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 54

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is

plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5 Evaluation Results (Evaluation)

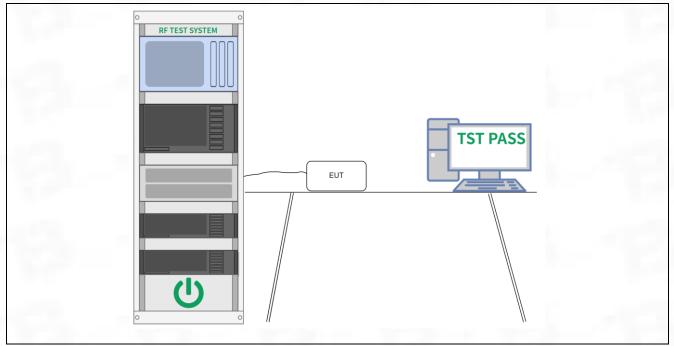
5.1 Antenna requirement

Test Dequirement	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a
Test Requirement:	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section.

5.1.1 Conclusion:

Refer to the EUT internal photo

6 Radio Spectrum Matter Test Results (RF)


6.1 Occupied Bandwidth

Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

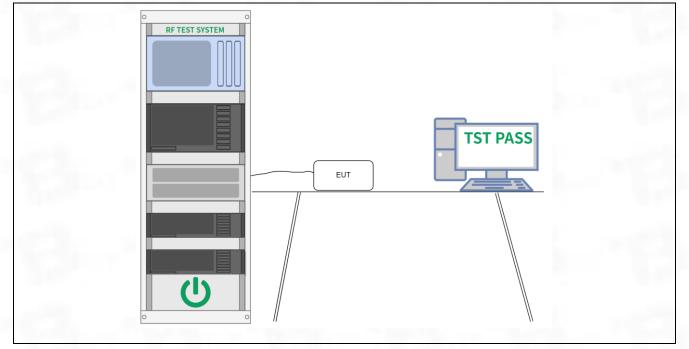
6.1.1 E.U.T. Operation:

Temperature: 25	5.8 °C
Humidity: 49	9.9 %
Atmospheric Pressure: 10	010 mbar

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Please Refer to Appendix for Details.


6.2 Maximum Conducted Output Power

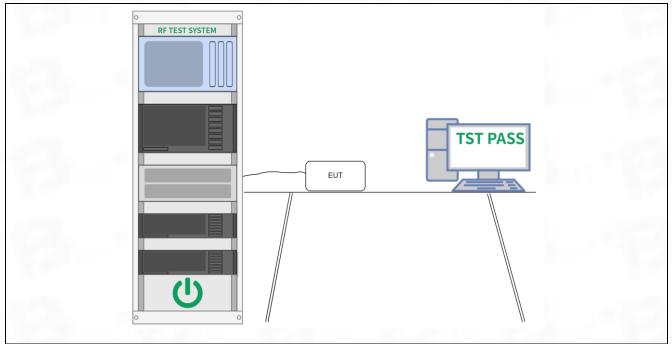
Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
6.2.1 E.U.T. Operation:	

Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.


6.3 Power Spectral Density

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.			
Test Method:	Maximum power spectral density level in the fundamental emission			
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.			

6.3.1 E.U.T. Operation:

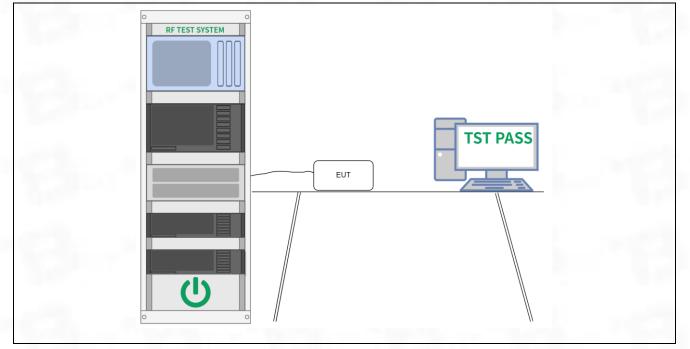
Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Emissions in non-restricted frequency bands


Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.4.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.8 °C			
Humidity:	49.9 %	1 (1) (1) (1)		
Atmospheric Pressure:	1010 mbar			

