

TEST REPORT

Applicant Name : Address :

ORAIMO TECHNOLOGY LIMITED Flat 39, 8/F., Block D, Wah Lok Industrial Centre, 31-35 Shan Mei Street, Fotan, NT, Hong Kong SZNS211201-61956E-RF-00B 2AXYP-OEB-E108D-L

Report Number : FCC ID:

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Date of Test: Report Date: True wireless earbuds OEB-E108D N/A oraimo 2021/11/24 2021/12/09~2021/12/24 2021/12/29

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

LN

Ting Lv EMC Engineer

Approved By:

26 ant li

Robert Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 12: 2021-11-09

Page 1 of 36

FCC- BLE&2.4G Wi-Fi

TABLE OF CONTENTS

GENERAL INFORMATION		4
	PMENT UNDER TEST (EUT)	
1201 1121110202001 11111111111		
	DN	
	TION	
SUMMARY OF TEST RESULTS		9
TEST EQUIPMENT LIST		
FCC815 247 (I) 81 1307 (B) (1) &82	.1093 – RF EXPOSURE	11
	REMENT	
	TION	
	DUCTED EMISSIONS	
Test Procedure		
	CULATION	
	0) - SPURIOUS EMISSIONS	
	1 ANALYZER SETUP	
CORRECTED FACTOR & MARGIN C	CALCULATION	
	SION BANDWIDTH & OCCUPIED BANDWIDTH	
	CONDUCTED OUTPUT POWER	
		-
	OWIDTH OF FREQUENCY BAND EDGE	
Version 12: 2021-11-09	Page 2 of 36	FCC- BLE

FCC §15.247(E) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX BLE	
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX E:BAND EDGE MEASUREMENTS	
APPENDIX F: DUTY CYCLE	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE: 4.02dBm
Modulation Technique	BLE: GFSK
Antenna Specification*	BLE:1.5dBi (provided by the applicant)
Voltage Range	DC 3.85V from battery
Sample serial number	SZNS211201-61956E-RF-S1 (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output pov	wer, conducted	0.73dB
Unwanted Emis	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz-30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz – 18GHz	4.98dB
Radiated	18GHz – 26.5GHz	5.06dB
26.5GHz – 40GHz		4.72dB
Temperature		1℃
Hun	nidity	6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. To collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

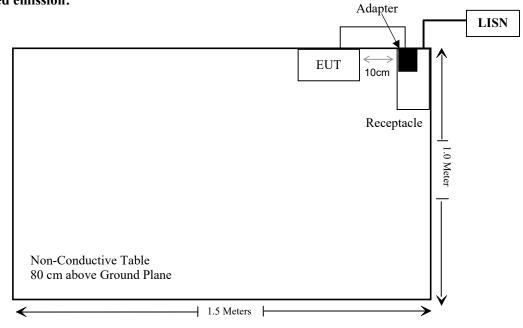
"BQB.exe*" software was used to test and the power level is default*, which provided by manufacturer.

Duty cycle

For BLE mode, please refer to the Appendix.

Report No.: SZNS211201-61956E-RF-00B

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
TECNO	Adapter	U330TSA	Unknown

External I/O Cable

Cable Description	Length (m)	From/Port	То
USB cable	0.25	Adapter	EUT

Block Diagram of Test Setup

For Conducted emission:

Report No.: SZNS211201-61956E-RF-00B

For Radiated emission:

	EUT	▲ 1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane	Meters	$\overline{\Big }$

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1) & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density Comp	

Report No.: SZNS211201-61956E-RF-00B

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	(Conducted Emis	sions Test		
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12
Conducted Emission	Test Software: e3 19821	b (V9			•
		Radiated Emiss	ions Test		
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Radiated Emission T	est Software: e3 19821b	(V9)			
		RF Conducte	d Test		
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/13	2021/12/12
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

For BLE mode:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2402-2480	4.5	2.82	5	0.9	3.0	Yes

