

TEST REPORT

Applicant Name : Address :

ORAIMO TECHNOLOGY LIMITED Flat 39, 8/F., Block D, Wah Lok Industrial Centre, 31-35 Shan Mei Street, Fotan, NT, Hong Kong SZNS211215-64949E-RF-00A 2AXYP-OEB-E11D-L

Report Number : FCC ID:

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Date Received: Date of Test: Report Date: True Wireless Stero Earbuds OEB-E11D 2021/12/15 2021/12/24~2022/01/06 2022/01/10

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

en Van

Fan Yang EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be Ave.ailable only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 44

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
-	
FCC§15.247 (I), §1.1307 (B) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
Applicable Standard Antenna Connector Construction	
FCC §15.205, §15.209 & §15.247(D) – RADIATED EMISSIONS	
APPLICABLE STANDARD EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup	13
Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION Test Data	
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	
Applicable Standard	
Test Procedure	19
TEST DATA	
FCC §15.247(A) (1) -20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	23
APPLICABLE STANDARD	
Test Procedure Test Data	
1E51 DA1A	23

Version 11: 2021-11-09

FCC-BT

FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	24
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	24
FCC §15.247(D) - BAND EDGES TESTING	25
APPLICABLE STANDARD	
Test Procedure	25
TEST DATA	
APPENDIX	
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	

GENERAL INFORMATION

Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: -0.88dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK
Antenna Specification*	-3.23dBi (provided by the applicant)
Voltage Range	DC 3.85V from battery
Sample serial number	SZNS211215-64949E-RF-S1(Assigned by ATC)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output pov	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1 °C
Hun	nidity	6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Version 11: 2021-11-09

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"BT TOOL.exe" * software was used to test, which provided by manufacturer.

The device was tested with the Power level is 4*.

Special Accessories

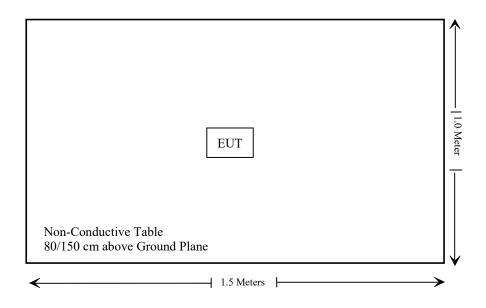
No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
/	/	/	/	


External I/O Cable

Cable Description	Length (m)	From/Port	То
/	/	/	/

Report No.: SZNS211215-64949E-RF-00A

Block Diagram of Test Setup

For radiated emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Not applicable
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

Not applicable: The Bluetooth will not operate during charging.

TEST EQUIPMENT LIST

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emissions Test						
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08	
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04	
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13	
Wainwright High Pass Filter		WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13	
Radiated Emission T	est Software: e3 19821b	(V9)				
		RF Conducted	d Test			
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12	
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

a) According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2402-2480	0	1.0	5	0.3	3.0	Yes

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

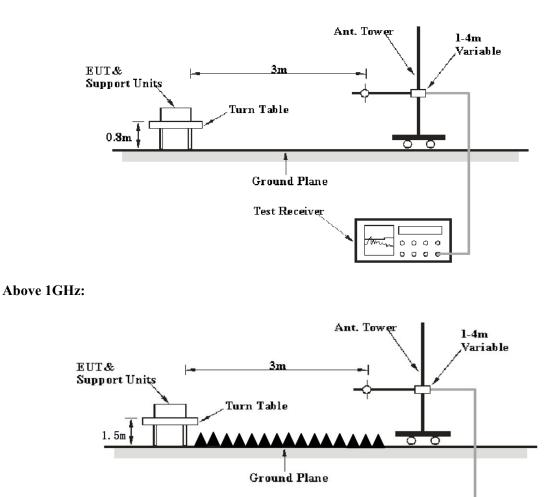
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal Antenna arrangement, which was permanently attached and the antenna gain is -3.23dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

Test Receiver

0000

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

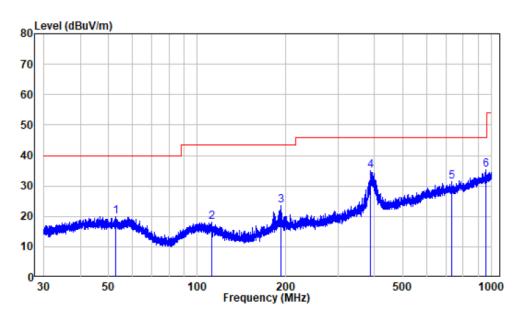
The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

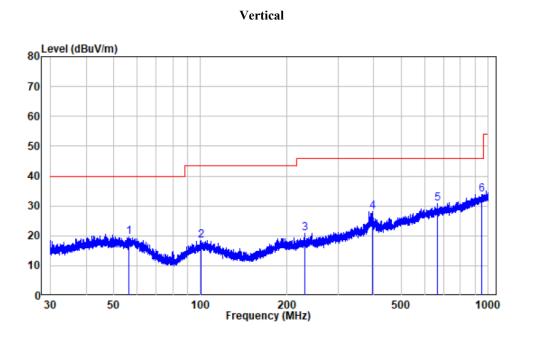
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data


Environmental Conditions

Temperature:	21~26.8°C		
Relative Humidity:	51~62%		
ATM Pressure:	101.0~101.2 kPa		

The testing was performed by Chao Mo on 2022-01-04 for below 1GHz and by Caro hu on 2021-12-31 and Bin Deng 2022-01-06 for above 1GHz.