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Band edge emissions (Radiated)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Method:	Radiated emissions tests					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.					
Procedure:	ANSI C63.10-2013 section 6.6.4					
6.5.1 E.U.T. Operation:						

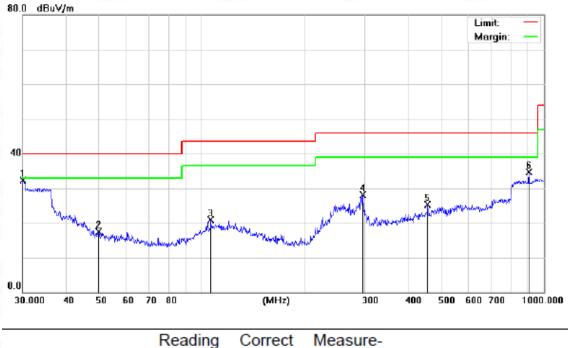
Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:

Test result for GFSK Mode (the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Cha	nnel			
2390	61.20	-8.76	52.44	74	21.56	Н	PK
2390	56.41	-8.76	47.65	54	6.35	Н	AV
2390	60.88	-8.73	52.15	74	21.85	V	PK
2390	55.58	-8.73	46.85	54	7.15	V	AV
			High Cha	innel			
2483.5	63.92	-8.76	55.16	74	18.84	Η	PK
2483.5	53.70	-8.76	44.94	54	9.06	Н	AV
2483.5	61.90	-8.73	53.17	74	20.83	V	PK
2483.5	54.33	-8.73	45.60	54	8.40	V	AV

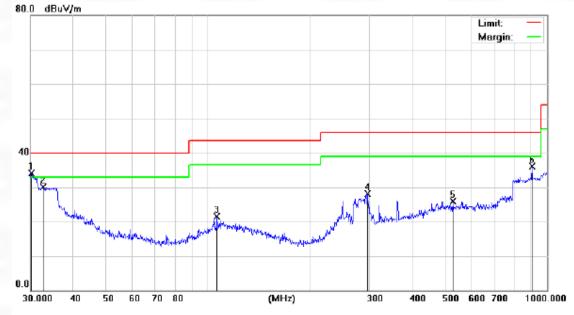
6.6 Emissions in restricted frequency bands (below 1GHz)


Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
Test Method:	Radiated emissions test	Radiated emissions tests					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
Test Limit:	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.					
Procedure:	ANSI C63.10-2013 sect	ANSI C63.10-2013 section 6.6.4					
6.6.1 E.U.T. Operation	n:	the second s					

Operating Environment:						
Temperature:	22.1 °C					
Humidity:	46.3 %					
Atmospheric Pressure:	1010 mbar					

6.6.2 Test Data:

Note: All the mode have been tested, and only the worst case of GFSK mode are in the report Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.0000	26.91	5.39	32.30	40.00	-7.70	QP
2		50.0566	22.02	-4.53	17.49	40.00	-22.51	QP
3		106.3850	23.16	-2.27	20.89	43.50	-22.61	QP
4		296.1836	30.33	-2.22	28.11	46.00	-17.89	QP
5		457.5073	25.04	0.34	25.38	46.00	-20.62	QP
6		903.3094	28.26	6.37	34.63	46.00	-11.37	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.2111	28.87	5.31	34.18	40.00	-5.82	QP
2		32.7486	25.75	4.33	30.08	40.00	-9.92	QP
3		106.3850	23.70	-2.27	21.43	43.50	-22.07	QP
4		296.1836	30.33	-2.22	28.11	46.00	-17.89	QP
5		528.2458	24.81	1.03	25.84	46.00	-20.16	QP
6		903.3094	29.75	6.37	36.12	46.00	-9.88	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 24 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § $15.205(a)$, must also comply with the radiated emission limits specified in § $15.209(a)(see \ 15.205(c))$.						
Test Method:	Radiated emissions test	Radiated emissions tests						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15 231 and 15 241						
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4						
6.7.1 E.U.T. Operation	n:							

Operating Environment:						
Temperature:	22.1 °C					
Humidity:	46.3 %					
Atmospheric Pressure:	1010 mbar					

6.7.2 Test Data:

Energy .	Low channel: 2402MHz									
Freq.	Ant.Pol	Emission l	_evel(dBuV)	Limit 3m(dBuV/m)		Over(dB)				
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
4804	V	58.55	41.83	74	54	-15.45	-12.17			
7206	V	59.25	40.79	74	54	-14.75	-13.21			
4804	Н	59.67	40.16	74	54	-14.33	-13.84			
7206	Н	59.88	40.88	74	54	-14.12	-13.12			