Result: No Standalone SAR test is required

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

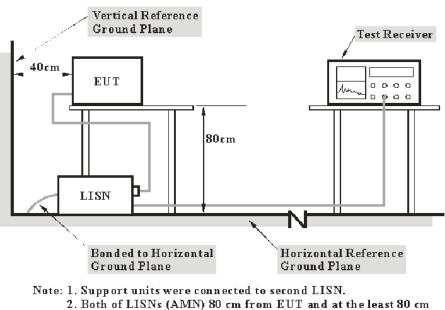
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal Antenna arrangement which were permanently attached, the antenna gain is 1.5dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Version 12: 2021-11-09

Transd Factor & Margin Calculation

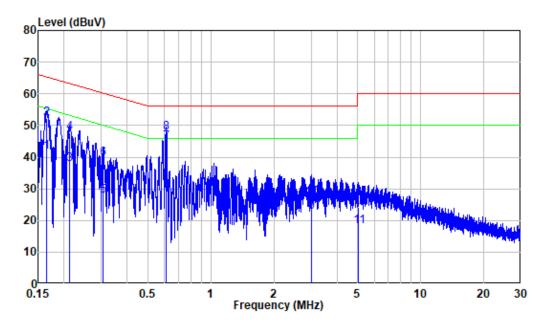
The Transd factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss. The basic equation is as follows:

Transd Factor = LISN VDF + Cable Loss

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over Limit = Result – Limit Result= reading level+ Transd Factor

Test Data

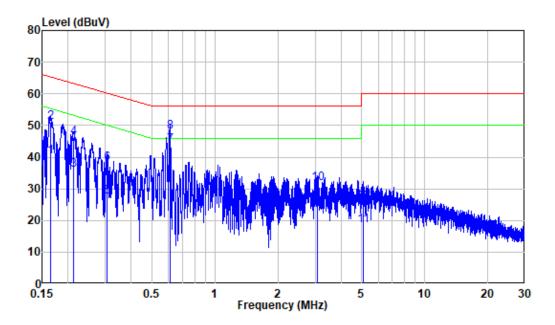

Environmental Conditions

Temperature:	23°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Duan on 2021-12-22.

EUT operation mode: Charging

AC 120V/60 Hz, Line



Site :	Shielding Room
Condition:	Line
Mode :	Charging
Model :	OEB-E108D
Power :	AC 120V 60Hz

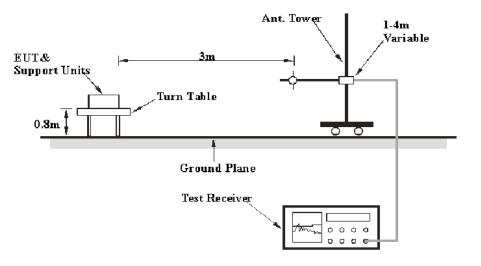
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.165	9.87	31.77	41.64	55.19	-13.55	Average
2	0.165	9.87	42.50	52.37	65.19	-12.82	QP
3	0.212	9.80	27.97	37.77	53.12	-15.35	Average
4	0.212	9.80	37.77	47.57	63.12	-15.55	QP
5	0.308	9.80	18.05	27.85	50.03	-22.18	Average
6	0.308	9.80	29.81	39.61	60.03	-20.42	QP
7	0.612	9.81	35.00	44.81	46.00	-1.19	Average
8	0.612	9.81	38.03	47.84	56.00	-8.16	QP
9	3.015	9.93	12.76	22.69	46.00	-23.31	Average
10	3.015	9.93	17.23	27.16	56.00	-28.84	QP
11	5.065	9.99	8.13	18.12	50.00	-31.88	Average
12	5.065	9.99	14.09	24.08	60.00	-35.92	QP