EUT operation mode : Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30MHz-1GHz: (the worst case is $\pi/4$ -DQPSK Mode, Low channel)

Horizontal:

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	52.899	-10.15	30.17	20.02	40.00	-19.98	Peak
2	111.591	-12.18	30.28	18.10	43.50	-25.40	Peak
3	191.913	-11.26	34.87	23.61	43.50	-19.89	Peak
4	388.843	-6.93	41.87	34.94	46.00	-11.06	Peak
5	729.358	-0.96	32.29	31.33	46.00	-14.67	Peak
6	958.374	2.27	32.93	35.20	46.00	-10.80	Peak

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	56.321	-10.14	29.81	19.67	40.00	-20.33	Peak
2	100.757	-11.71	30.21	18.50	43.50	-25.00	Peak
3	230.300	-11.10	31.80	20.70	46.00	-25.30	Peak
4	394.855	-6.80	35.00	28.20	46.00	-17.80	Peak
5	664.346	-1.65	32.51	30.86	46.00	-15.14	Peak
6	947.930	1.98	31.89	33.87	46.00	-12.13	Peak

Report No.: SZNS211215-64949E-RF-00A

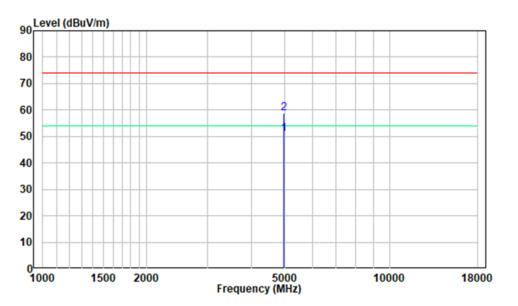
F	Re	eceiver	T 4 1- 1	Rx An	ntenna	Corrected	Corrected	T ::4	Manala	
Frequency (MHz)	Reading (dBµV)	PK/QP/AV	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	Low Channel (2402 MHz)									
2310	68.61	РК	191	1	Н	-7.25	61.36	74	-12.64	
2310	53.66	AV	191	1	Н	-7.25	46.41	54	-7.59	
2390	70.45	PK	25	1.1	Н	-7.23	63.22	74	-10.78	
2390	54.32	AV	25	1.1	Н	-7.23	47.09	54	-6.91	
2310	68.14	РК	223	1.9	V	-7.25	60.89	74	-13.11	
2310	53.64	AV	223	1.9	V	-7.25	46.39	54	-7.61	
2390	70.35	РК	95	2.1	V	-7.23	63.12	74	-10.88	
2390	54.35	AV	95	2.1	V	-7.23	47.12	54	-6.88	
4804	62.27	РК	106	2.4	Н	-3.51	58.76	74	-15.24	
4804	51.9	AV	106	2.4	Н	-3.51	48.39	54	-5.61	
4804	57.69	РК	156	1.4	V	-3.51	54.18	74	-19.82	
4804	45.8	AV	156	1.4	V	-3.51	42.29	54	-11.71	
			Middle C	hannel ((2441 N	fHz)				
4882	59.1	РК	208	2.3	Н	-3.28	55.82	74	-18.18	
4882	47.3	AV	208	2.3	Н	-3.28	44.02	54	-9.98	
4882	56.91	РК	83	2	V	-3.28	53.63	74	-20.37	
4882	46.2	AV	83	2	V	-3.28	42.92	54	-11.08	
		_	High Ch	nannel (2	2480 M	Hz)				
2483.5	69.98	РК	292	2.1	Н	-7.18	62.8	74	-11.2	
2483.5	55.11	AV	292	2.1	Н	-7.18	47.93	54	-6.07	
2500	68.42	РК	348	1.8	Η	-7.18	61.24	74	-12.76	
2500	55.61	AV	348	1.8	Н	-7.18	48.43	54	-5.57	
2483.5	69.99	РК	204	1.2	V	-7.18	62.81	74	-11.19	
2483.5	54.86	AV	204	1.2	V	-7.18	47.68	54	-6.32	
2500	68.31	РК	243	1	V	-7.18	61.13	74	-12.87	
2500	55.36	AV	243	1	V	-7.18	48.18	54	-5.82	
4960	61.92	PK	345	2.3	Н	-3.04	58.88	74	-15.12	
4960	53.86	AV	345	2.3	Н	-3.04	50.82	54	-3.18	
4960	59.53	РК	281	1.5	V	-3.04	56.49	74	-17.51	
4960	49.86	AV	281	1.5	V	-3.04	46.82	54	-7.18	

Above 1GHz: (the worst case is $\pi/4$ -DQPSK Mode)

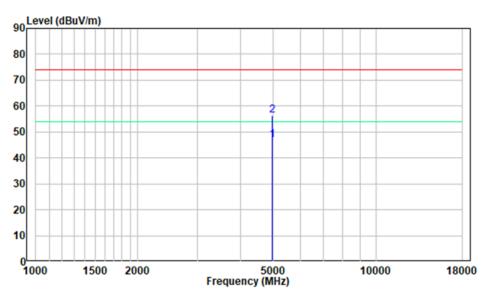
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

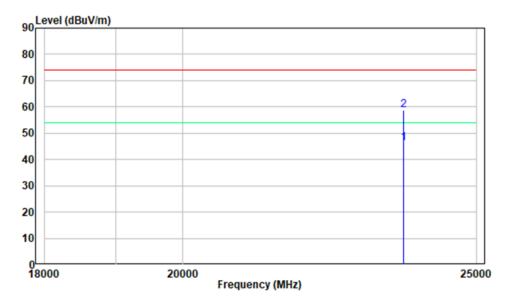
Absolute Level (Corrected Amplitude) = Factor + Reading Margin = Absolute Level (Corrected Amplitude) – Limit

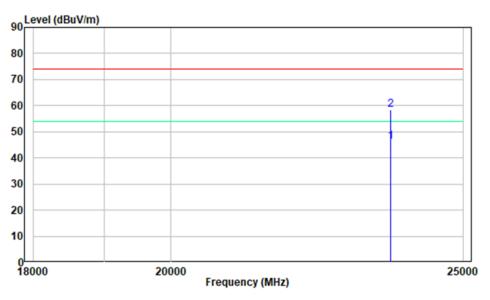

The other spurious emission which is in the noise floor level was not recorded.