F ire a	Middle channel: 2440MHz									
Freq.	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m(dBuV/m)		Over(dB)				
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
4880	V	59.71	41.97	74	54	-14.29	-12.03			
7320	V	59.25	40.67	74	54	-14.75	-13.33			
4880	Н	58.86	39.53	74	54	-15.14	-14.47			
7320	Н	59.38	40.38	74	54	-14.62	-13.62			

E	High channel: 2480 MHz									
Freq.	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)				
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
4960	V	58.59	39.78	74	54	-15.41	-14.22			
7440	V	59.49	40.68	74	54	-14.51	-13.32			
4960	Н	58.94	39.54	74	54	-15.06	-14.46			
7440	Н	58.43	39.43	74	54	-15.57	-14.57			

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

 Emission Level= Reading Level+ Probe Factor +Cable Loss.
 Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Bandwidth

1.1 BW

1.1.1 Test Result

BLE 1M

Test channel	6dB Emission Bandwidth (kHz)					
Test channel	BT LE mode	Limit	Result			
Lowest	0.658	>500k				
Middle	0.648	>500k	PASS			
Highest	0.662	>500k				

BLE 2M

Test shapped	6dB Emission Bandwidth (kHz)					
Test channel	BT LE mode	Limit	Result			
Lowest	1.062	>500k				
Middle	0.952	>500k	PASS			
Highest	1.077	>500k				

1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

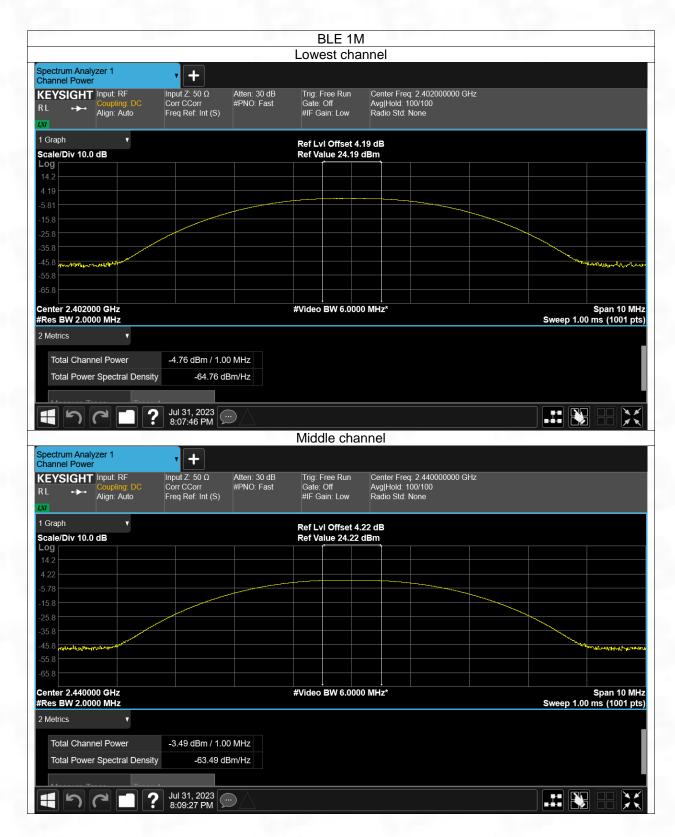
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

				Highest cha	nnel			
Spectrum Analyz Occupied BW	er 1	• +						
	nput: RF Coupling: DC Nign: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2.4800 Avg Hold: 100/100 Radio Std: None	000000 GHz		
1 Graph Scale/Div 10.0 d	T B			Ref LvI Offset 4. Ref Value 24.29			Mkr3 2.480	528000 GHz -5.25 dBm
Log 14.3 4.29 -5.71 -5.7 -25.7 -35.7 -45.7 -55.7 -65.7 Center 2.480000 #Res BW 100.00) GHz	~~~~{2 ~~~~~~2 ~~~~~~~~~~~~~~~~~~~~~~~~		#Video BW 300.0	0 kHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3- 1000000000000000000000000000000000000	
2 Metrics	T				Measu	ire Trace	Trace 1	
	Occupied Ban	ndwidth 1.8782 MHz			Total F	Power	5.60 dBm	
	Transmit Freq x dB Bandwid		10.465 kHz 1.077 MHz		% of C x dB	BW Power	99.00 % -6.00 dB	
4 50	┙ ?	Jul 31, 2023 8:16:12 PM						