Report No.: SZNS211201-61956E-RF-00B

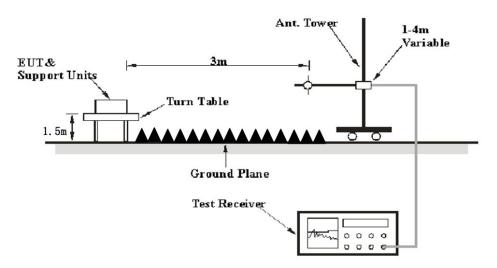
AC 120V/60 Hz, Neutral

Site :	Shielding Room
Condition:	Neutral
Mode :	Charging
Model :	OEB-E108D
Power :	AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.165	9.93	30.14	40.07	55.21	-15.14	Average
2	0.165	9.93	40.99	50.92	65.21	-14.29	QP
3	0.212	9.99	26.04	36.03	53.15	-17.12	Average
4	0.212	9.99	36.10	46.09	63.15	-17.06	QP
5	0.306	9.95	17.47	27.42	50.08	-22.66	Average
6	0.306	9.95	28.19	38.14	60.08	-21.94	QP
7	0.610	9.91	33.74	43.65	46.00	-2.35	Average
8	0.610	9.91	38.21	48.12	56.00	-7.88	QP
9	3.074	9.99	14.90	24.89	46.00	-21.11	Average
10	3.074	9.99	21.83	31.82	56.00	-24.18	QP
11	5.075	10.05	8.46	18.51	50.00	-31.49	Average
12	5.075	10.05	15.95	26.00	60.00	-34.00	QP


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

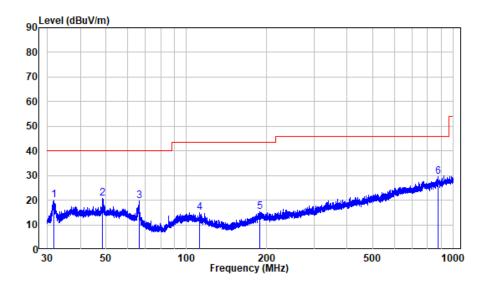
The "**Over limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit or margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Over limit/Margin = Result/Corrected Amplitude-Limit Result/Corrected Amplitude = Reading + Corrected Factor

Test Data

Environmental Conditions

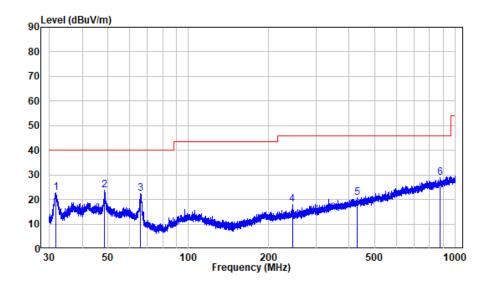
Temperature:	25~25.8°C
Relative Humidity:	51~64%
ATM Pressure:	101.0 ~101.2kPa


The testing was performed by Bin Deng on 2021-12-24 for below 1GHz and Caro Hu on 2021-12-15 for above 1GHz.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Version 12: 2021-11-09

30MHz-1GHz: (the worst case is High channel)


Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : SZNS211201-61956E-RF Test Mode: BLE Test By : Left ear

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	31.76	-12.20	32.22	20.02	40.00	-19.98	Peak
2	48.48	-9.98	30.80	20.82	40.00	-19.18	Peak
3	66.67	-13.20	33.01	19.81	40.00	-20.19	Peak
4	111.69	-12.19	27.11	14.92	43.50	-28.58	Peak
5	188.74	-11.74	26.91	15.17	43.50	-28.33	Peak
6	878.71	1.22	28.29	29.51	46.00	-16.49	Peak

Site : chamber Condition: 3m VERTICAL Job No. : SZNS211201-61956E-RF Test Mode: BLE Test By : Left ear

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	31.86	-12.19	35.09	22.90	40.00	-17.10	Peak
2	48.59	-9.97	33.62	23.65	40.00	-16.35	Peak
3	66.21	-12.98	35.36	22.38	40.00	-17.62	Peak
4	244.98	-10.58	28.63	18.05	46.00	-27.95	Peak
5	427.46	-5.83	26.60	20.77	46.00	-25.23	Peak
6	877.94	1.21	27.71	28.92	46.00	-17.08	Peak

Report No.: SZNS211201-61956E-RF-00B

1-25 GHz:

BLE:

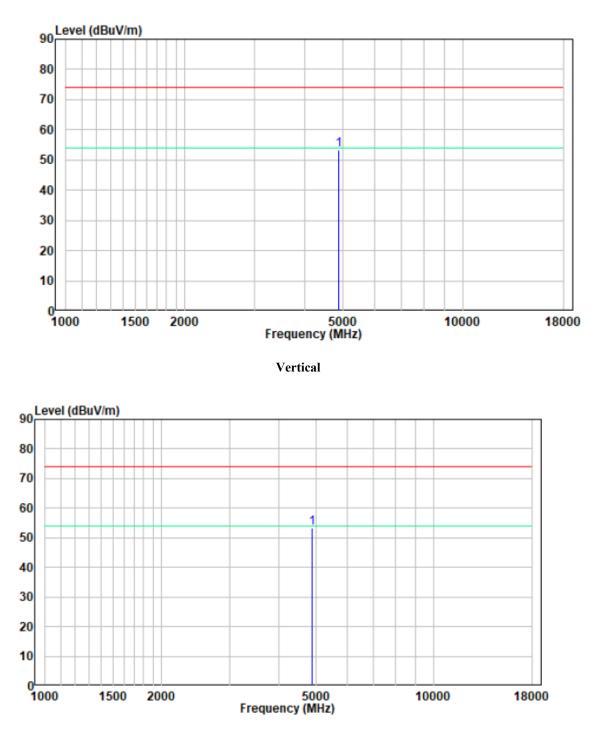
Frequency	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			BLE 1	M, Low	Chann	el			
2310	68.42	PK	21	1.5	Н	-7.25	61.17	74	-12.83
2310	55.08	Ave.	21	1.5	Н	-7.25	47.83	54	-6.17
2390	70.53	РК	93	2	Н	-7.23	63.3	74	-10.7
2390	55.62	Ave.	93	2	Н	-7.23	48.39	54	-5.61
2310	68.6	РК	70	2.1	V	-7.25	61.35	74	-12.65
2310	55.18	Ave.	70	2.1	V	-7.25	47.93	54	-6.07
2390	70.87	РК	208	2.4	V	-7.23	63.64	74	-10.36
2390	55.96	Ave.	208	2.4	V	-7.23	48.73	54	-5.27
4804	55.95	РК	348	1.5	Н	-3.51	52.44	74	-21.56
4804	56.36	РК	348	1.5	V	-3.51	52.85	74	-21.15
			BLE 1N	A, Midd	le Chan	nel			
4880	56.67	PK	41	2.5	Н	-3.28	53.39	74	-20.61
4880	56.74	PK	41	2.5	V	-3.28	53.46	74	-20.54
	_		BLE 1	M, Higł	n Chann	el			
2483.5	69.65	РК	302	2.4	Н	-7.18	62.47	74	-11.53
2483.5	56.89	AV	302	2.4	Н	-7.18	49.71	54	-4.29
2500	68.89	PK	198	2.3	Н	-7.18	61.71	74	-12.29
2500	56.65	Ave.	198	2.3	Н	-7.18	49.47	54	-4.53
2483.5	69.67	PK	70	2.5	V	-7.18	62.49	74	-11.51
2483.5	56.82	Ave.	70	2.5	V	-7.18	49.64	54	-4.36
2500	68.6	PK	144	1.5	V	-7.18	61.42	74	-12.58
2500	56.7	Ave.	144	1.5	V	-7.18	49.52	54	-4.48
4960	56.39	РК	219	2	Н	-3.04	53.35	74	-20.65
4960	56.38	РК	219	2	V	-3.04	53.34	74	-20.66

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin =Corrected. Amplitude - Limit

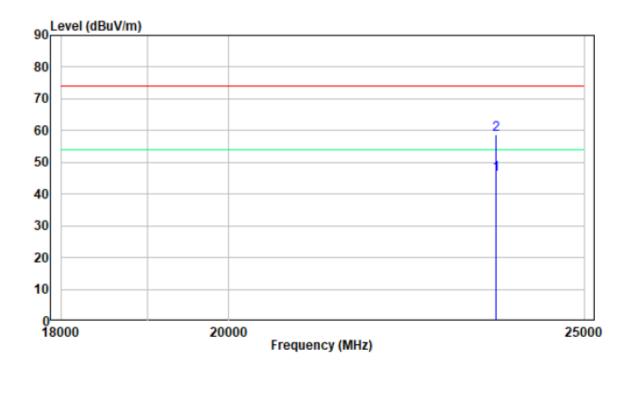

The other spurious emission which is 20dB to the limit was not recorded.

The test result of peak was less than the limit of average, so just peak values were recorded.

1-18 GHz:

Pre-scan for Middle Channel

Horizontal


18 -25GHz:

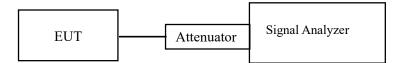
Pre-scan for Middle Channel

90 Level (dBuV/m) 80 70 60 50 40 30 20 10 0 18000 20000 25000 Frequency (MHz)

Horizontal

Vertical

Version 12: 2021-11-09


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

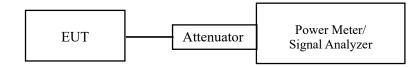
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55%
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-09.

EUT operation mode: Transmitting

Test Result: Compliant.


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- c. Place the EUT on a bench and set it in transmitting mode.
- d. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- e. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55%
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-09.

EUT operation mode: Transmitting

Test Result: Compliant.

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

- f. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- g. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- h. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- i. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- j. Repeat above procedures until all measured frequencies were complete.

Test Data

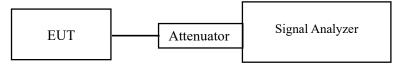
Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	55%
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-09.

EUT operation mode: Transmitting

Test Result: Compliant.


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- k. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 1. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- m. Set the VBW $\geq 3 \times RBW$.
- n. Set the span to 1.5 times the DTS bandwidth.
- o. Detector = peak.
- p. Sweep time = auto couple.
- q. Trace mode = max hold.
- r. Allow trace to fully stabilize.
- s. Use the peak marker function to determine the maximum amplitude level within the RBW.
- t. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55%
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-12-09.

EUT operation mode: Transmitting

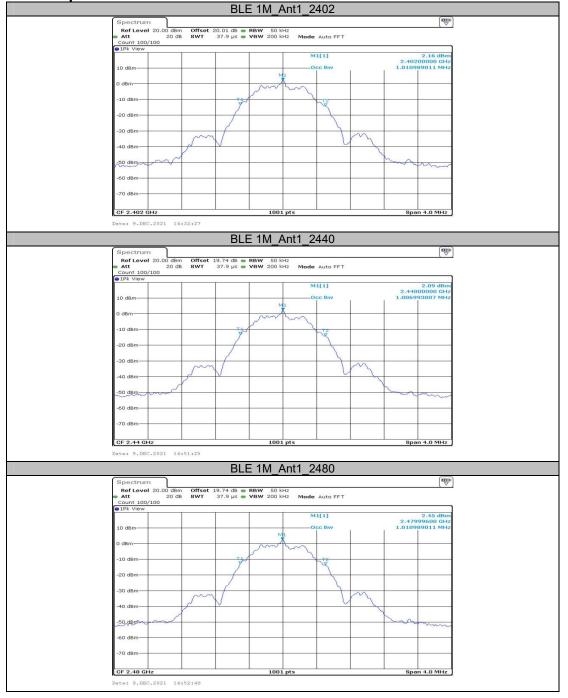
Test Result: Compliant.


APPENDIX BLE

Appendix A: DTS Bandwidth

Test Result

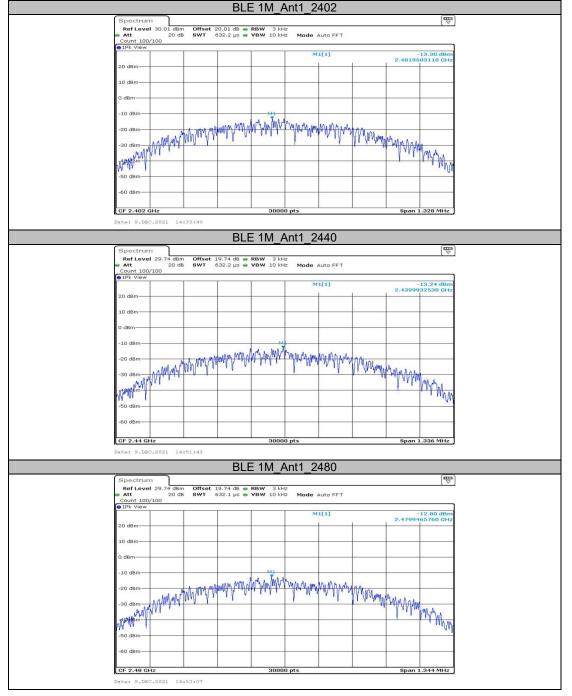
Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.664	0.5	PASS
BLE 1M	Ant1	2440	0.668	0.5	PASS
		2480	0.672	0.5	PASS


Test Graphs

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.011		PASS
BLE 1M	Ant1	2440	1.007		PASS
		2480	1.011		PASS

Test Graphs


Appendix C: Maximum conducted Peak output power Test Result

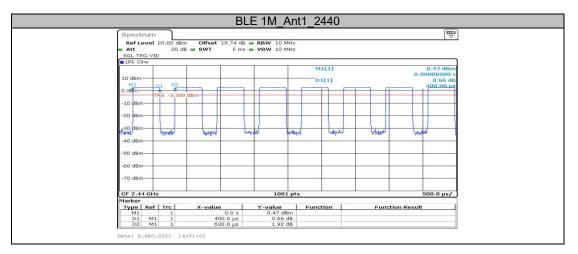
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	3.05	≤30	PASS
BLE 1M	Ant1	2440	3.62	≤30	PASS
		2480	4.02	≤30	PASS

Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-13.3	≤8	PASS
BLE 1M	Ant1	2440	-13.24	≤8	PASS
		2480	-12.8	≤8	PASS

Test Graphs

Appendix E:Band edge measurements Test Graphs


Spectrum										(₩)
Ref Level	20.00 dBm 20 dB		.01 dB 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT				
Count 300/					House H					
●1Pk View				r	1.00				2.24	10
100000000					M1[11		2.40	2.24	
10 dBm					M2[1]		-	50.5.5	dBm
0 dBm								2.40	00000	GHz
									\square	
-10 dBm				+				2		
-20 dBm-	D1 -17.760	dBm-								
-30 dBm-				<u> </u>						5
-40 dBm-										
M4									40	
-52.08m.	another	um march	mount	mander	myste	twenter	M3	turne the	18	to
60 d0-							-			
-60 dBm								8		
-70 dBm		+ +								-
		1 1		1 1						
Start 2.35	GHz	· ·		691 pt	ts			Stop	2.405 0	GHz
Marker	1 - 1				1					
Type Ret	Trc 1	2.402015	CH2	Y-value 2.24 dBm	Functio	in	Func	tion Result	t	_
M2	1		GHz	-50.55 dBm						
M3	1		GHz	-52.37 dBm						
Date: 9.DEC	1 .2021 14			-49.01 dBm		2480	l			
Date: 9.DEC	.2021 14	:33:49				2480				Ð
Date: 9.DEC	.2021 14	:33:49 B	BLE 1	M_Ant1	_High_	2480				(•
Date: 9.DEC	.2021 14	:33:49 B n Offset 19.	BLE 1		_High_	2480				(₩)
Date: 9.DBC	.2021 14	:33:49 B n Offset 19.	BLE 1	M_Ant1_	_High_					(\$)
Date: 9.DEC	.2021 14	:33:49 B n Offset 19.	BLE 1	M_Ant1_	High_	uto Sweej			2.67	\neg
Spectrum Ref Level Att Count 300/ IPk View	.2021 14	:33:49 B n Offset 19.	BLE 1	M_Ant1_	High Mode A	uto Sweej			2.67	dBm GHz
Date: 9.DBC	.2021 14	:33:49 B n Offset 19.	BLE 1	M_Ant1_	High_	uto Sweej			80010	dBm GHz dBm
Spectrum Ref Level Att Count 300/ IPk View	.2021 14 20.00 dBm 20 dB 20 dB	:33:49 B n Offset 19.	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Spectrum Ref Level • Att Count 300/ • 1Pk View 10 dBm • 0 dBm	.2021 14 20.00 dBm 20 dB 20 dB	:33:49 B n Offset 19.	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Spectrum Ref Level • Att Count 300/ • 1Pk View 10 dBm	20.00 dBm 20.00 dBm 20 dE	:33:49	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Spectrum Ref Level • Att Count 300/ • 1Pk View 10 dBm • 0 dBm	.2021 14 20.00 dBm 20 dB 20 dB	:33:49	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Spectrum Ref Level Att Count 300/ 1Pk View 10 dBm -10 dBm -20 dBm	20.00 dBm 20.00 dBm 20 dE	:33:49	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Spectrum Ref Level Att Count 300/ 10k View 10 dBm -10 dBm	20.00 dBm 20.00 dBm 20 dE	:33:49	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Spectrum Ref Level Att Count 300/ 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20.00 dBm 20 dE	:33:49	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Spectrum Ref Level Att Count 300/ 1Pk View 10 dBm -10 dBm -20 dBm	2021 14	:33:49	BLE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Spectrum Ref Level Att Count 300/ 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20.00 dBm 20 dE	:33:49	3LE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Rof Level Aff Level Aff Level Aff Level OdBm OdBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	2021 14	:33:49	3LE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Spectrum Rof Level Aft Count 300/ O dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	2021 14	:33:49	3LE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Spectrum Roflevel Count 300/ © 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	2021 14	:33:49	3LE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Date: 9.DEC Rof Level Aff Level Aff Level Aff Level OdBm OdBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	2021 14	:33:49	3LE 1	M_Ant1_	High Mode A	uto Sweej			80010	dBm GHz dBm
Spectrum Roflevel Count 300/ © 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	M1 M2 M1 M2 M2 M2 M2 M2 M2 M2	:33:49	3LE 1	M_Ant1 RBW 100 kHz 300 kHz 400 kHz	High_	uto Sweej		- 2,4	+80010 -50.36 +83500	dBm GHz GHz
Spectrum Rof Level Att Count 300/ 10 dBm 0 dBm -20 dBm -30 dBm -00 dBm -70 dBm -70 dBm	M1 M2 M1 M2 M2 M2 M2 M2 M2 M2	:33:49	3LE 1	M_Ant1_	High_	uto Sweej		- 2,4	80010	dBm GHz GHz
Spectrum Ref Level Att Count 300/ IPk View 10 d8m -10 d8m -20 d8m -30 d8m -40 d8m -50 d8m -60 d8m -70 d8m Start 2.47 Marker Type I Ref	M1 M2 M1 M2 M2 M2 M2 M2 M2 M2	133149	SLE 1	M_Ant1 RBW 100 kHz SBW 300 kHz M4 M4 691 pr Y-value	High_	1] 1]	P	- 2,4	180010 50.36 183500	dBm GHz GHz
Date: 9.DEC Spectrum Ref Level Count 300/ Count 300/ O BR -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.47 Marker Type Ref	2021 14 20.00 dBr 300 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	:33:49	M3	M_Ant1 RBW 100 kHz RBW 300 kHz 300 kHz 400 k	High_	1] 1]	P	2.4	180010 50.36 183500	dBm GHz GHz
Date: 9.DEC Spectrum Aft Level Aft Count 300/ OBM 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm	2021 14 20.00 dBm 300 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	133149	M3	M_Ant1 RBW 100 kHz VBW 300 kHz M4 M4 KH4 KH4 KH4 KH4 KH4 KH4 KH4 KH	High_ Mode A MI[M2[1] 1]	P	2.4	180010 50.36 183500	dBm GHz GHz
Date: 9.DEC Spectrum Ref Level Count 300/ Count 300/ O BR -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.47 Marker Type Ref	20 db 20 db 300	133149	M3	M_Ant1 RBW 100 kHz RBW 300 kHz 300 kHz 400 k	High_ Mode A MI[M2[Function	1] 1]	P	2.4	180010 50.36 183500	dBm GHz GHz

Report No.: SZNS211201-61956E-RF-00B

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE 1M	Ant1	2440	0.40	0.63	63.49

Test Graphs

***** END OF REPORT *****