

FCC PART 15.247

TEST REPORT

For

ORAIMO TECHNOLOGY LIMITED

Flat 39, 8/F., Block D, Wah Lok Industrial Centre, 31-35 Shan Mei Street, Fotan, NT, Hong Kong

FCC ID: 2AXYP-OSW-11N

Report Type: Original Report		Product Type: Smart Watch
original Report		Smart watch
Report Number:	SZ1210917-4875	2E-RF
Report Date:	2021-10-26	
	Candy Li	Cander . Li
Reviewed By:	RF Engineer	<i>ν</i>
Prepared By:	1/F., Building A	03290 503396

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective Test Methodology	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	
EUT Exercise Software Duty cycle	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
TEST RESULT:	
FCC §15.203 - ANTENNA REQUIREMENT	
Applicable Standard	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	12
TRANSD FACTOR & MARGIN CALCULATION	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
Applicable Standard EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
Factor & Margin Calculation Test Data	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	23
APPLICABLE STANDARD	23
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	24

Shenzhen	Accurate	Techno	logy	Co	Ltd.
onenzhen	riccurate	1 comio	iogy.	<i>co.</i> ,	Luu.

Report No.: SZ1210917-48752E-RF

Applicable Standard	
Test Procedure	
TEST DATA	24
FCC §15.247(e) - POWER SPECTRAL DENSITY	25
Applicable Standard	25
TEST PROCEDURE	25
TEST DATA	25
APPENDIX BLE	26
Appendix A: 6dB Emission Bandwidth	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
Appendix D: Power spectral density	38
APPENDIX E: BAND EDGE MEASUREMENTS APPENDIX F: DUTY CYCLE	42

GENERAL INFORMATION

Product	Smart Watch
Tested Model	OSW-11N
Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	-0.04dBm
Modulation Technique	BLE: GFSK
Antenna Specification*	Chip Antenna: 2.28dBi(provided by the applicant)
Voltage Range	DC 5V from adapter or DC 3.7V form internal battery
Date of Test	2021-10-14 to 2021-10-22
Sample serial number	SZ1210917-48752E-RF-S1(Assigned by ATC)
Received date	2021-09-17
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
AC Power Lines Conducted Emissions		±2.72dB
Emissions, Radiated	30MHz - 1GHz	±4.28dB
	1GHz-18GHz	±4.98dB
	18GHz- 26.5GHz	±5.06dB

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A-2.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

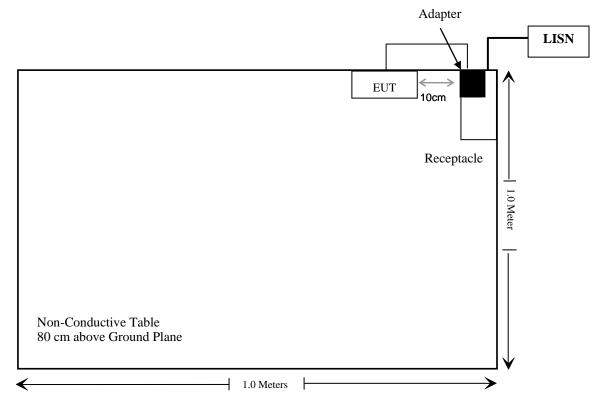
EUT Exercise Software

"RF TEST Tool"* software was used during test and power level is default*.

Duty cycle

Please refer to the Appendix BLE.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
HuaJin	Adapter	HJ-0501000E1-US	Unknown	

External I/O Cable

Cable Description	Length (m)	From Port	То	
Un-shielding detachable DC USB Cable	0.57	Adapter	EUT	

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1), §2.1093	RF EXPOSURE	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density Com	

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Conducted Emissions Test								
Rohde & Schwarz	Test Receiver	ESPI3	100396	2020/12/24	2021/12/23			
R & S	L.I.S.N.	ENV216	101314	2020/12/25	2021/12/24			
Anritsu Corp	50 Ω Coaxial Switch	MP59B	6200506474	2020/12/25	2021/12/24			
RF Coaxial Cable	Unknown	N-2m	No.2	2020/12/25	2021/12/24			
			ftware: ES-K1 V1.	.71				
		Radiated Emiss						
Rohde&Schwarz	Test Receiver	ESR	101817	2020/12/24	2021/12/23			
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23			
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/07/08	2022/07/07			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/04	2023/01/03			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	Horn Antenna	BBHA9170	9170-359	2020/01/05	2023/01/04			
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2020/11/28	2021/11/27			
RF Coaxial Cable	Unknown	N-5m	No.3	2020/12/25	2021/12/24			
RF Coaxial Cable	Unknown	N-5m	No.4	2020/12/25	2021/12/24			
RF Coaxial Cable	Unknown	N-1m	No.5	2020/12/25	2021/12/24			
RF Coaxial Cable	Unknown	N-1m	No.6	2020/12/25	2021/12/24			
	Radiated Emis		are: EZ_EMC V 1.	1.4.2				
		RF Conducte	d Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23			
WEINSCHEL	10dB Attenuator	5324	AU 3842	Each time				

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] .

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Test Result:

For worst case:

Mode	Frequency (MHz)	Maximum Tune-up power (dBm) (mW)		Calculated Distance (mm)	Calculated Value	Threshold (1-g SAR)	SAR Test Exclusion
		(uDiii)	(1111)	(IIIII)			
BLE	2480	0.5	1.12	5	0.4	3.0	Yes

Result: No Standalone SAR test is required

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

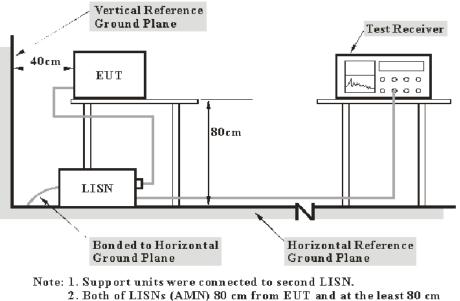
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal chip antenna arrangement which was permanently attached and the antenna gain is 2.28dBi, fulfill the requirement of this section. Please refer to the product photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Transd Factor = LISN VDF + Cable Loss

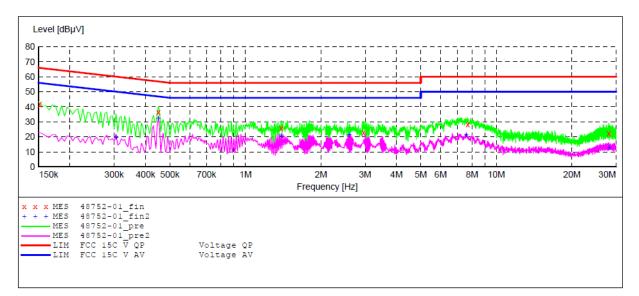
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – level Level= reading level+ Transd Factor

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

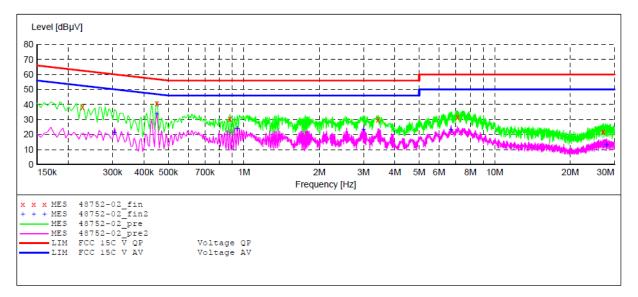

The testing was performed by Fan Yang on 2021-10-22.

EUT operation mode: Transmitting

(Scan with BLE 1M&2M mode, the worst case is BLE 1M Mode)

Low channel was the worst case:

AC 120V/60 Hz, Line


MEASUREMENT RESULT: "48752-01 fin"

2021-10-22 10:20 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 43.20 10.8 36.70 11.0 25.70 11.2 66 0.150000 22.8 QP L1GND 0.450000 57 20.3 QP L1GND 56 1.390000 25.70 11.2 11.2 30.3 QP L1GND 33.4 QP 22.60 56 2.960000 L1GND 60 28.20 11.5 31.8 Q̈́P L17.690000 GND 22.40 11.8 37.6 QP 28.100000 60 L1GND

MEASUREMENT RESULT: "48752-01 fin2"

2021-10-22 10 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.305000 0.450000 1.390000 2.590000 7.590000 28.100000	19.90 32.60 20.60 21.50 21.40 12.80	10.9 11.0 11.2 11.3 11.5 11.8	50 47 46 50 50	25.4 24.5	AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

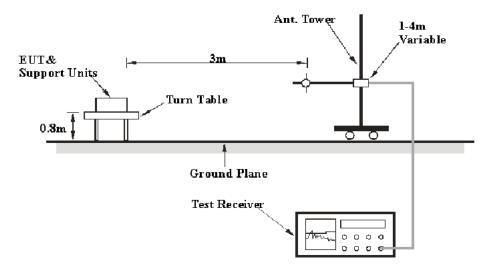
AC 120V/60 Hz, Neutral

MEASUREMENT RESULT: "48752-02 fin"

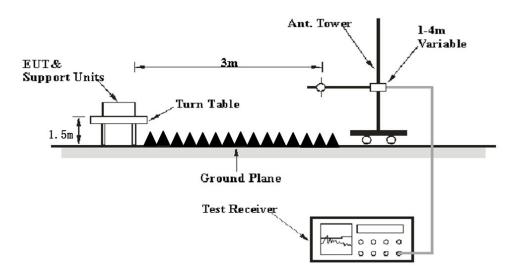
2021-10-22 10:18 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.225000 37.20 10.8 25.8 QP 63 Ν GND 0.450000 40.70 11.0 57 16.3 QP Ν GND 11.1 25.6 0.880000 30.40 56 QP Ν GND Ν 3.430000 30.10 11.4 56 25.9 QP GND 60 28.2 QP 7.110000 31.80 11.5 Ν GND 21.90 11.8 60 27.100000 38.1 QP Ν GND

MEASUREMENT RESULT: "48752-02 fin2"

2021-10-22 1	0:18						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.305000	21.70	10.9	50	28.3	AV	N	GND
0.450000	34.20	11.0	47	12.8	AV	N	GND
0.940000	23.90	11.1	46	22.1	AV	Ν	GND
3.000000	23.70	11.3	46	22.3	AV	Ν	GND
6.700000	23.80	11.5	50	26.2	AV	Ν	GND
27.975000	13.20	11.8	50	36.8	AV	Ν	GND


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

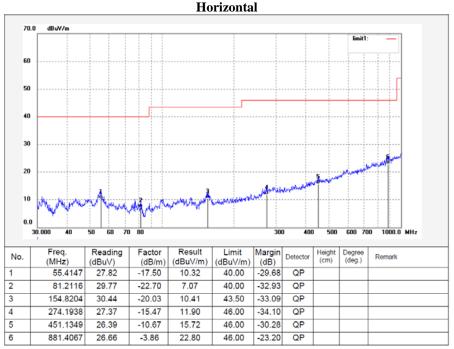
Factor = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

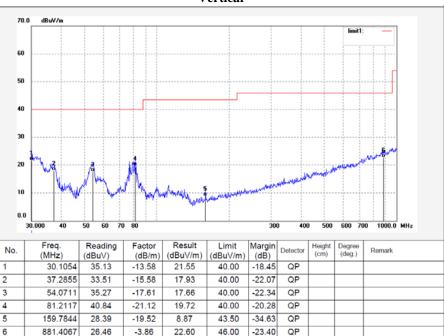
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Absolute Level /Result-Limit Absolute Level /Result = Reading + Factor

Test Data

Environmental Conditions


Temperature:	20 °C
Relative Humidity:	45 %
ATM Pressure:	101.0 kPa


The testing was performed by Fan Yang on 2021-10-22 for below 1GHz and 2021-10-14 for above 1GHz.

EUT operation mode: Transmitting

30 MHz~1 GHz: (Scan with BLE 1M&2M mode, the worst case is BLE 1M Mode)

Low channel was the worst case:

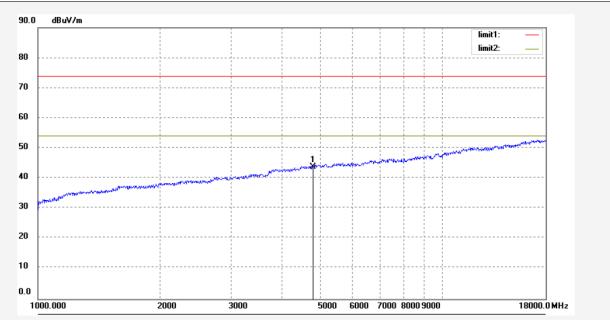
Report No.: SZ1210917-48752E-RF

Above 1 GHz:

Б	Rece	eiver	Turntable	Rx An	tenna	E (Absolute	T • •4	ъл ·
Frequency (MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
				BLE 1M, L	low Chann	el			
2310	45.75	PK	209	2.0	Н	-6.84	38.91	74	-35.09
2310	46.77	PK	191	1.7	V	-6.84	39.93	74	-34.07
2390	45.97	PK	335	1.8	Н	-6.44	39.53	74	-34.47
2390	47.32	PK	343	1.4	V	-6.44	40.88	74	-33.12
4804	41.02	PK	13	1.9	Н	2.81	43.83	74	-30.17
4804	52.22	PK	125	1.7	V	2.81	55.03	74	-18.97
4804	46.3	AV	125	1.7	V	2.81	49.11	54	-4.89
			E	BLE 1M, M	iddle Chan	nel		•	
4880	40.75	PK	18	1.2	Н	3.04	43.79	74	-30.21
4880	51.48	PK	125	1.7	V	3.04	54.52	74	-19.48
4880	45.46	AV	125	1.7	V	3.04	48.5	54	-5.5
				BLE 1M, H	ligh Chann				
2483.5	44.08	PK	144	1.0	Н	-5.96	38.12	74	-35.88
2483.5	45.18	PK	283	1.3	V	-5.96	39.22	74	-34.78
2500	45.08	PK	180	1.5	Н	-5.88	39.2	74	-34.8
2500	45.85	PK	209	1.4	V	-5.88	39.97	74	-34.03
4960	39.54	PK	141	1.9	Н	3.29	42.83	74	-31.17
4960	51.66	PK	156	1.4	V	3.29	54.95	74	-19.05
4960	45.25	AV	156	1.4	V	3.29	48.54	54	-5.46
				BLE 2M, I	low Chann				
2310	45.69	PK	319	1.8	Н	-6.84	38.85	74	-35.15
2310	45.87	PK	297	1.7	V	-6.84	39.03	74	-34.97
2390	45.48	PK	276	1.3	Н	-6.44	39.04	74	-34.96
2390	46.6	PK	239	1.9	V	-6.44	40.16	74	-33.84
4804	40.24	PK	156	1.4	Н	2.81	43.05	74	-30.95
4804	51.44	PK	73	1.5	V	2.81	54.25	74	-19.75
4804	46.2	AV	73	1.5	V	2.81	49.01	54	-4.99
				BLE 2M, M	iddle Chan				
4880	39.31	PK	282	1.2	Н	3.04	42.35	74	-31.65
4880	50.98	PK	73	1.5	V	3.04	54.02	74	-19.98
4880	45.47	AV	73	1.5	V	3.04	48.51	54	-5.49
				BLE 2M, H	ligh Chann				
2483.5	44.21	PK	218	2.0	Н	-5.96	38.25	74	-35.75
2483.5	44.57	РК	176	1.1	V	-5.96	38.61	74	-35.39
2500	44.33	РК	317	1.6	Н	-5.88	38.45	74	-35.55
2500	45.54	РК	183	1.7	V	-5.88	39.66	74	-34.34
4960	39.25	PK	171	1.4	Н	3.29	42.54	74	-31.46
4960	50.79	PK	161	1.5	V	3.29	54.08	74	-19.92
4960	44.34	AV	161	1.5	V	3.29	47.63	54	-6.37

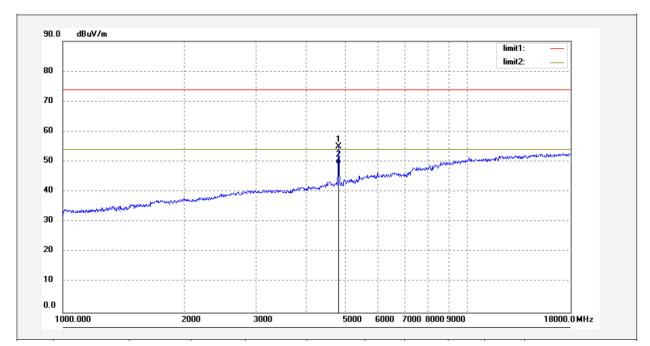
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor


Absolute Level = Factor + Reading

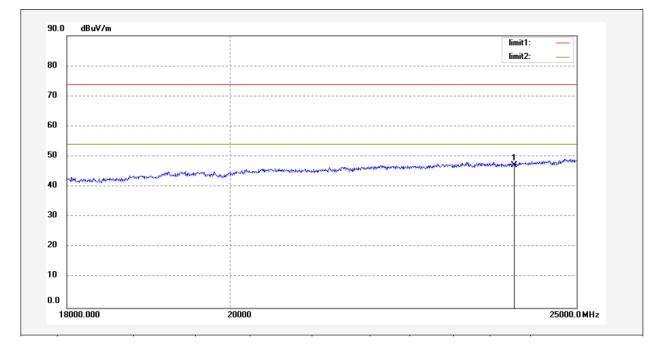
Margin = Absolute Level - Limit

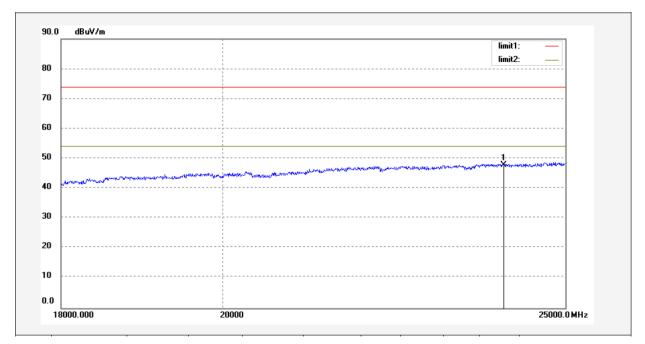
The other spurious emission which is 20dB below to the limit was not recorded. The test result of peak was less than the limit of average, so just peak values were recorded.


1-18 GHz:

Pre-scan plots:

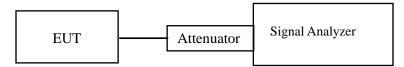
BLE 1M Low Channel Horizontal


Vertical


18 -25GHz:

Pre-scan plots:

BLE 1M Low Channel Horizontal


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

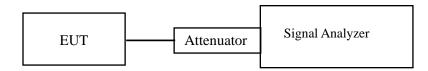
Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-14.

EUT operation mode: Transmitting


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

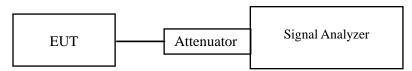
Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-14.

EUT operation mode: Transmitting


FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

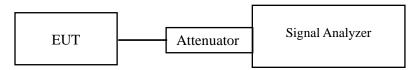
Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-14.

EUT operation mode: Transmitting


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

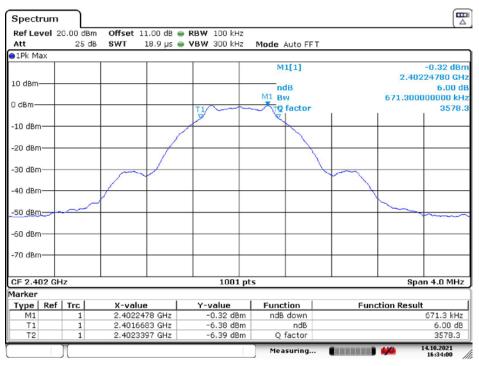
Test Data

Environmental Conditions

Temperature:	25.9 ℃
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

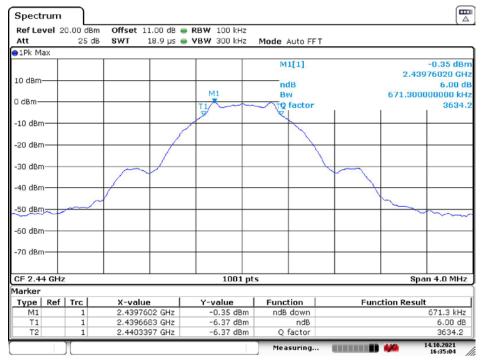
The testing was performed by Fan Yang on 2021-10-14.

EUT operation mode: Transmitting


APPENDIX BLE

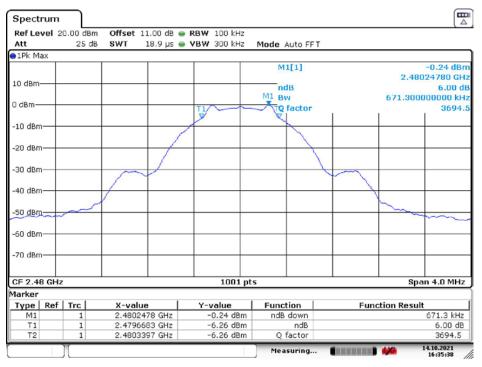
Appendix A: 6dB Emission Bandwidth

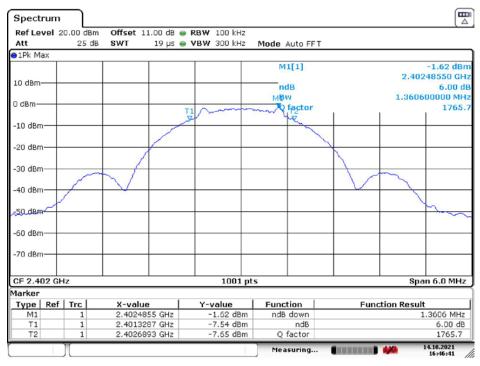
Test Result


Test Mode	Antenna	Channel [MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
BLE_1M Ant		2402	0.67	0.5	PASS
	Ant1	2440	0.67	0.5	PASS
		2480	0.67	0.5	PASS
		2402	1.36	0.5	PASS
BLE_2M	Ant1	2440	1.37	0.5	PASS
		2480	1.36	0.5	PASS

Test Graphs

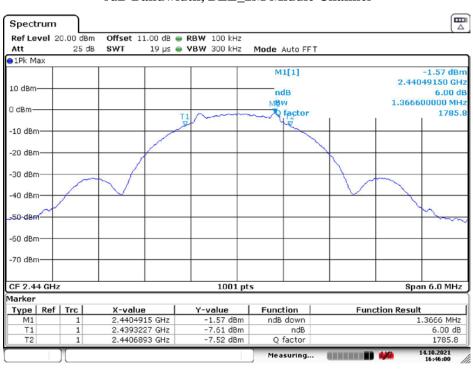
6dB Bandwidth, BLE_1M Low Channel


Date: 14.0CT.2021 16:34:00

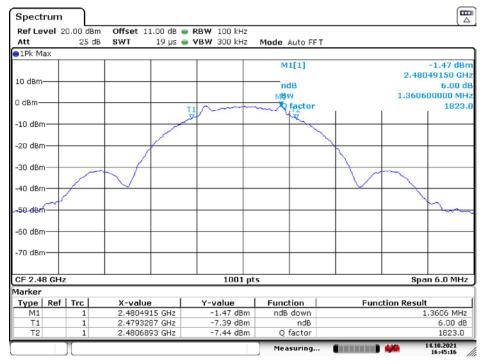

6dB Bandwidth, BLE_1M Middle Channel

Date: 14.0CT.2021 16:35:03

6dB Bandwidth, BLE_1M High Channel



Date: 14.0CT.2021 16:35:38

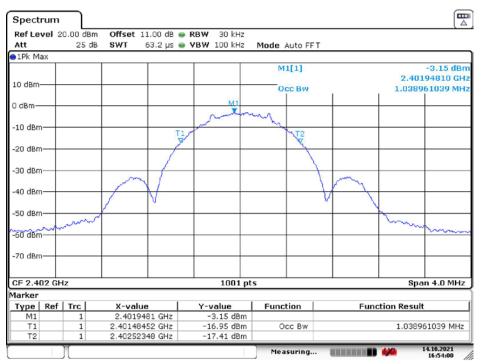

6dB Bandwidth, BLE_2M Low Channel

Date: 14.0CT.2021 16:46:40

6dB Bandwidth, BLE_2M Middle Channel

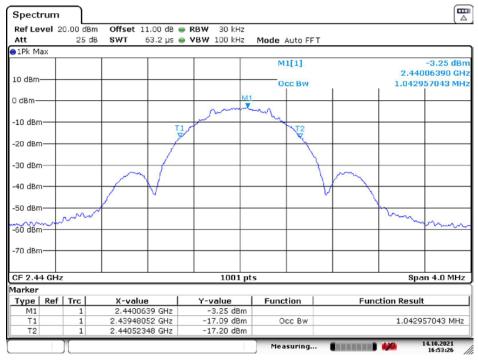
Date: 14.0CT.2021 16:46:00

6dB Bandwidth, BLE_2M High Channel

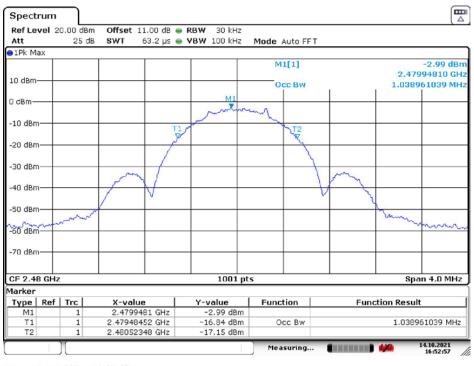

Date: 14.0CT.2021 16:45:16

Appendix B: Occupied Channel Bandwidth

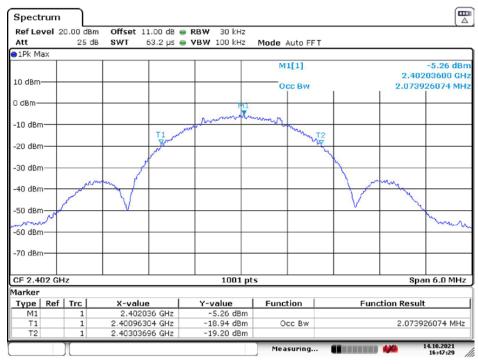
Test Result


TestMode	Antenna	Channel [MHz]	OCB [MHz]	Limit[dBm]	Verdict
		2402	1.039		PASS
BLE_1M	Ant1	2440	1.043		PASS
		2480	1.039		PASS
		2402	2.074		PASS
BLE_2M	Ant1	2440	2.080		PASS
		2480	2.074		PASS

Test Graphs

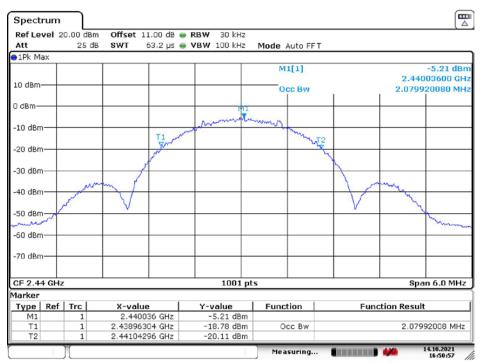

99% Bandwidth, BLE_1M Low Channel

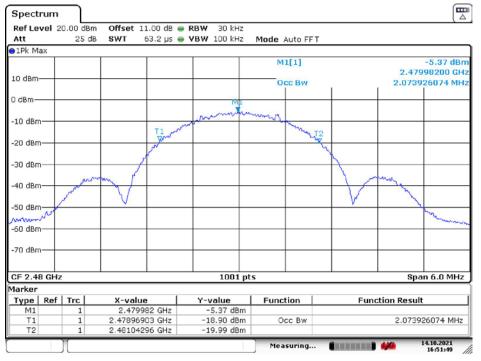
Date: 14.0CT.2021 16:53:59


99% Bandwidth, BLE_1M Middle Channel

Date: 14.0CT.2021 16:53:25

99% Bandwidth, BLE_1M High Channel


Date: 14.0CT.2021 16:52:57

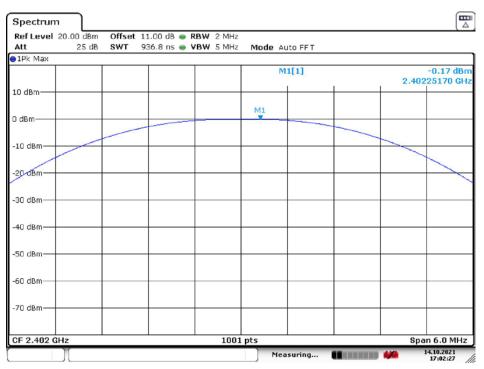

99% Bandwidth, BLE_2M Low Channel

Date: 14.0CT.2021 16:47:28

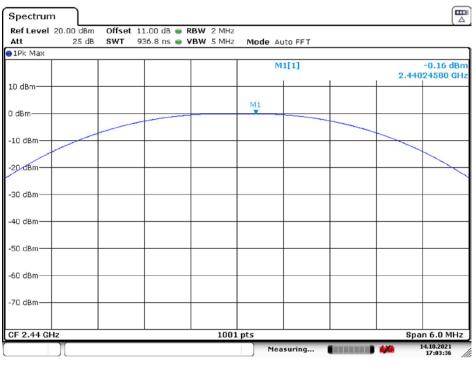
Date: 14.0CT.2021 16:50:57

99% Bandwidth, BLE_2M High Channel

Date: 14.0CT.2021 16:51:49

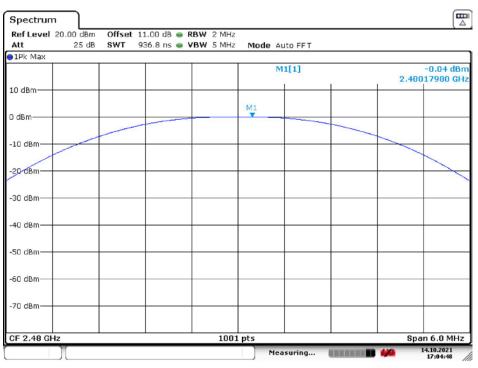

Appendix C: Maximum conducted Peak output power

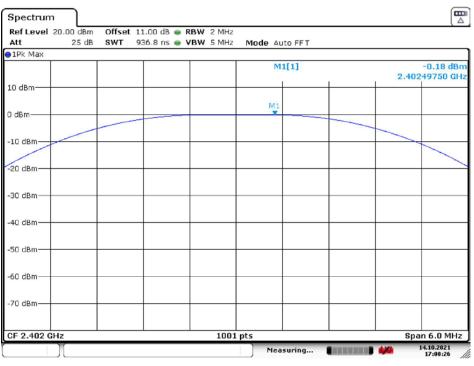
Test Result


Test Mode	Antenna	Channel [MHz]	Result[dBm]	Limit[dBm]	Verdict
		2402	-0.17	<=30	PASS
BLE_1M	Ant1	2440	-0.16	<=30	PASS
		2480	-0.04	<=30	PASS
		2402	-0.18	<=30	PASS
BLE_2M	Ant1	2440	-0.20	<=30	PASS
		2480	-0.08	<=30	PASS

Test Graphs

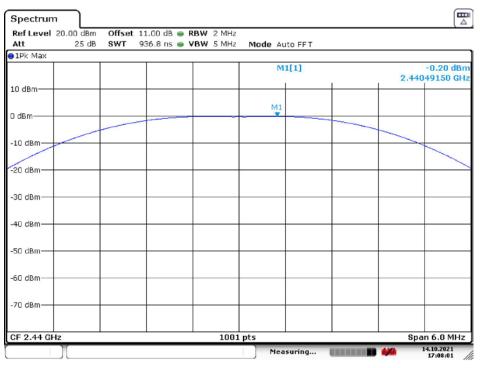
BLE_1M Low Channel

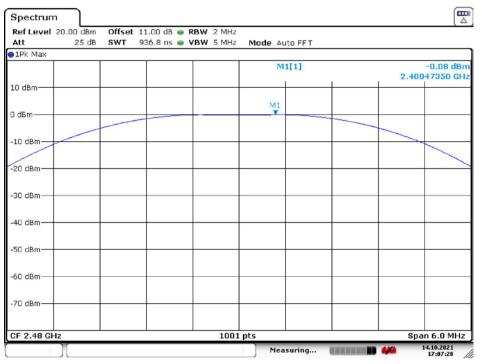

Date: 14.0CT.2021 17:02:27


BLE_1M Middle Channel

Date: 14.0CT.2021 17:03:35

BLE_1M High Channel


Date: 14.0CT.2021 17:04:47

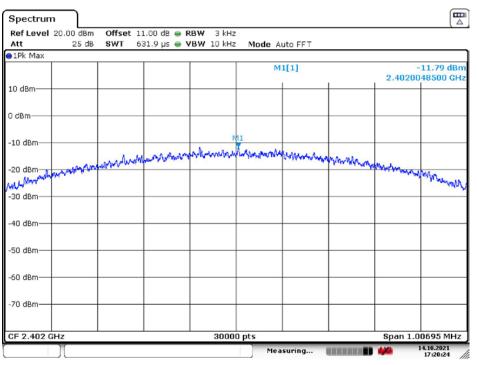

BLE_2M Low Channel

Date: 14.0CT.2021 17:08:26

BLE_2M Middle Channel

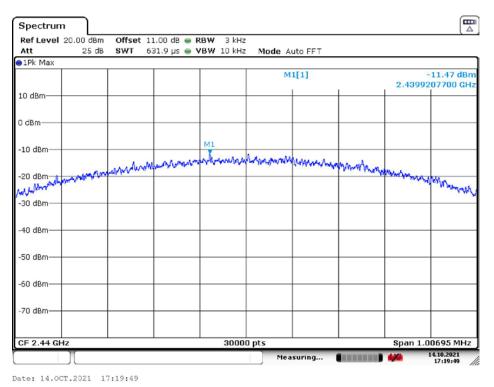
Date: 14.0CT.2021 17:08:01

BLE_2M High Channel

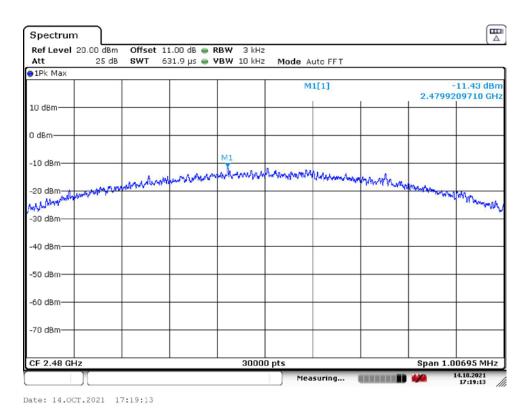

Date: 14.0CT.2021 17:07:28

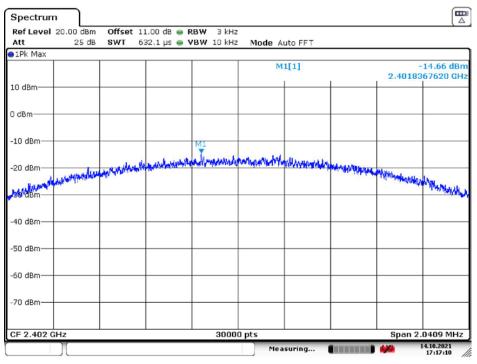
Appendix D: Power spectral density

Test Result


Test Mode	Antenna Channel[MHz] Result[dBm/3kHz]		Limit[dBm/3kHz]	Verdict	
		2402	-11.79	<=8	PASS
BLE_1M	Ant1	2440	-11.47	<=8	PASS
		2480	-11.43	<=8	PASS
		2402	-14.66	<=8	PASS
BLE_2M	Ant1	2440	-14.75	<=8	PASS
		2480	-14.57	<=8	PASS

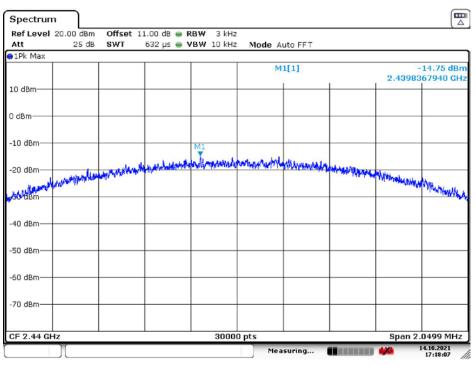
Test Graphs

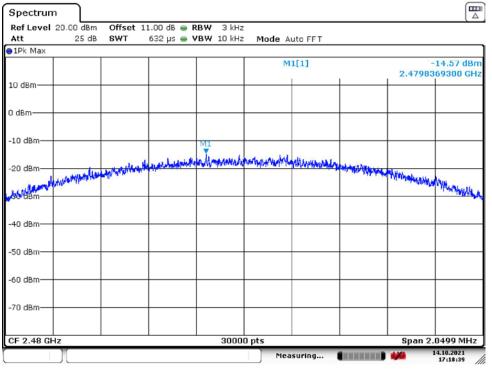

Power Spectral Density, BLE_1M Low Channel


Date: 14.0CT.2021 17:20:24

Power Spectral Density, BLE_1M Middle Channel

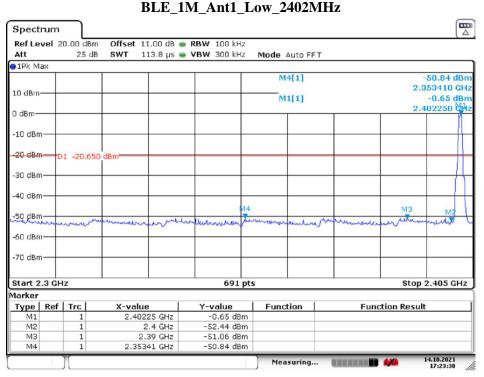
Power Spectral Density, BLE_1M High Channel




Power Spectral Density, BLE_2M Low Channel

Date: 14.0CT.2021 17:17:10

Date: 14.0CT.2021 17:18:07



Power Spectral Density, BLE_2M High Channel

Date: 14.0CT.2021 17:18:38

Appendix E: Band edge measurements

Test Graphs

Date: 14.0CT.2021 17:23:37

BLE_1M _Ant1_High_2480MHz

Spectrum									
Ref Level 3		Offset 11.00 (
Att	25 dB	SWT 94.8	us 🖷 VBW	300 kHz	Mode Auto	FFT			
1Pk Max									
I					M1[1]				.61 dBr
10 dBm									250 GH
	M1				M2[1]				.48 dBr 500 GH
0 dBm	A							2.483	300 GH
I									
-10 dBm	1								
	11	200							
-20 dBm	01 -20.610	dBm							
-30 dBm	4								
-30 UBIII	()								
-40 dBm									
-50 dBm —	. M2	M4	M3	wenter					
many	harns	monarpar	untur	anouther	menner	monena	mound	marray	Murhad
-60 dBm									
-70 dBm									
Start 2.47 (GHz			691 pt	· ·			Stop 2	55 GHz
1arker									
Type Ref	Trc	X-value	Y-1	value	Function		Functio	n Result	
M1	1	2.48D25 GH	iz -	-0.61 dBm					
M2	1	2.4835 GH		54.48 dBm					
MЗ	1	2.5 GH		3.19 dBm					
M4	1	2.4909 GH	lz -5	51.70 dBm					
	1				Measurin	0			0.2021 :32:13

Date: 14.0CT.2021 17:32:13

Spectrum	,							
Ref Level	20.00 dB	m Offset 11.00 d	B 😑 RBW 100 ki	Hz				
Att	25 c	İB SWT 113.8 μ	is 🖷 VBW 300 ki	Hz Mode	Auto FF	т		
●1Pk Max								
10 dBm					4[1] 1[1]		2.3	51.14 dBm 53560 GHz -1.76 dBm
0 dBm					1		2.4	1580/GHz
-10 dBm								
-20 dBm	D1 -21.7	60 dBm				_		
-30 dBm								M2
-40 dBm								
50 dBm	in some of	munn	Munghed in	M4 June		munume	M3	annual l
-60 dBm							×	
-70 dBm								
Start 2.3 G	Hz		691	L pts			Stop 2	.405 GHz
Marker								
Type Ref	Trc	X-value	Y-value	Fund	tion	Fund	tion Result	
M1	1	2.40158 GH						
M2	1	2.4 GH						
M3 M4	1	2.39 GH 2.35356 GH						
)(suring		446 1	4.10.2021 17:27:00

BLE_2M_Ant1_Low_2402MHz

Date: 14.0CT.2021 17:27:00

Spectrum						
Ref Level						
Att	25 dB	3 SWT 94.8 µs (● VBW 300 kHz	Mode Auto Fi	т	
1Pk Max						
				M1[1]		-1.40 dBn
10 dBm						2.479550 GH
	M1			M2[1]		-53.00 dBn
D dBm	The					2.483500 GH
	Д					
-10 dBm	A					
-20 dBm	D1 -21.40	0 dBm				
-30 dBm						
-30 UBIII	Δ					
-40 dBm	0.14					
	1	M4				
50 dBm	M2	<u> </u>	13 manunum	month	mohimment	mannennum
		the second reasons	and and a second	mandala	monterest	
-60 dBm						
-70 dBm						
Start 2.47	GHz		691 pts			Stop 2.55 GHz
1arker						
	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.47955 GHz	-1.40 dBm			
M2	1	2.4835 GHz	-53.00 dBm			
M3 M4	1	2.5 GHz 2.4909 GHz	-52.93 dBm -51.13 dBm			
1414	1 1	2.7909 GHZ	-31.13 UDIII		1	

Date: 14.0CT.2021 17:29:10

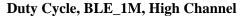
Appendix F: Duty Cycle

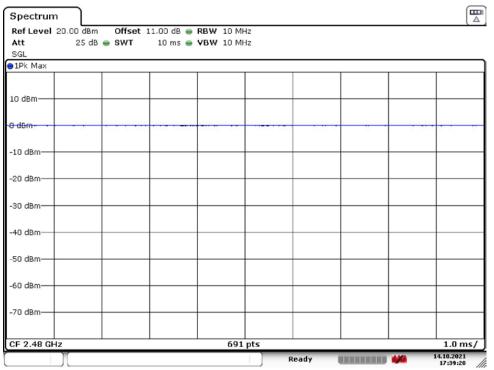
Test Result

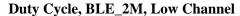
Mode	Channel[MHz]	Duty Cycle
	2402	100.0
BLE_1M	2440	100.0
	2480	100.0
	2402	100.0
BLE_2M	2440	100.0
	2480	100.0

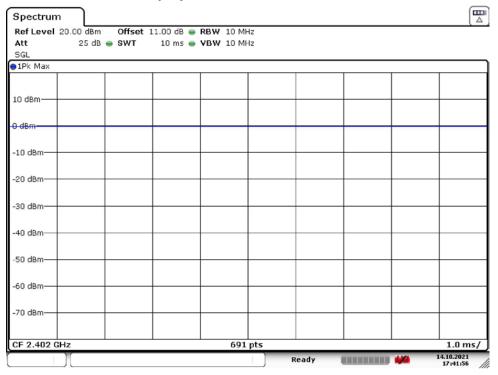

Test Graphs

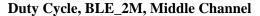
Duty Cycle, BLE_1M, Low Channel


Spectrur	n	ſ								
Ref Level	20.0	0 dBm	Offse	et 11.00 dB	RBW 10	MHz				`````
Att		25 dB	SWT	10 ms	VBW 10	MHz				
SGL										
●1Pk Max]
10 dBm						_				
O dBm								_		
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm										
-50 dBm—									-	
-60 dBm—					_		_			
-70 dBm—										
CF 2.402	CH7				6	91 pts				1.0 ms/
01- 2.402					0	ar hra			4.144	14.10.2021
							Ready			17:37:25

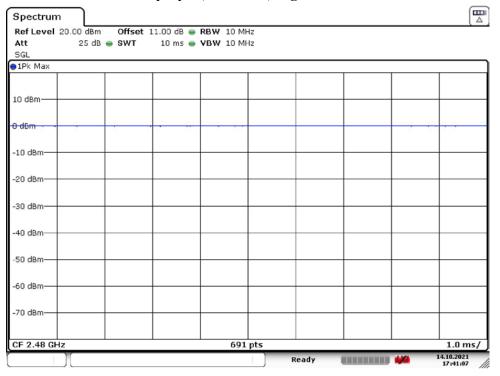

Date: 14.0CT.2021 17:37:25




Date: 14.0CT.2021 17:38:55




Date: 14.0CT.2021 17:39:20



Date: 14.0CT.2021 17:41:56

Date: 14.0CT.2021 17:41:34

Duty Cycle, BLE_2M, High Channel

Date: 14.0CT.2021 17:41:06

***** END OF REPORT *****