2. Maximum Conducted Output Power

2.1 Power


2.1.1 Test Result

BLE 1M									
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result						
Lowest	-4.76	30.00	PASS						
Middle	-3.49	30.00	PASS						
Highest	-3.67	30.00	PASS						

BLE 2M						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	-1.36	30.00	PASS			
Middle	-0.48	30.00	PASS			
Highest	-0.68	30.00	PASS			

2.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

			Highest c	hannel				
Spectrum Analyzer 1 Channel Power	• +							
KEYSIGHT Input: RF R L Implication Implication Align: Auto		Atten: 30 dB #PNO: Fast	Gate: Off	Trig: Free Run Center Freq: 2.48000000 GHz Gate: Off Avg Hold: 100/100 #IF Gain: Low Radio Std: None				
1 Graph Ref Lvl Offset 4.29 dB Scale/Div 10.0 dB Ref Value 24.29 dBm								
14.3 4.29								
-5.71 -15.7								
-25.7								
-45.7 1,000,000,000,000,000,000,000,000,000,0								and the second
Center 2.480000 GHz #Res BW 2.0000 MHz			#Video BW 6.0) 0000 MHz*			Sweep 1.0	Span 10 MHz 0 ms (1001 pts)
2 Metrics								
Total Channel Power	-3.67 dBm / 1.00	MHz						
Total Power Spectral Density	-63.67 dBr	m/Hz						
1 572?	Jul 31, 2023 8:10:50 PM							

BLE 2M									
Lowest channel									
Spectrum Ana Channel Powe	lyzer 1 er	• +							
KEYSIGHT	Input: RF	Input Z: 50 Ω	Atten: 30 dB	Trig: Free Run		2.402000000 GHz	<u>.</u>		
RL ↔	Coupling: DC Align: Auto	Corr CCorr Freq Ref: Int (S)	#PNO: Fast	Gate: Off #IF Gain: Low	Avg Hold: 10 Radio Std: N				
L% [
1 Graph Scale/Div 10.	V dB			Ref LvI Offset 4 Ref Value 24.19					
Log				Rei value 24.19					
14.2									
4.19									
-15.8						L	and the second s		
-25.8									
-35.8	and an arriver and the second							and the second s	· · · · ·
-45.8 -55.8	AND								the way
-55.8									
Center 2.4020	000 GHz			#Video BW 6.000	0 MHz*				Span 10 MHz
#Res BW 2.00				#VIGEO BVV 0.000				Sweep 1.00	ms (1001 pts)
2 Metrics	•								
Total Char	nnel Power	-1.36 dBm / 2.0) MHz						
	er Spectral Density								
		Jul 31, 2023							
		8:12:29 PM							
				Middle cha	nnel				
Spectrum Ana Channel Powe		• +							
KEYSIGH	Input: RF Coupling: DC	Input Z: 50 Ω Corr CCorr	Atten: 30 dB #PNO: Fast	Trig: Free Run Gate: Off	Center Freq: Avg Hold: 10	2.440000000 GHz			
RL ↔	Align: Auto	Freq Ref: Int (S)		#IF Gain: Low	Radio Std: N				
1 Graph	•								
Scale/Div 10.				Ref LvI Offset 4 Ref Value 24.22					
Log				Í					
14.2 4.22									
-5.78									
-15.8							man and the		
-25.8									
-35.8 -45.8	and the second state							and the second	and the second second
-55.8									and a start of the second s
-65.8									
Center 2.4400				#Video BW 6.000	0 MHz*				Span 10 MHz
#Res BW 2.00								Sweep 1.00	ms (1001 pts)
2 Metrics	V								
Total Char	nnel Power	-0.48 dBm / 2.0) MHz						
Total Powe	er Spectral Density	-63.49 dl	3m/Hz						
1 5									

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 36 of 5BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