The test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


1-18GHz Pre-scan plots:

High Channel




18-25GHz Pre-scan plots:

High Channel

Horizontal:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-12-24.

EUT operation mode: Transmitting

FCC §15.247(a) (1) –20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to Ave.oid hAve.ing other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-12-24.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may Ave.oid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 2. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 3. Set the EUT in hopping mode from first channel to last.
- 4. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-12-24.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may Ave.oid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 5. The EUT was worked in channel hopping.
- 6. Set the RBW to: 1MHz.
- 7. Set the VBW $\geq 3 \times RBW$.
- 8. Set the span to 0Hz.
- 9. Detector = peak.
- 10. Sweep time = auto couple.
- 11. Trace mode = max hold.
- 12. Allow trace to fully stabilize.
- 13. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-12-24.

EUT operation mode: Transmitting

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-12-24.

EUT operation mode: Transmitting

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

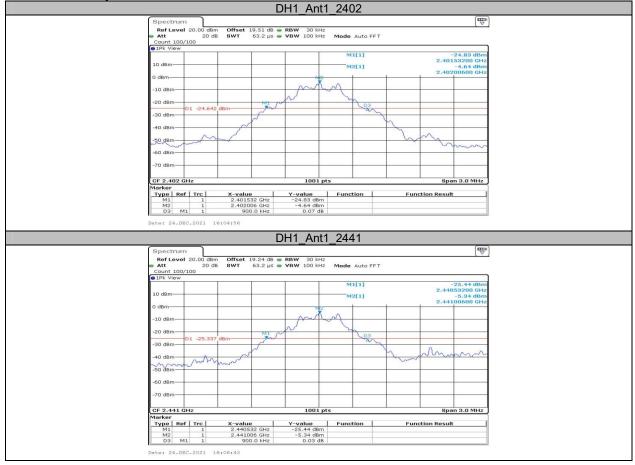
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

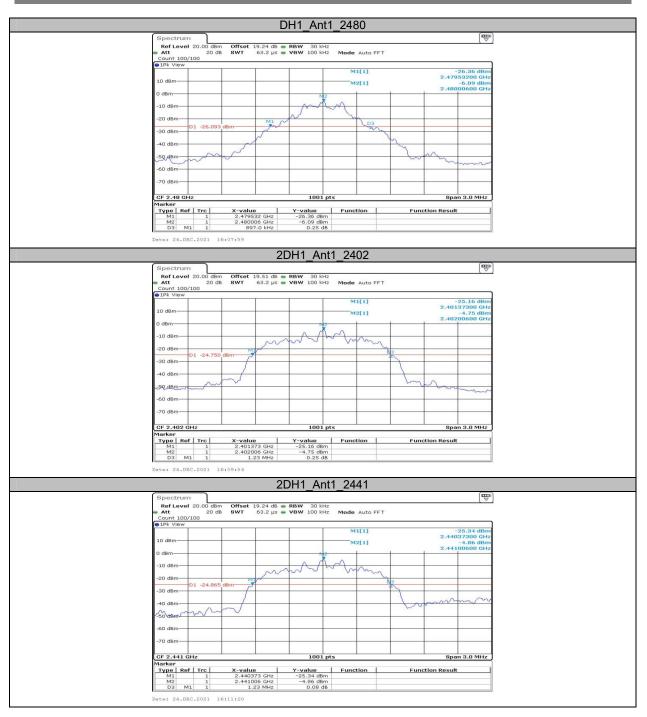
Environmental Conditions

Temperature:	25℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-12-24.


EUT operation mode: Transmitting

APPENDIX


Appendix A: 20dB Emission Bandwidth Test Result

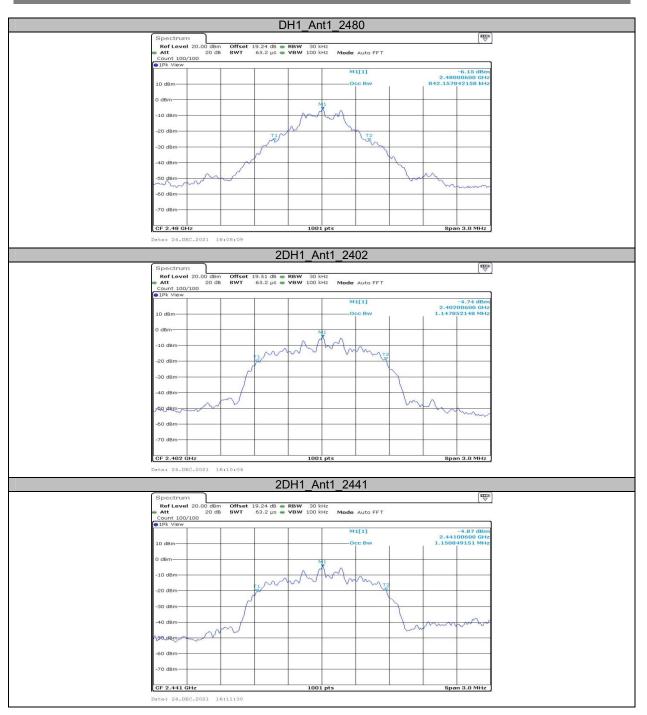
Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.900		PASS
DH1		2441	0.900		PASS
		2480	0.897		PASS
	Ant1	2402	1.230		PASS
2DH1		2441	1.230		PASS
		2480	1.230		PASS

Test Graphs

Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A


Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.839		PASS
DH1		2441	0.89		PASS
		2480	0.842		PASS
	Ant1	2402	1.148		PASS
2DH1		2441	1.151		PASS
		2480	1.148		PASS

Test Graphs

	DH1	_Ant1_2402		
Spectrum				
Ref Level 20.00 dBm Att 20 dB	Offset 19.51 dB • RBW SWT 63.2 µs • VBW	30 kHz 100 kHz Mode Auto FFT		
Count 180/188]	
		M1[1]	-4.61 dBm 2.40200600 GHz	
10 dBm		Occ Bw	839.160839161 kHz	
0 dBm		NI		
		man		
-10 dBm				
-20 dBm-	TIM	T2		
-30 dBm		N		
	\sim	× ×	\sim	
-40 dBm			7 .0	
-50 dBm			when have a second	
-60 dBm				
-70 dBm				
-70 dBm				
CF 2.402 GHz		1001 pts	Span 3.0 MHz	
Date: 24.DEC.2021 16:	05:06			
	DH1	Ant1 2441		
Spectrum			(B)	
Spectrum Ref Level 20.00 dBm	Offset 19.24 dB 👄 RBW	30 kHz		
Ref Level 20.00 dBm Att 20 dB Count 100/100	Offset 19.24 dB 👄 RBW			
Ref Level 20.00 dBm Att 20 dB	Offset 19.24 dB 👄 RBW	30 kHz	-5.33 dBm	
Ref Level 20.00 dBm Att 20 dB Count 100/100	Offset 19.24 dB 👄 RBW	30 kHz 100 kHz Mode Auto FFT		
Ref Level 20.00 dBm Att 20 dB Count 100/100 1Pk View 10 dBm 10 dBm	Offset 19.24 dB 👄 RBW	30 kHz 100 kHz Mode Auto FFT M1[1]	-5.33 dBm 2.44100600 GHz	
Ref Level 20.00 dBm Att 20 dB Count 100/100 1Pk View	Offset 19.24 dB 👄 RBW	30 kHz 100 kHz Mode Auto FFT M1[1]	-5.33 dBm 2.44100600 GHz	
Ref Level 20.00 dBm Att 20 dB Count 100/100 1Pk View 10 dBm 10 dBm	Offset 19.24 dB 👄 RBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.44100600 GHz	
Ref Level 20.00 dBm Att 20 dB Count 100/100 ●1Pk View 10 dBm 0 dBm	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.44100600 GHz	
Bef Level 20.00 dBm Att 20 dB 0 dBm 0 10 dBm 0 -10 dBm	Offset 19.24 dB 👄 RBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.44100600 GHz	
Bof Lavel 20.00 dBm Att 20 dB Count: 100/100 10 dBm 10 dBm 0 dBm -10 dBm 0 dBm	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.4410600 GHz 890.109890110 HHz	
Bef Level 20.00 dBm Att 20 dB 0 dBm 0 dBm 10 dBm 0 dBm -10 dBm - -20 dBm - -30 dBm - -40 dBm -	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.44100600 GHz	
Bef Level 20.00 dBm Att 20 dB 0 dBm 0 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.4410600 GHz 890.109890110 HHz	
Bof Lovel 20.00 dBm Att 20 dB Count 100/100 10 dBm 10 dBm 0 0 dBm - -20 dBm - -30 dBm - -40 dBm -	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.4410600 GHz 890.109890110 HHz	
Bef Level 20.00 dBm Att 20 dB 0 dBm 0 dBm 10 dBm 0 dBm -10 dBm - -20 dBm - -30 dBm - -40 dBm -	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.4410600 GHz 890.109890110 HHz	
Bof Lovel 20.00 dBm Att 20 dB Count 100/100 10 dBm 10 dBm 0 0 dBm - -20 dBm - -30 dBm - -40 dBm -	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.4410600 GHz 890.109890110 HHz	
Bef Level 20.00 dBm Att 20 dB Count 100/100 10 dBm I0 dBm 0 -0 dBm	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kH2 100 kH2 Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.44100600 GHz 890.10990110 kHz	
Bof Lovel 20.00 dBm Att 20 dB Count 100/100 ● 1Pk View 10 dBm 10 dBm 0 -10 dBm	Offset 19.24 dB = RBW SWT 63.2 µs = VBW	30 kHz 100 kHz Mode Auto FFT M1[1] Occ Bw	-5.33 dBm 2.4410600 GHz 890.109890110 HHz	

Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A

Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-2.74	≤20.97	PASS
DH1	Ant1	2441	-2.77	≤20.97	PASS
		2480	-4.29	≤20.97	PASS
		2402	-1.01	≤20.97	PASS
2DH1	Ant1	2441	-0.88	≤20.97	PASS
		2480	-1.14	≤20.97	PASS

Test Graphs

DH1 Ant1	2402	
Spectrum		
Ref Level 20.00 dBm Offset 19.51 dB RBW 3 MHz Att 20 dB SWT 1 ms VBW 10 MHz N	lode Auto Sweep	-
Count 100/100 100 100 100 100 100 100 100 100 100 100		1
The Albert	M1[1] -2.74 dBm	
10 dBm-	2.40192810 GHz	
0 dBm		
-10 dBm		
10 0811		
-30 dBm		
-33 4500		
-40 dBm		
-50 dBm		
-50 dbm		
-60 dBm		1
-70 dBm		
-/0 dBm		
 CF 2.402 GHz 1001 pts Date: 24.DEC.2021 16:05:21 D114 Amt4	Span 8.0 MHz	1
Date: 24.DEC.2021 16:05:21	2441	j
Date: 24.DEC.2021 16:05:21 DH1_Ant1_ Spectrum RofLevel 20.00 dBm Offset 19.24 dB @ RBW 3 MHz	2441 (^{man} v]
Date: 24.DEC.2021 16:05:21 DH1_Ant1 Spectrum RefLevel 20.00 dBm Offset 19.24 dB RBW 3 MHz Att 20 dB SWT 1 ms VBW 10 MHz N Count 100/100	2441]
Date: 24.DEC.2021 16:05:21 DH1 Ant1 Spectrum Ref Leval 20.00 dBm Offset 19.24 dB RBW 3 MHz N tr 20 dB SWT 1ms vSW 10 MHz N	2441 (🐨) tode Auto Sweep]
Date: 24.DEC.2021 16:05:21 DH1_Ant1 Spectrum RefLevel 20.00 dBm Offset 19.24 dB FBW 3 MH: Att 20 dB SWT 1 ms VBW 10 MH: N Count 100/100 PIPk View	2441 (^{man} v	
 Date: 24.DEC.2021 16:05:21 DH1_Ant1 Spectrum RefLevel 20.00 dBm Offset 19.24 dB RBW 3 MHz Att 20 dB SWT 1 ms VBW 10 MHz N Count 100/100	2441 (₩ tode Auto Sweep	
 Date: 24.DEC.2021 16:05:21 DH1_Ant1 Spectrum RefLevel 20.00 dBm Offset 19.24 dB FBW 3 MH: Att 20 dB SWT 1 ms VBW 10 MH: N Count 100/100 PIPk View	2441 (₩ tode Auto Sweep	
Date: 24.DBC.2021 16:05:21 DH1_Ant1 Spectrum Ref Level 20.00 dBm Offset 19.24 dB FBW 3 MH2 Att 20 dB WT 1 ms VBW 10 MH2 N Count 100/100 Ink view 10 dBm 0	2441 (₩ tode Auto Sweep	
Date: 24.DBC.2021 16:05:21 DH1_Ant1 Spectrum RefLevel 20.00 dBm Offset 19.24 dB FBW 2 MHz Att 20 dB SWT 1 ms VBW 10 MHz Count 100/100 IPK View 1 1 1 1 0 dBm IPK View 1 1 1 1 1	2441 (₩ tode Auto Sweep	
Date: 24.DBC.2021 16:05:21 DH1_Ant1 Spectrum Ref Level 20.00 dBm Offset 19.24 dB FBW 3 MH2 Att 20 dB WT 1 ms VBW 10 MH2 N Count 100/100 Ink view 10 dBm 0	2441 (₩ tode Auto Sweep	
 Date: 24.DEC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.DBC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.DEC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.DRC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.DEC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.DRC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.08C.2021 16:05:21 Spectrum Offset 19.24 dB FBW 3 MHz Ref Level SWT 1 ms VBW 10 MHz N Count 100/100 Offset 19.24 dB FBW 3 MHz N O dBm	2441 (₩ tode Auto Sweep	
Date: 24.DRC.2021 16:05:21	2441 (₩ tode Auto Sweep	
Date: 24.08C.2021 16:05:21 Spectrum Offset 19.24 dB FBW 3 MHz Ref Level SWT 1 ms VBW 10 MHz N Count 100/100 Offset 19.24 dB FBW 3 MHz N O dBm	2441 (₩ tode Auto Sweep	

Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A

Spectrum						₩)
Ref Level 20		19.24 dB 👄 RBW	3 MHz	100000 - 10000 - 1000		<u> </u>
Att Count 100/100	20 dB 8WT	1 ms 🕳 VBW	10 MHz Mode	Auto Sweep		1/22
1Pk View			-			
				11[1]	-1.14 dBn 2.47995200 GH	3m Hz
10 dBm				+ +		
0 dBm			M			
-10 dBm						
~20 dBm						~
-30 dBm						
-40 dBm-						-
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.48 GHz			1001 pts		Span 8.0 MHz	

Appendix D: Carrier frequency separation Test Result

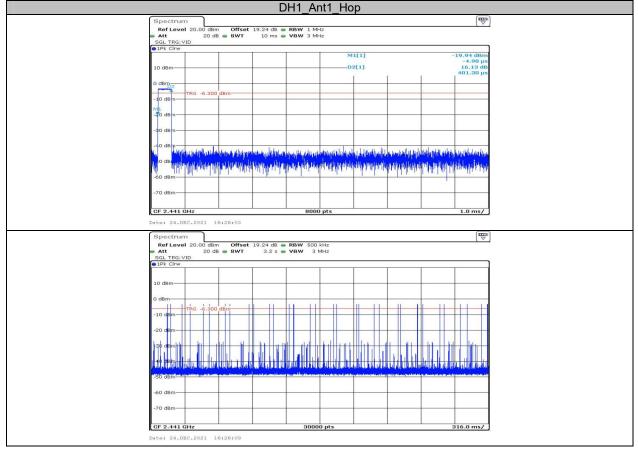
Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.600	PASS
2DH1	Ant1	Нор	1.003	≥0.820	PASS

Test Graphs

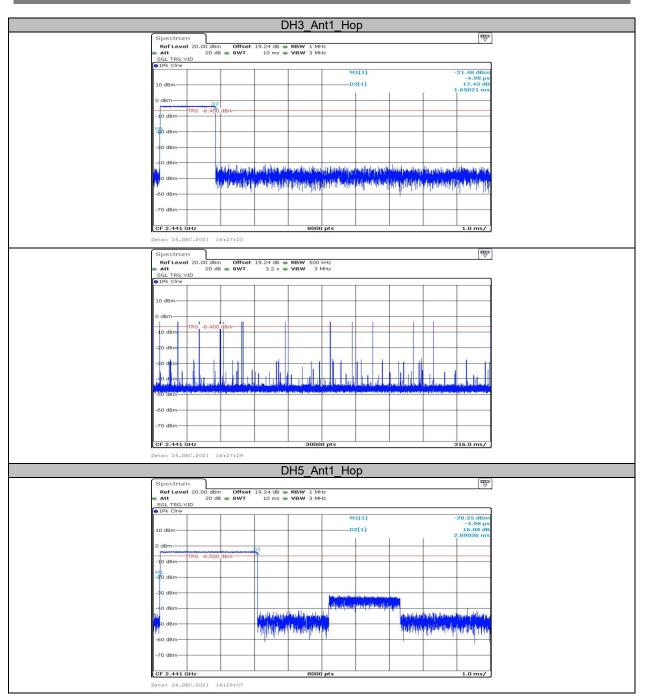
DH1_Ant1_Hop
Spectrum 🕎
Ref Level 20.00 dBm Offset 19.24 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT Count 100/100 SWT 18.9 µs VBW 300 kHz Mode Auto FFT
●1Pk View M1[1] -3.47 dBm
10 dBm D2[1] -0.03 dB
-10 dBm
-29 dfm
-30 dBm
-50 dBm-
-60 d8m
-70 dBm
Start 2.4405 GHz 691 pts Stop 2.4425 GHz
Date: 24.DBC.2021 16:25:23
2DH1 Ant1 Hop
Spectrum 🕎
Ref Level 20.00 dm Offset 19.24 db RBW 100 kHz ● Att 20 dB SWT 18.9 µs ♥ BW 300 kHz Mode Auto FFT Count 100/100
● 1Pk View
10 dBm D2[1] 0.03 dB 10 dBm D2[1] 1.00290 MHz
-10 dem
-20 dBm
-40 dBm
-40 dBm-
-40 dBm

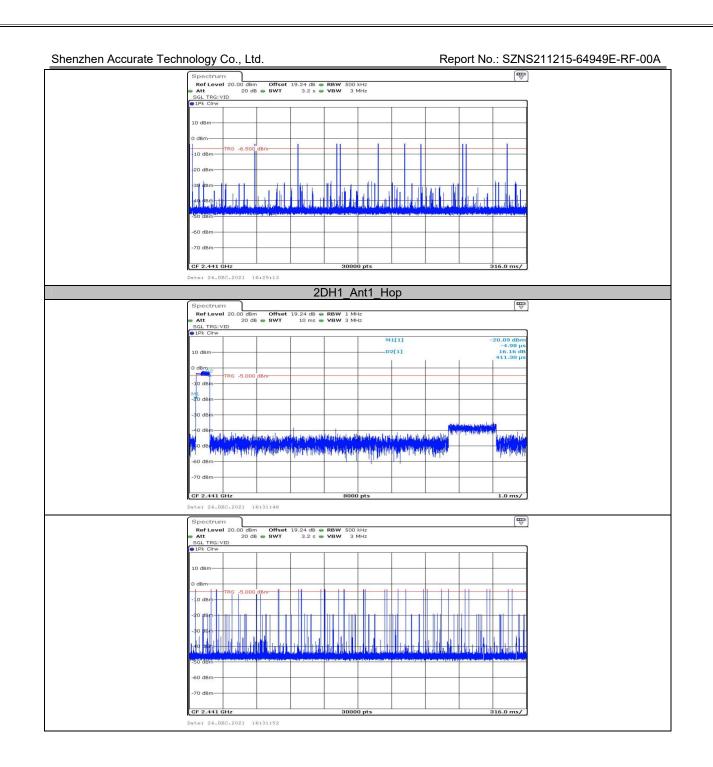
Report No.: SZNS211215-64949E-RF-00A

Appendix E: Time of occupancy Test Result

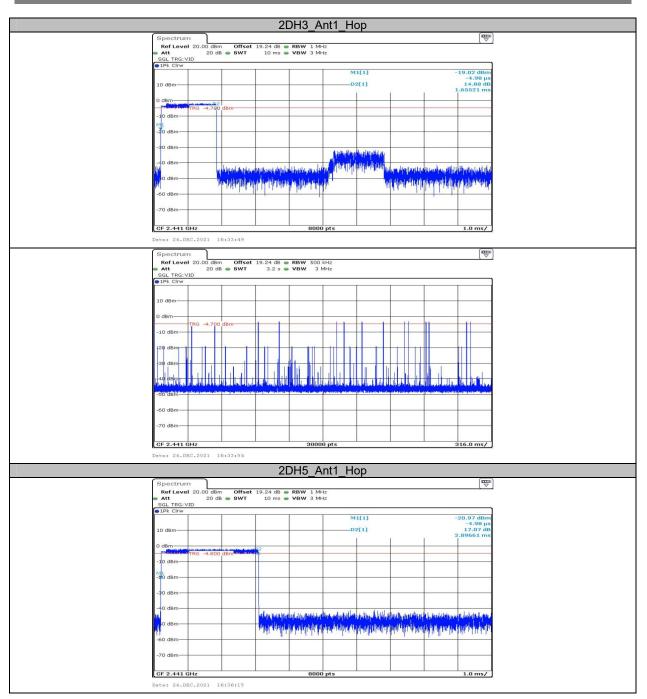

Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.40	330	0.132	≤0.4	PASS
DH3	Ant1	Нор	1.65	150	0.248	≤0.4	PASS
DH5	Ant1	Нор	2.89	120	0.347	≤0.4	PASS
2DH1	Ant1	Нор	0.41	320	0.132	≤0.4	PASS
2DH3	Ant1	Нор	1.66	150	0.248	≤0.4	PASS
2DH5	Ant1	Нор	2.90	120	0.348	≤0.4	PASS

Note 1: A period time=0.4*79=31.6(s), Result=BurstWidth*Totalhops

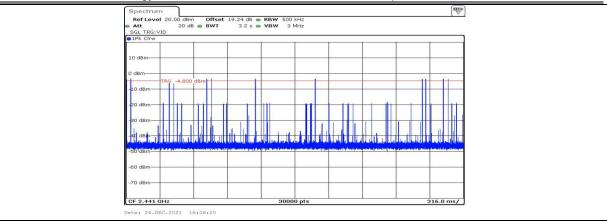

Note 2: Totalhops=Hopping Number in 3.16s*10


Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

Test Graphs



Report No.: SZNS211215-64949E-RF-00A



Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A

Appendix F: Number of hopping channels Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

			D	H1_Ar	it1_Ho	р				
Spec										
Ref L	evel 20.00 dBm 20 dB		9.51 dB 👄 1 1 ms 👄 1	RBW 100 ki VBW 300 ki	lz Mode	Auto Sweer				
• 1Pk V										
10 dBm	n									
0 dBm-										
MDA/	1.00000000000000	100000000	1050000	//////////////////////////////////////	10414400	ADD14400	0.00.000.000	008800000	0.0004	
-10 36	6 III . I . I . I I	IN PANYA	17 J. Y. I. M. M.	1401/0201	, мали,		1111111	2444444	YIIII Y	
1910	51779171717171	YRAHAAA	HIRWIR	WAWAA	TRADARAN	AAAAAAA	HIRIDAA	TUNNAR	rwnna –	
-20 98	Tell-offerin	olloalis	0.00	14010.00			I NOT I . I			
-30 dB	m									
-40 dBi	m									
									1	
J-so de	m								hud	
-60 dB										
-70 dB	m									
Start :	2.4 GHz			691	pts			Stop 2.	4835 GHz	
Date: 2	24.DEC.2021 16	:25:52								
			2L	DH1_A	nt1_Ho	р				
Spec	trum									
RefL	evel 20.00 dBm	Offset 1	9.51 dB 👄 I	RBW 100 ki	łz					
Ref L Att	evel 20.00 dBm 20 dB	Offset 1 SWT	9.51 dB 👄 1 1 ms 👄 1	RBW 100 ki VBW 300 ki	Hz Hz Mode	Auto Sweep	0			
RefL	evel 20.00 dBm 20 dB	Offset 1 SWT	9.51 dB 🕳 1 1 ms 🕳 1	RBW 100 ki VBW 300 ki	Hz Hz Mode	Auto Sweep			(₩	
Ref Att 9 IPK V	evel 20.00 dBm 20 dB /iew	Offset 1 SWT	9.51 dB 👄 1 1 ms 🖷 '	RBW 100 ki VBW 300 ki	Hz Hz Mode	Auto Sweep				
Ref L Att	evel 20.00 dBm 20 dB /iew	Offset 1 SWT	9.51 dB 🖷 1 1 ms 🖷 '	RBW 100 ki VBW 300 ki	Hz H2 Mode	Auto Sweep			₹	
Rofi • Att • IPk v 10 dBn	evel 20.00 dBm 20 dB	SWT	1 ms 🖷 '	VBW 300 ki	Hz Mode					
Ref ff Att 10 dBn	evel 20.00 dBm 20 dB	SWT	1 ms 🖷 '	VBW 300 ki	Hz Mode			תוגה גווליט		
Ref f Att 10 dBn	evel 20.00 dBm 20 dB /iew	SWT	1 ms 🖷 '	VBW 300 ki	Hz Mode			WWWW		
Perfit ■ Att ■ JPK v 10 dBm - 40 BB	evel 20.00 dBm 20 dB //ew	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode			WWWW		
Ref ff Att 10 dBn	evel 20.00 dBm 20 dB //ew	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode					
Reft Att 10 dBn o dBm -30 85	evel 20.00 dBm 20 dB //ew	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode					
Ref Aft 10 dBn -10 dBn -20 dBn	evel 20.00 dBm 20 dB //ew	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode			WWWW		
Ref Aff 10 dBn -10 dBn -20 dBn	20 dBm 20 dB 	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode			WWWW		
Pentit → Att → IPK v 10 dBm - 10 dBm - 20 dB - 20 dB - 20 dB - 10 dB - 10 dB	evel 20.00 dBm 20 dB //ew /////////////////////////////////	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode			WW.MWW		
Pentit → Att → IPK V 10 dBm - 10 dBm - 20 dB - 20 dB	evel 20.00 dBm 20 dB //ew /////////////////////////////////	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode					
Pentit → Att → IPk v 10 dBm - 00 dBm - 20 dB - 20 dB - 10 dB - 10 dB - 10 dB	evel 20.00 dBm 20 dB //ew m m m m m m m	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode			WMMM		
Roft Attribute 10 dBm -10 d	evel 20.00 dBm 20 dB //ew m m m m m m m	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode					
Rofi Attribute 10 dBm -10 d	evel 20.00 dBm 20 dB 100 m 100	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode					
Ref (10 dbm 0 dbm -10 dbm -20 dbm -30 dbm -30 dbm -30 dbm -30 dbm -50 dbm -50 dbm	evel 20.00 dBm 20 dB 100 m 100	SWT	1 ms 🖷 '	VBW 300 ki	12 Mode				MMA Luc	
Ref (• 10 dBm 0 dBm - 10 dBm - 20 dBm -	evel 20.00 dBm 20 dB 100 m 100	SWT	1 ms 🖷 '	VBW 300 ki						
Per fri → Att → IPk v 10 dBm - 10 dBm - 10 dBm - 20 dBm -	.evel 20.00 dBm 20 dB //ew /////////////////////////////////	SWT	1 ms 🖷 '						MMA Luc	

Appendix G: Band edge measurements Test Graphs

		DH1	Ant1 L	OW 2/	402			
Spectrum	1		_/\L	_0// _2	102			(**
Ref Level 20.00	dBm Offset	19.51 dB 🕳	RBW 100 kHz	:				
Att : Count 300/300	20 dB SWT	132.7 µs 👄	VBW 300 kHz	Mode A	uto FFT			
1Pk View	1	1	r - r	M1[- 1			-3.18 dBm
10 dBm							2.40	20150 GHz
0 dBm				M2[1]		2.40	51.80 dBm 00000 GHz
-10 dBm								ň
-20 dBm								
01 -23	8.180 dBm						-	H
-30 dBm								
-40 dBm						ма	M	hart
-92 department	mannow	Auronorph	reference	man	empart	mannen	annorth	at Sala
-60 dBm							· · · · · · · · · · · · · · · · · · ·	
-70 dBm								
Start 2.35 GHz		<u> </u>	691 pt	ts			Stop 2	2.405 GHz
Marker Type Ref Trc	X-valu	e	Y-value	Functio	on	Fun	ction Result	
M1 1 M2 1	2.4020	115 GHz 2.4 GHz	-3.18 dBm -51.80 dBm					
M3 1 M4 1	2.39910	39 GHz 14 GHz	-52.11 dBm -48.96 dBm					
Date: 24.DEC.202	1 16:05:15							
			_Ant1_H	Jiah 2	100			
Caracteristic	·		<u>_^IIII_I</u>	<u>iiyii_z</u>	400			(====
Spectrum Ref Level 20.00	dBm Offset	19.24 dB 🕳	RBW 100 kHz					
Att : Count 300/300	20 dB SWT	1.1 ms 👄	VBW 300 kHz	Mode A	uto Swee	p		
1Pk View	1	1	<u>г</u>	M1[1]			-4.71 dBm
10 dBm				M2[2.4	80010 GHz 51.13 dBm
0 dBm M1			-			-	2.4	83500 GHz
-10 dBm								
-20 dBm								
-30 dBm	.710 dBm							
-40 dBm	M2	M3					M4	
reservence	10-10-10-00-00-00-00	and the second second	- martine marching	all and a second	hydrofa - read	and the second second	andlennation	
-60 dBm						-	· · · · · · · · · · · · · · · · · · ·	
-70 dBm		1						
Start 2.47 GHz			691 pt	ts			Stop	2.55 GHz
Marker Type Ref Trc	X-valu	e	Y-value	Functio	n	Fun	ction Result	1
M1 1 M2 1	2,480	IO1 GHz I35 GHz	-4.71 dBm -51.13 dBm					
M3 1 M4 1		2.5 GHz I87 GHz	-50.49 dBm -48.76 dBm					
Date: 24.DEC.202								
			nt1 lov	v Llan	2401	`		
		DH1_A	.nt1_Lov	<u>v_nop</u>	_2404	<u> </u>		(111)
Ref Level 20.00	dBm Offset	19.51 dB 👄	RBW 100 kHz					
 Att Count 300/300 	20 dB SWT	132.7 µs 🖷	VBW 300 kHz	Mode A	uto FFT			
 1Pk View 								
10 d8m				M1[2.40	-3.34 dBm 40050 GHz
10 dBm				M2[1]		-	51.19 dBm 00000 GHz
0 dBm								6.0.0
-10 dBm								
-20 dBm D1 -23	1.340 dBm					-		1 x 4 4
-30 dBm								
-40 dBm	4)
-50.0800	and an and	motioner	and have madered	antel them	man	MB	monteretter	12
-60 dBm								
-70 dBm								
								105
Start 2.35 GHz Marker			691 pt					2.405 GHz
Type Ref Trc M1 1	2,4040	IO5 GHz	Y-value -3.34 dBm	Functio	on	Fun	ction Result	
M2 1 M3 1	2	2.4 GHz	-51.19 dBm					
M4 1		187 GHz	-50.56 dBm -49.00 dBm					
Date: 24.DEC.202	1 16:24:59							

Report No.: SZNS211215-64949E-RF-00A

Report No.: SZNS211215-64949E-RF-00A

***** END OF REPORT *****