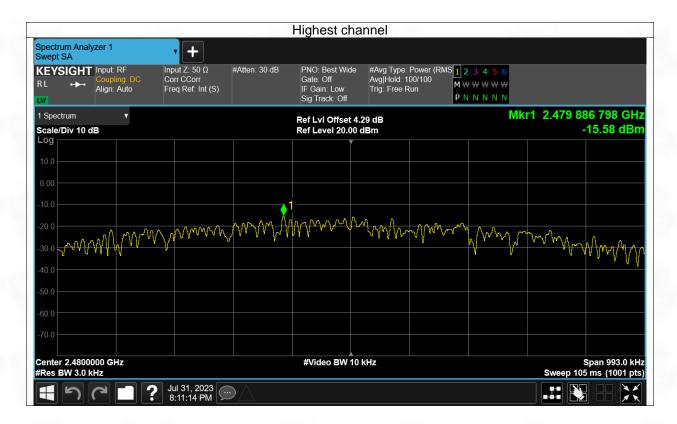
3. Maximum Power Spectral Density

3.1 PSD

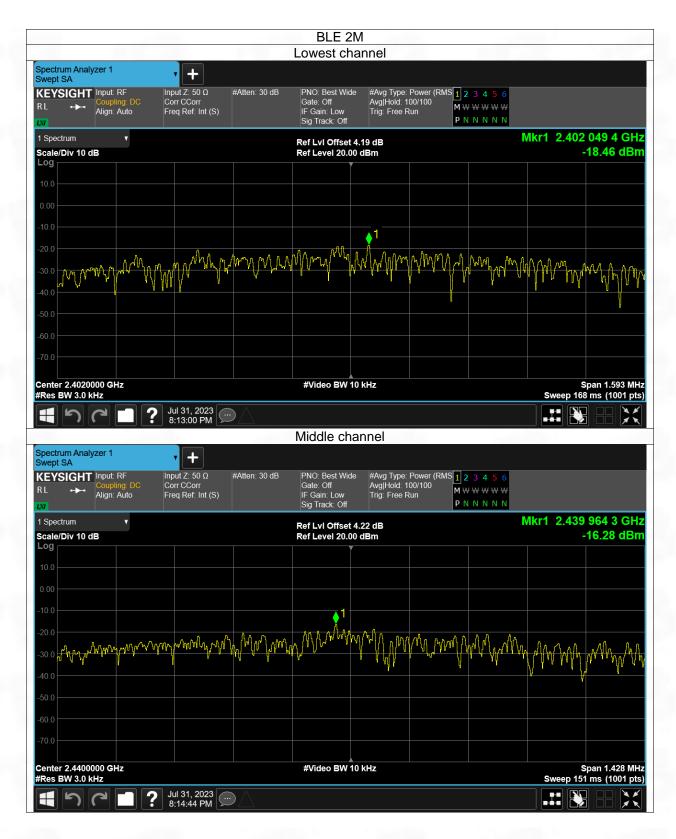
3.1.1 Test Result

Test channel	Power Spectral Density (dBm/3kHz)		
	BLE 1M	Limit	Result
Lowest	-16.13	8 dBm/3kHz	
Middle	-14.06	8 dBm/3kHz	PASS
Highest	-15.58	8 dBm/3kHz	

Test channel	Power Spectral Density (dBm/3kHz)		
	BLE 2M	Limit	Result
Lowest	-18.46	8 dBm/3kHz	
Middle	-16.28	8 dBm/3kHz	PASS
Highest	-17.66	8 dBm/3kHz	

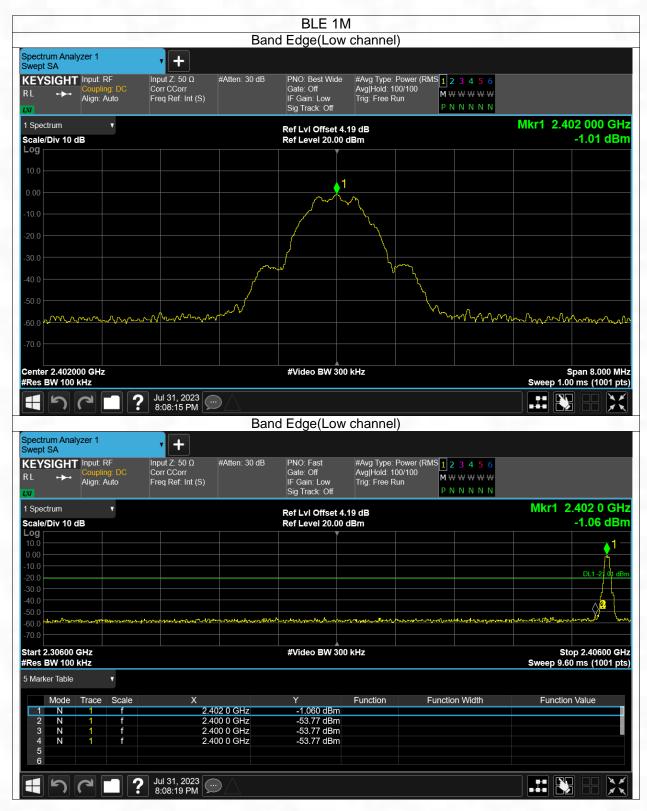


3.1.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

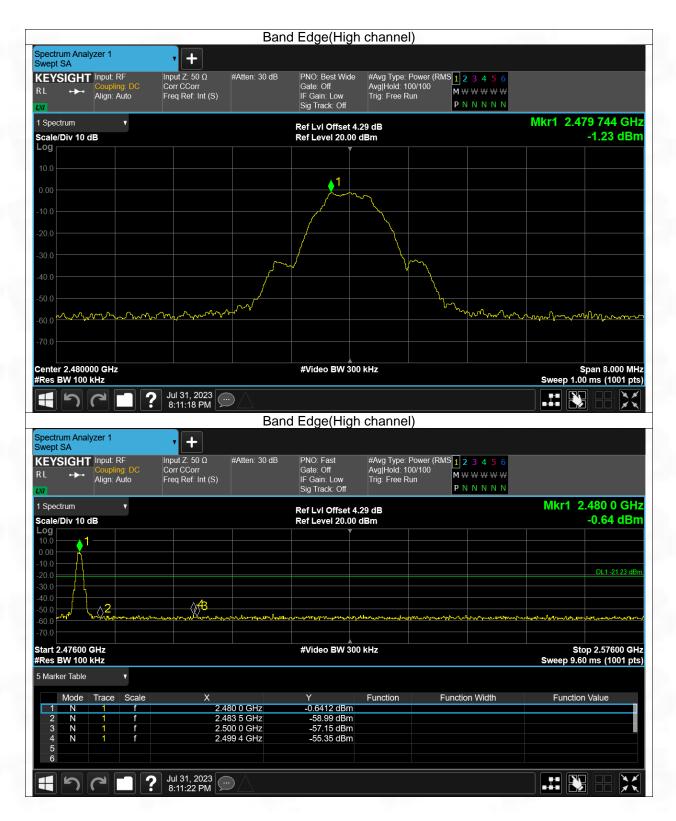
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 40 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


4. Unwanted Emissions In Non-restricted Frequency Bands

4.1.1Test Result(PASS)

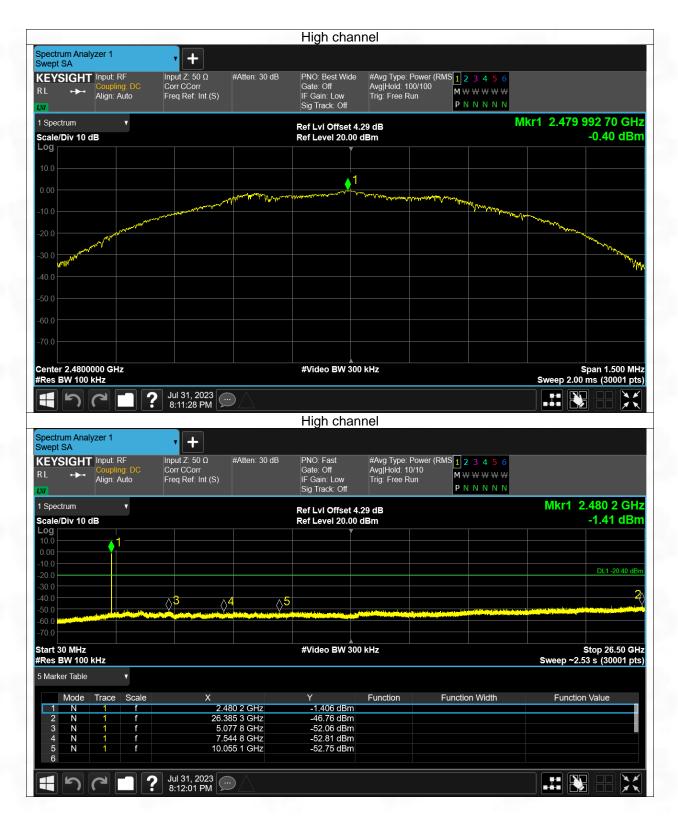
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 54BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



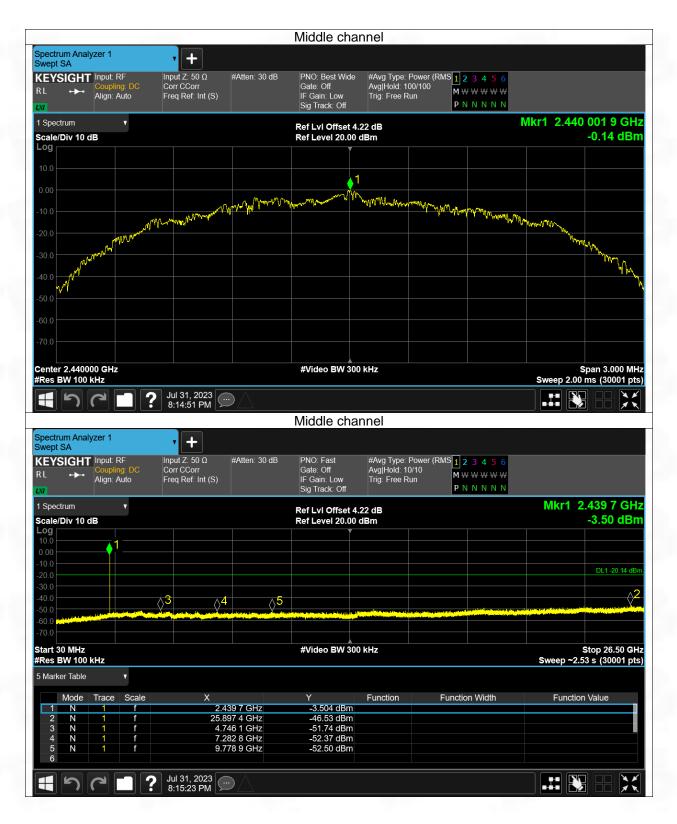
4.1.2 Test Graph

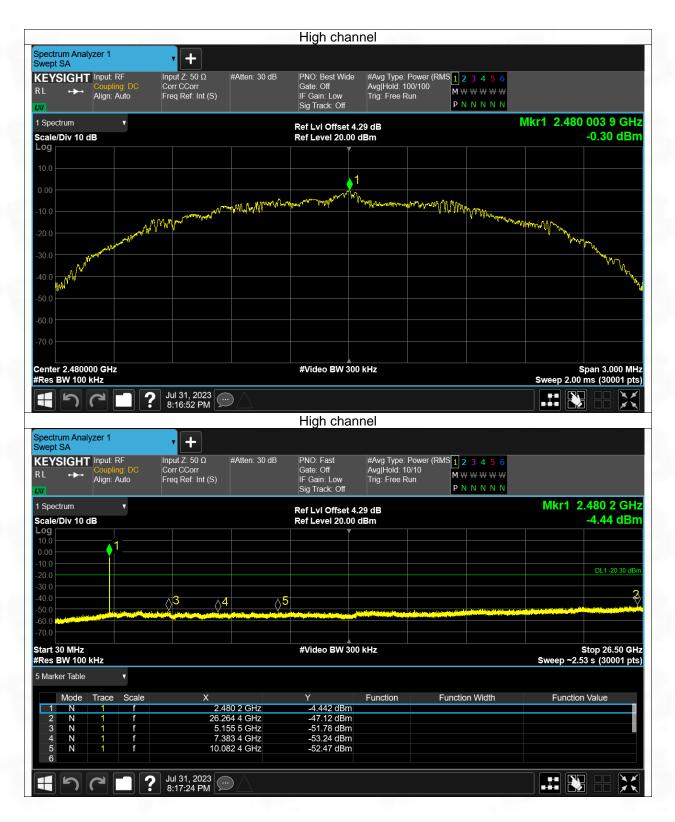
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Conducted RF Spurious Emission



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.





Test Report Number: BTF230816R00102

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --