Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755

 Fax:
 +86-755

 Website:
 www.cga

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.:	CQASZ20220500783E-01
Applicant:	ORAIMO TECHNOLOGY LIMITED
Address of Applicant:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Equipment Under Test ((EUT):
Product:	Smart Watch
Model No.:	boAt Wave Connect RTL, boAt Wave Connect F, boAt Wave Connect A, boAt Wave Connect Plus, boAt Wave Connect Pro, boAt Wave Connect Max , boAt Wave Connect, ID208, ID208 BT
Test Model No.:	ID208 BT
Brand Name:	oraimo
FCC ID:	2AXYP-ID208
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2021-12-23
Date of Test:	2021-12-23 to 2021-12-30
Date of Issue:	2022-6-22
Test Result:	PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By:	lewis zhou	
	(Lewis Zhou)	ANTISTING LOOK
Reviewed By:	K. Liao	COA
	(K Liao)	是华夏准测人
Approved By:	Jamos	* APPROVED *
	(Jack Ai)	

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220500783E-01	Rev.01	Initial report	2022-6-22

Note:

This test report (Ref. No.: CQASZ20220500783E-01)

All test data comes from source test reports (Ref. No.: CQASZ20211202223E-01).

Only on the basis of the original report Change Brand Name, Applicant, Address of Applicant.

The tested samples have not been changed.

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 Test Location 4.8 Test Facility	
4.8 TEST FACILITY	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	_
5.3 CONDUCTED PEAK OUTPUT POWER	
Test Graphs	
5.4 6DB OCCUPY BANDWIDTH	
Test Graphs 5.5 Power Spectral Density	
Test Graphs	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
Test Graphs	
5.7 Spurious RF Conducted Emissions	
Test Graphs	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	ORAIMO TECHNOLOGY LIMITED
Address of Applicant:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Factory:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China

4.2 General Description of EUT

Product Name:	Smart Watch				
Model No.:	boAt Wave Connect RTL, boAt Wave Connect F, boAt Wave Connect A, boAt Wave Connect Plus, boAt Wave Connect Pro, boAt Wave Connect Max , boAt Wave Connect, ID208, ID208 BT				
Test Model No.:	ID208 BT				
Trade Mark:	oraimo				
Software Version:	V1				
Hardware Version:	V1.1				
Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	V5.1				
Modulation Type:	GFSK				
Transfer Rate:	1Mbps				
Number of Channel:	40				
Product Type:	☐ Mobile				
Test Software of EUT:	MainWindow				
Antenna Type:	FPC antenna				
Antenna Gain:	-0.61dBi				
EUT Power Supply:	lithium battery:DC3.8V, 300mAh, 1.140Wh, Charge by DC5.0V 280mA				

Note:

Model No.:boAt Wave Connect RTL, boAt Wave Connect F, boAt Wave Connect A, boAt Wave Connect Plus, boAt Wave Connect Pro, boAt Wave Connect Max, boAt Wave Connect, ID208, ID208 BT

The model ID208 BT was tested, Their electrical circuit design, layout, components used and internal wiring are identical, Only the product model is different.

The difference between 1 # and 2 # is that the supplier of the screen differently tests the data

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:						
Mode:	Special software is used.	Special software is used.				
		☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*				
EUT Power level:	Class2 (Power level is built-in set pa selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the	lowest frequency, the middle frequency a	nd the highest frequency keep				
transmitting of the EUT.						
Mode	Channel Frequency(MHz)					
	CH0	2402				
GFSK	CH19	2440				
	СН39	2480				

Run Software:

E 测试 DIM BLE测试参数	Mit i	提示音	报号音	西江西	表 BT测试参数			串口 〇 重启动	 命令模式
包类型:		PRBS9		-	51.则[II]参数 包类型	DMI		端口号: 03024	- 初冊
频段:		CH78:2480		*	杨段:	跳频		波特军: 115230	关闭
功案:		0x16		-	功率:	0x10	-	当前状态:	已经连接(flash)
	_					120.15		配置	
单载波测试参数	b)							导入DAT文件	导出DAT文件
類段:	CHD:24	02	-		功率	0x0a	-	导入程序补丁	导出程序补丁
测试选项			AT	命令				导入DSP CODE	导出DSP_CODE
模式 ④ 現itBLE	发送	• i(BT						补丁大小为 0 烧录	dap 大小为 O
执行	ſ	≑止	Ľ				输入		所有内容
亍状态信 息								读取用	所有内容
9 28:39]:BLE	试执行成	<u>ф</u>					^	版本	
9 29 03] - 刑式 9 29 04] - BLE項 9 38 56] - 刑式 9 38 57] - BLE項 9 38 57] - BLE項 9 40 - 18] - 刑式 9 40 - 27] - 刑式	亭止成功 h试执行成1 亭止成功 h试执行成1 亭止成功							CHIP: Version:	

4.4 Test Environment

Operating Environment	Operating Environment:				
Radiated Emissions:					
Temperature:	25.3 °C				
Humidity:	55 % RH				
Atmospheric Pressure:	1009 mbar				
Radio conducted item to	est (RF Conducted test room):				
Temperature:	25.4 °C				
Humidity:	53 % RH				
Atmospheric Pressure:	1009 mbar				
Test mode:					
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.				
	Note: In the process of transmitting of EUT, the duty cycle $>$ 98%.				

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	/	HW-0502000C01	/	CQA
2) Cable				

z) Cable				
Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	/	1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	5.12dB	(1)
2	Radiated Emission (Above 1GHz)	4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.7 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2021/9/10	2022/9/9
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9

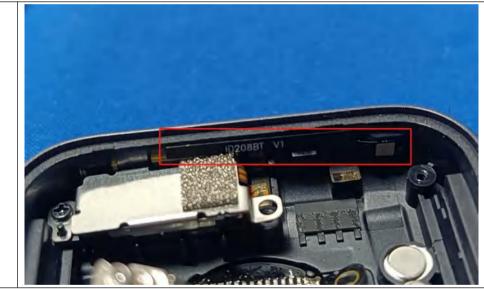
Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is FPC antenna. The best case gain of the antenna is -0.61 dBi.

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:		Limit (d	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm o	f the frequency.				
Test Procedure:	1) The mains terminal distur room.	bance voltage test was	s conducted in a shielded			
	 The mains terminal disturbance voltage test was conducted in a shielder room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 					

Shenzhen Huaxia Testing Technology Co., Ltd.

Test Setup:	Shielding Room EUT AE Test Receiver USN1 LISN2 AC Mains Ground Reference Plane
Test Mode:	Charging mode
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Line

Measurement Data

1#

Live line: 80 Level (dBuV) 70 60 50 40 30 20 10 0 -10 -20 .2 .15 .5 1 2 5 10 20 30 Frequency (MHz) Read Limit Over Level Pol/Phase Level Factor Line Limit Remark Freq MH2 dBuV dB dBuV dBuV dB 1 0.240 21,45 9.56 31.01 52.10 -21.09 Average Line 2 0.240 26,48 9.56 36.04 52.10 -25.06 OP Line э 0.440 19.01 9.65 28.66 47.06 -18.40 Average Line 0.440 24.12 9.65 33.77 57.06 -23.29 OP 4 Line 18.53 9.89 5 0.720 28.42 46.00 -17.58 Average Line 23.81 9.89 33.70 56.00 -22.30 QP Б 0.720 Line 7 PP 1,325 19.50 10.49 29.99 46.00 -16.01 Average Line 8 QP 1.325 24.57 10,49 35.06 56.00 -20.94 QP Line 9 15.85 11.55 27.40 46.00 -18.60 Average Line 2.095 2.095 21.26 11.55 32.81 56.00 -23.19 QP Line 10 11 2.770 11.14 10.96 22.10 46.00 -23.90 Average Line

Remark:

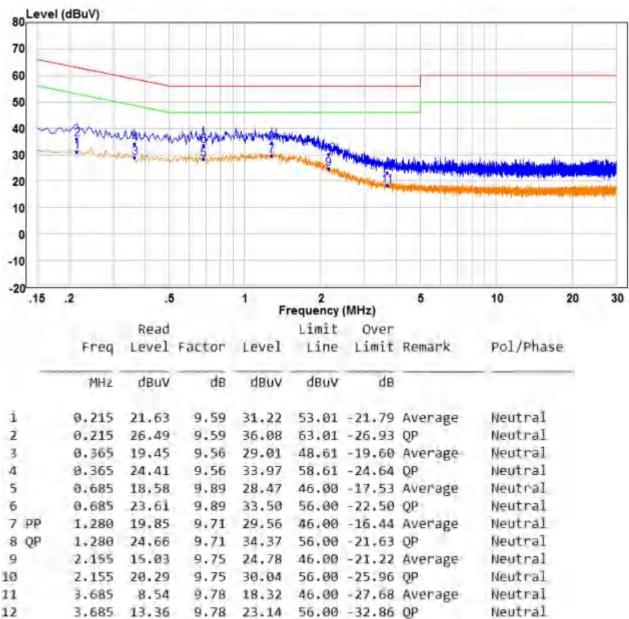
12

1. The following Quasi-Peak and Average measurements were performed on the EUT:

10.96

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

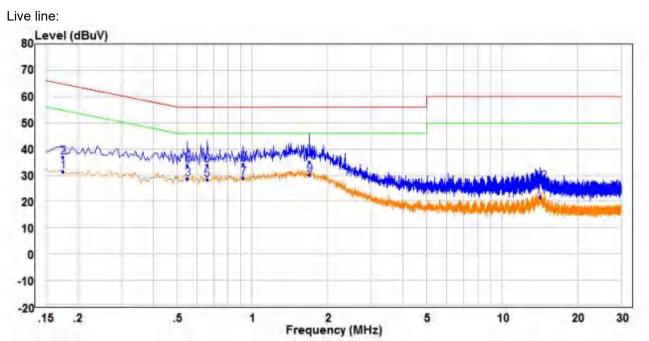
16,23


2.770

3. If the Peak value under Average limit, the Average value is not recorded in the report.

27.19 56.00 -28.81 QP

Neutral line:


Remark:

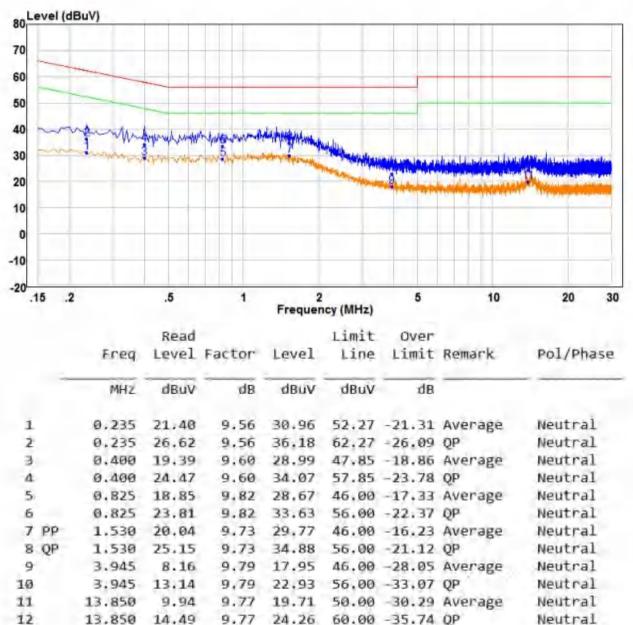
1. The following Quasi-Peak and Average measurements were performed on the EUT:

- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

2#

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHZ	dBuV	dB	dBuV	dBuV	dB		
1	0.175	21.82	9.65	31.47	54.72	-23.25	Average	Line
2	0.175	27.15	9.65	36.80	64.72	-27.92	QP	Line
3	0.550	18,96	9.75	28.71	46.00	-17.29	Average	Line
4	0.550	23.86	9.75	33.61	56.00	-22.39	QP	Line
5	0.660	18.60	9.86	28.46	46.00	-17.54	Average	Line
6	0.660	24.09	9.86	33.95	56.00	-22.05	QP	Line
7	0.920	19,16	9.75	28.91	46.00	-17.09	Average	Line
8	0.920	24,36	9.75	34.11	56.00	-21.89	QP	Line
9 PP	1.700	18.91	11.19	30.10	46.00	-15.90	Average	Line
10 QP	1.700	23.95	11.19	35.14	56.00	-20.86	QP	Line
11	14.215	11.91	9.75	21.66	50.00	-28.34	Average	Line
12	14.215	17.61	9.75	27.36	60.00	-32.64	QP	Line

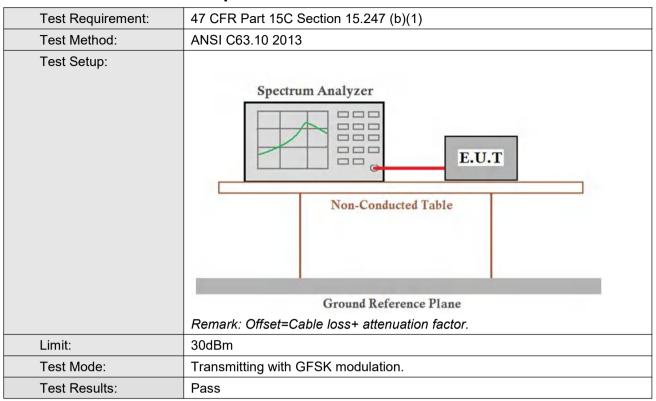
Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

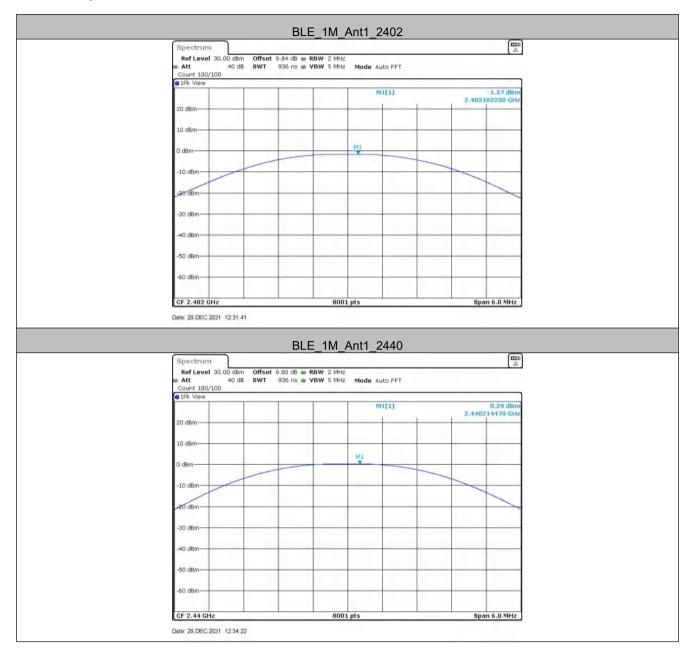
Neutral line:



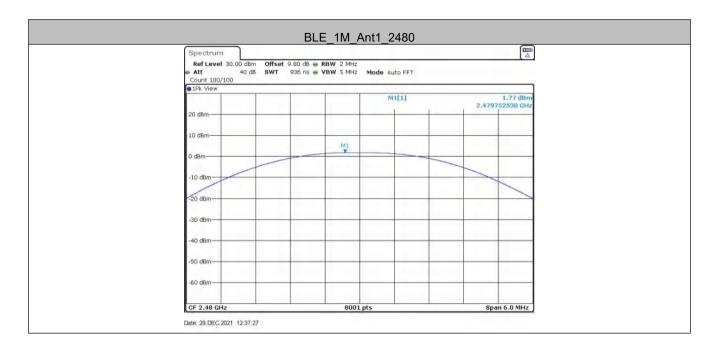
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

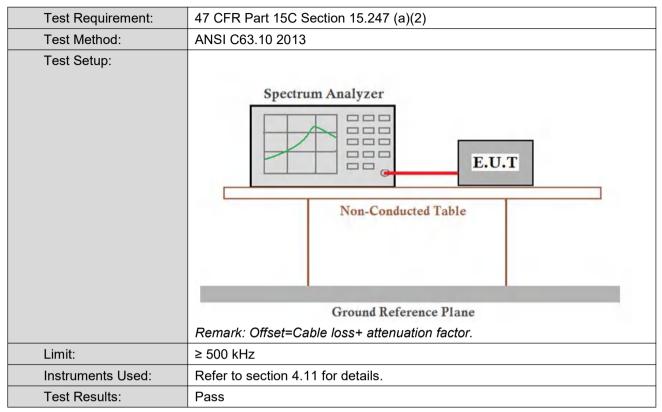
5.3 Conducted Peak Output Power



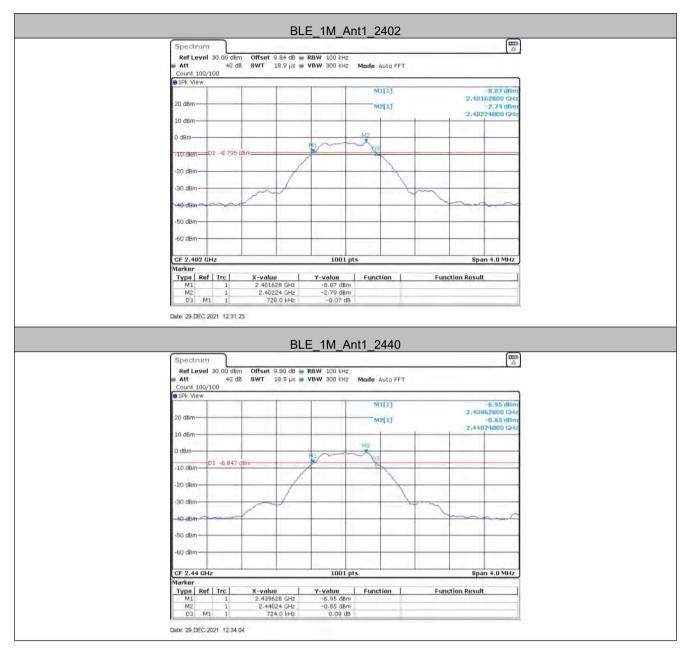
Measurement Data


GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-1.57	30.00	Pass			
Middle	0.29	30.00	Pass			
Highest	1.77	30.00	Pass			

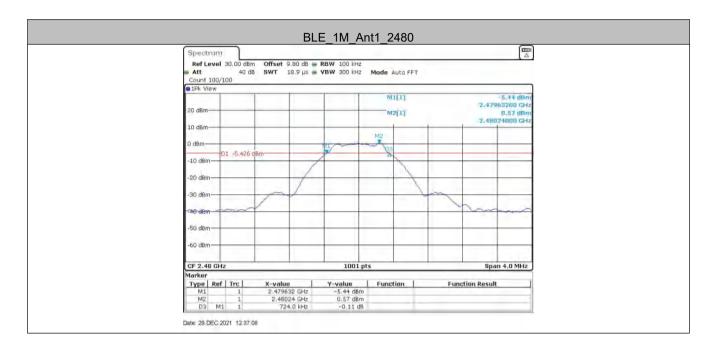
Test Graphs



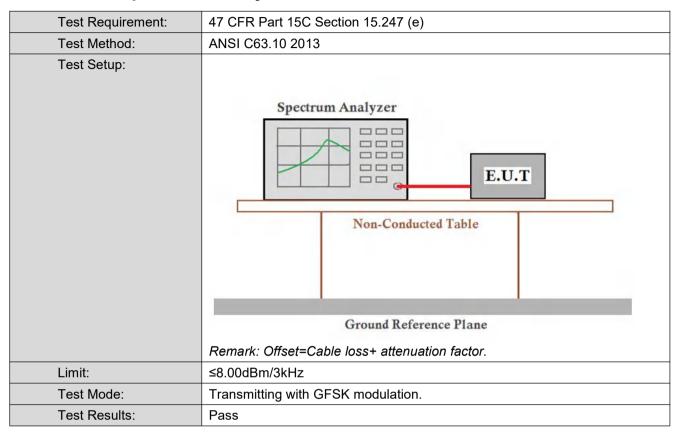
5.4 6dB Occupy Bandwidth



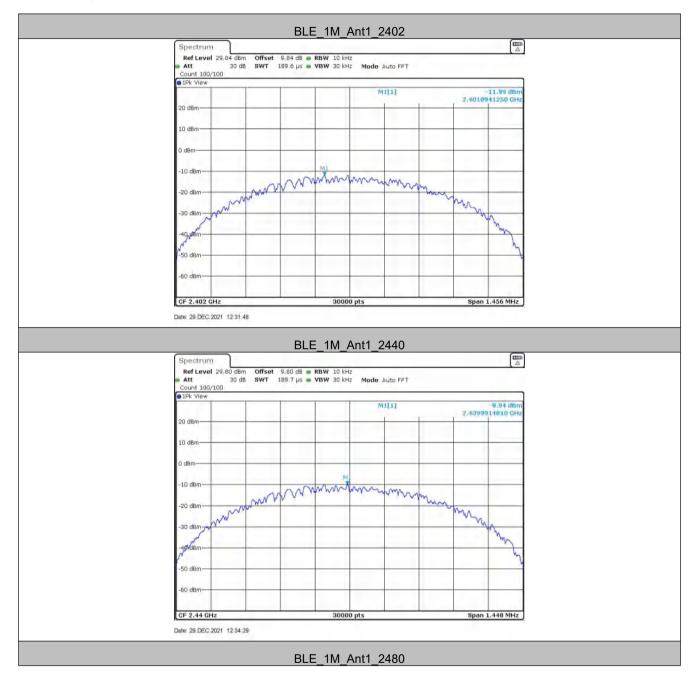
Measurement Data


GFSK mode						
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	0.728	≥500	Pass			
Middle	0.724	≥500	Pass			
Highest	0.724	≥500	Pass			

Test Graphs

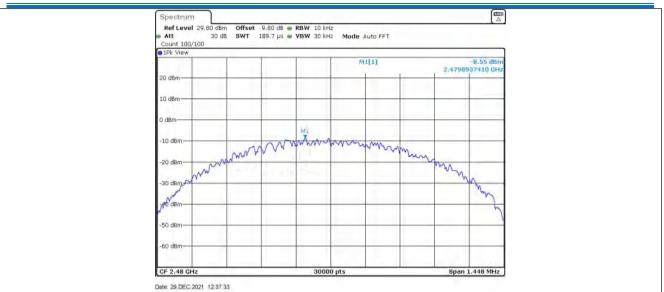


5.5 Power Spectral Density

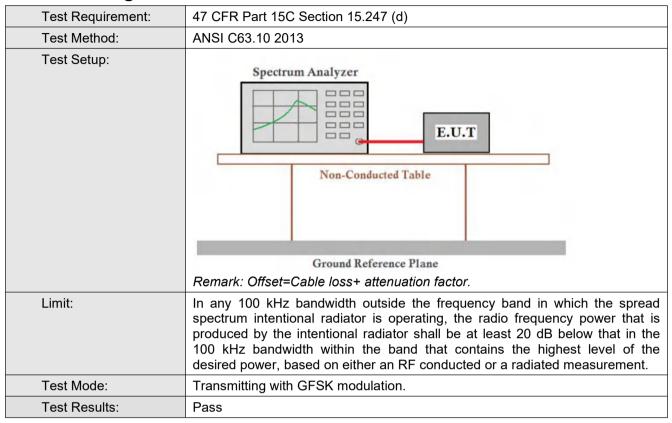


Measurement Data

GFSK mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-11.99	≤8.00	Pass			
Middle	-9.94	≤8.00	Pass			
Highest	-8.55	≤8.00	Pass			



Test Graphs



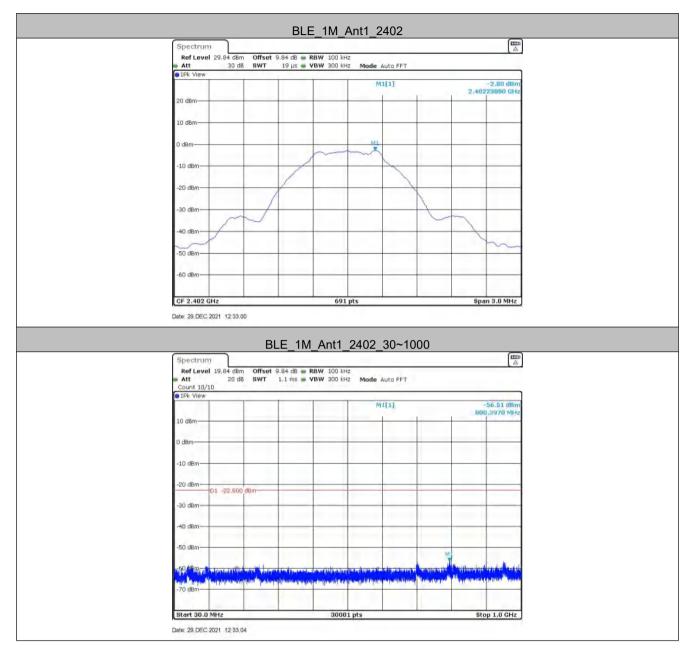
Shenzhen Huaxia Testing Technology Co., Ltd.

5.6 Band-edge for RF Conducted Emissions

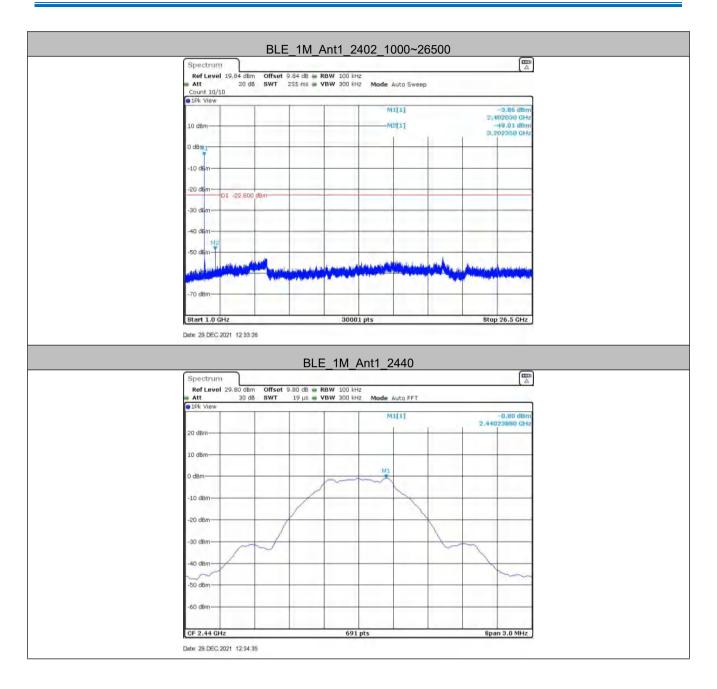
GFSK mode				
Test				
channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result
Lowest	2400	-48.13	-22.88	Pass
Highest	2483.5	-46.8	-19.44	Pass

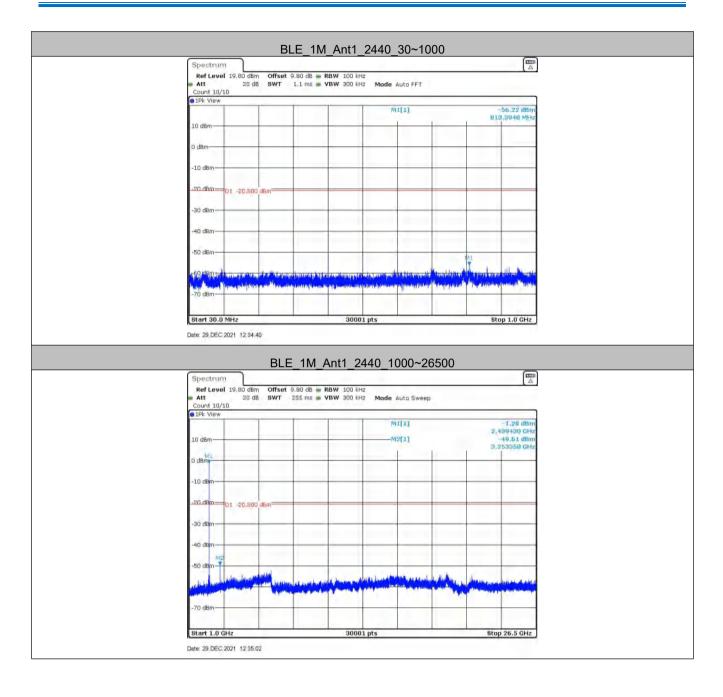
Test Graphs

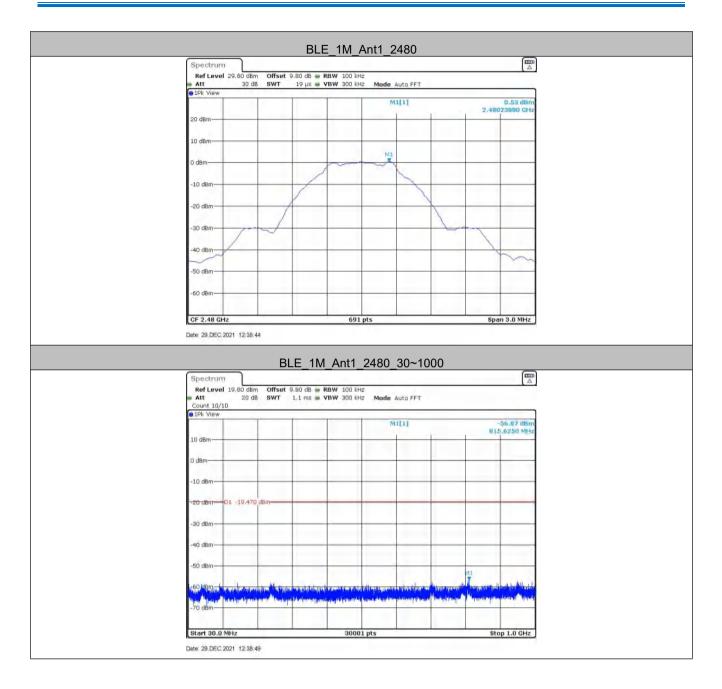
BLE 1M Ant1 Low 2402							
Spectrum a							
Ref Level 20.00 dBm Offset 9.84 dB RBW 100 kHz Att 30 dB SWT 75.8 µs VBW 300 kHz Mode Auto FFT Count 300/300 VBW 75.8 µs VBW 300 kHz Mode Auto FFT							
(#1Pk View (M1[1] -2.00 dam							
2,4022540 GHz							
0 dBm							
-10 dBm-							
-20 dBm-01 -22.880 dBm-							
-30 dBm							
-40 dBm							
1/3							
nSD ABIN - a construction of a construction of a new processing and and a construction of the construction of the							
-60 dBm-							
-70 dBm-							
Start 2.35 GHz 691 pts Stop 2.405 GHz							
Marker							
M1 1 2.402254 GHz -2.88 dBm							
M2 1 2.4 GHz ~48.54 dBm M3 1 2.39 GHz ~51.82 dBm							
M4 1 2.3999783 GHz49.13 dBm							
BLE_1M_Ant1_High_2480							
Ref Level 20.00 dBm Offset 9.80 dB ■ RBW 100 kHz ■ Att 30 dB SWT 94.8 µs ■ VBW 300 kHz Mode Auto FFT							
Count 300/300							
MI[1] 0.56 dBm							
10 d8m- 2.480250 GHz M2[1] -49.86 HBm							
2:480250 GHz							
10 dBm 0 dBm							
10 dBm 0 2.480250 GHz 10 dBm 0 2.480250 GHz 0 dBm 2.480300 GHz -10 dBm 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
10 dBm - 22-480250 GHz H1 - 22-480250 GHz - 49 26 dBm - 22-480500 GHz - 10 dBm							
10 dBm 0 2.480250 GHz 10 dBm 0 2.480250 GHz 0 dBm 2.480300 GHz -10 dBm 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
10 dBm 22.480250 GHz 10 dBm 12.4803500 GHz 10 dBm 22.4803500 GHz -10 dBm 22.4803500 GHz -20 dBm 01 -15,440 dBm							
10 dBm 0 490250 GHz 10 dBm 0 4905 GHz -49.06 dBm 2,483500 GHz -10 dBm							
10 dBm 22.480230 GHz 0 dBm M2[1] -10 dBm 22.483500 GHz -10 dBm 22.483500 GHz -10 dBm							
10 dBm 22.480250 GHz 0 dBm M2[1] -10 dBm 22.480300 GHz -10 dBm 22.480300 GHz -10 dBm 22.480300 GHz -20 dBm 21.480300 GHz -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -40 dBm -60 dBm -40 dBm							
10 dBm 22.480230 GHz 0 dBm M2[1] -10 dBm 22.483500 GHz -10 dBm 22.483500 GHz -10 dBm							
10 dBm 2:480250 GHz 0 dBm 9:10 dBm -10 dBm 2:480250 GHz -10 dBm 2:480250 GHz -20 dBm 2:480250 GHz -20 dBm 2:480250 GHz -30 dBm 2:480250 GHz -30 dBm 2:480250 GHz -40 dBm 2:480250 GHz -50 dBm 2:480250 GHz -60 dBm 4:44 -50 dBm 4:44 -60 dBm 4:44 -70 dBm 4:42 691 pts Storp 2:55 GHz							
10 dBm 32.480230 GHz 0 dBm 49.06 fBm -10 dBm 2.480250 GHz -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm							
10 dBm 2.480250 GHz 0 dBm 40 JB (HBm) -10 dBm 2.480250 GHz -20 dBm 2.480250 GHz -20 dBm 2.480250 GHz -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -60 dBm -40 dBm -70 dBm -40 dBm -80 dBm -40 dBm -70 dBm -40 dBm -80 dBm -40 dBm -70 dBm -40 dBm -80 dBm -40 dBm -70 dBm -40 dBm <td></td>							
10 dBm 91 92.440230 GHz 0 dBm 91 92.6100 GHz -10 dBm 92.43000 GHz 92.43000 GHz -10 dBm 92.43000 GHz 92.43000 GHz -20 dBm 92.4400 GHz 92.43000 GHz -20 dBm 92.43000 GHz 92.43000 GHz -30 dBm 92.4400 GHz 92.4400 GHz -40 dBm 92.4400 GHz 92.4400 GHz -50 dBm 92.4400 GHz 92.450 GHz -60 dBm 92.450 GHz 92.450 GHz -70 dBm 93.450 GHz 93.450 GHz Start 2.47 GHz 691 pts Stop 2.55 GHz Marker 7ype [Ref Trc X-value Y-value Function Function Result 100.450 GHz							

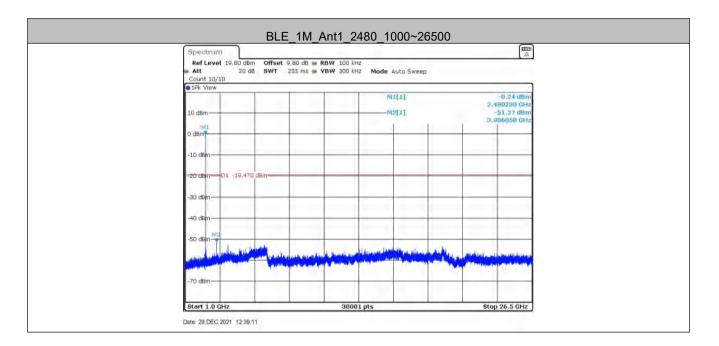


5.7 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10 2013					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.					
l insite						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test Mode:	Transmitting with GFSK modulation.					
Test Results:	Pass					

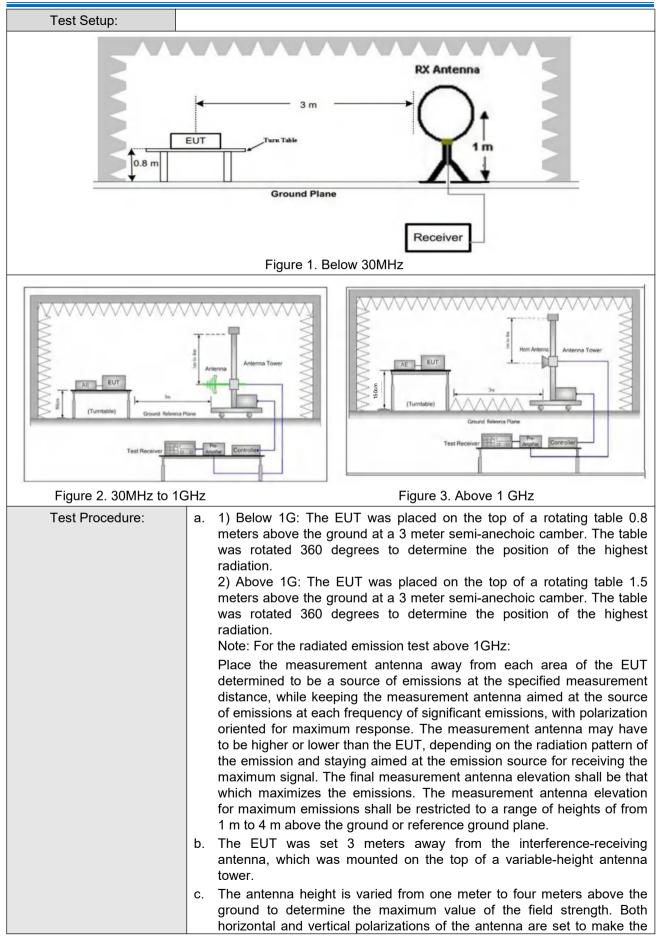

Test Graphs





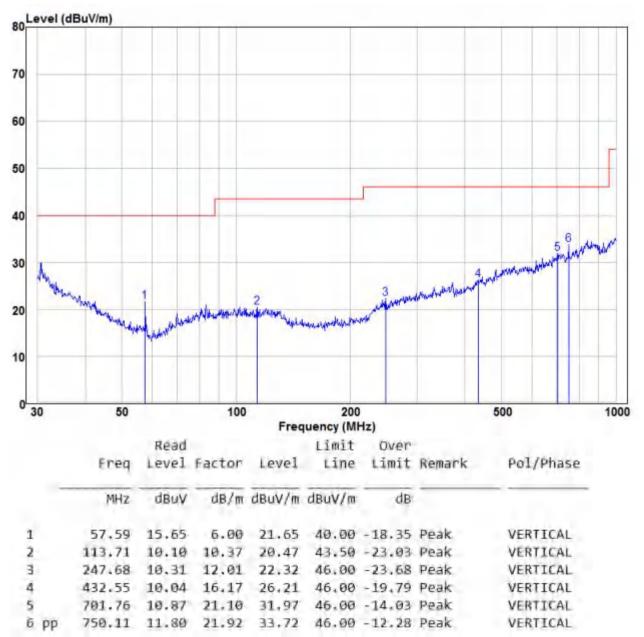
Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

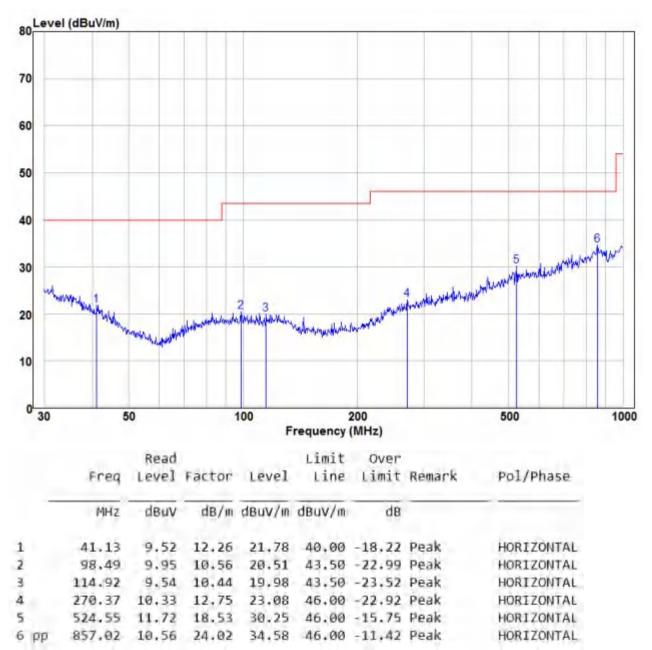

5.8 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MHz		Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MHz		Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MHz		Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak 100 kHz 30		z 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
			Peak	1MHz	10Hz	Average			
Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measureme distance (r			
	0.009MHz-0.490MHz	2400/F(kHz)		-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)		-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz	100		40.0	Quasi-peak	3			
	88MHz-216MHz	150		43.5	Quasi-peak	3			
	216MHz-960MHz	200		46.0	Quasi-peak	3			
	960MHz-1GHz	500		54.0	Quasi-peak	3			
	Above 1GHz	500		54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

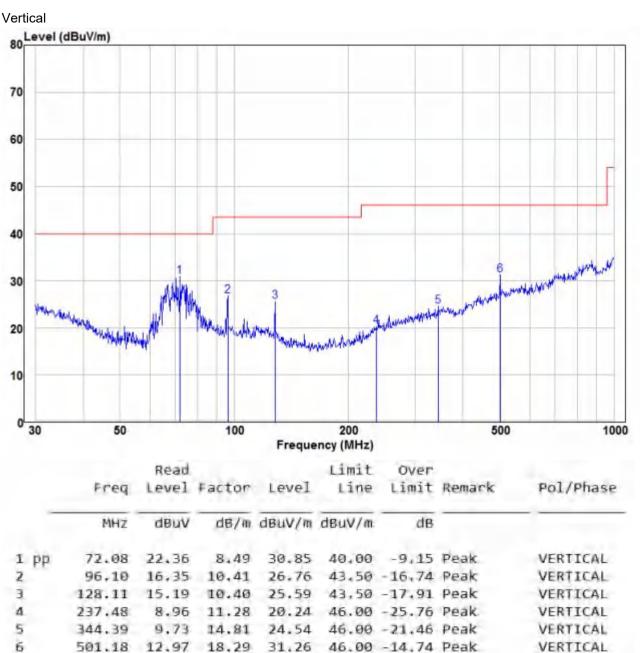
Page:36 of 52


	measurement.			
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified 			
	Bandwidth with Maximum Hold Mode.			
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)			
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.			
	i. Repeat above procedures until all frequencies measured was complete.			
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.			
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.			
	For below 1GHz part, through pre-scan, the worst case is the highest channel.			
	Only the worst case is recorded in the report.			
Test Results:	Pass			

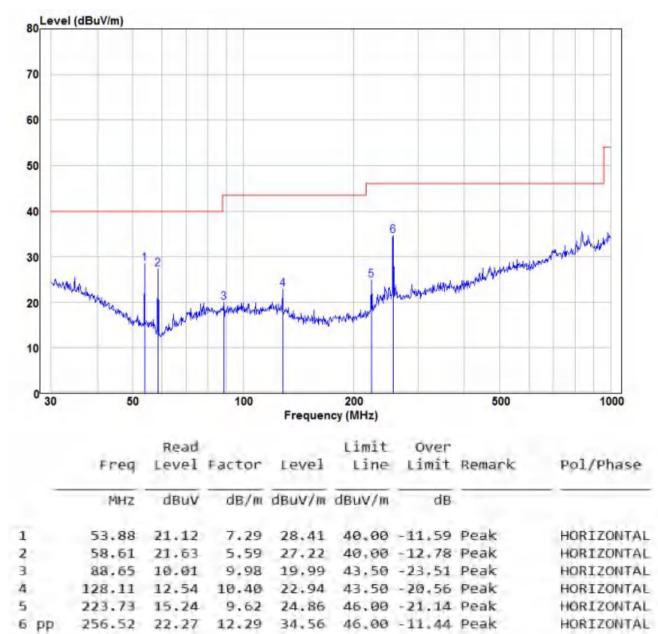
Radiated Emission below 1GHz



Vertical



Horizontal



2#

Horizontal

Transmitter Emission above 1GHz

Worse case mode:		GFSK(1Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	53.71	-9.2	44.51	74	-29.49	Peak	Н
2400	55.73	-9.39	46.34	74	-27.66	Peak	Н
4804	52.49	-4.33	48.16	74	-25.84	Peak	Н
7206	49.88	1.01	50.89	74	-23.11	Peak	Н
2390	54.31	-9.2	45.11	74	-28.89	Peak	V
2400	52.39	-9.39	43.00	74	-31.00	Peak	V
4804	53.41	-4.33	49.08	74	-24.92	Peak	V
7206	49.21	1.01	50.22	74	-23.78	Peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	51.45	-4.11	47.34	74	-26.66	peak	Н
7320	50.52	1.51	52.03	74	-21.97	peak	Н
4880	51.48	-4.11	47.37	74	-26.63	peak	V
7320	49.49	1.51	51.00	74	-23.00	peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.47	-9.29	46.18	74	-27.82	Peak	Н
4960	51.43	-4.04	47.39	74	-26.61	Peak	Н
7440	48.93	1.57	50.50	74	-23.50	Peak	Н
2483.5	57.72	-9.29	48.43	74	-25.57	Peak	v
4960	51.16	-4.04	47.12	74	-26.88	Peak	V
7440	50.64	1.57	52.21	74	-21.79	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

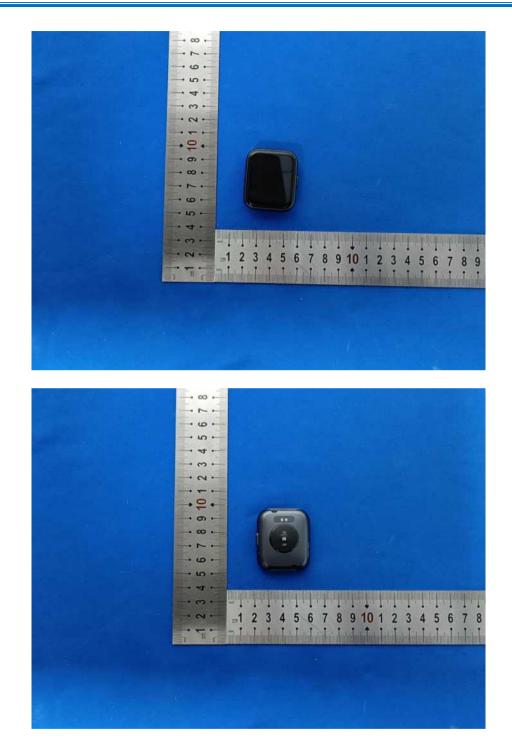
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

6.2 Conducted Emissions Test Setup

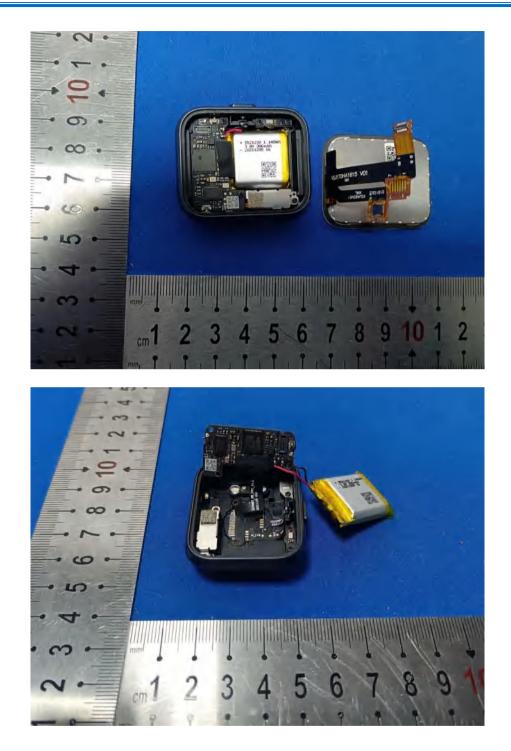
7 Photographs - EUT Constructional Details

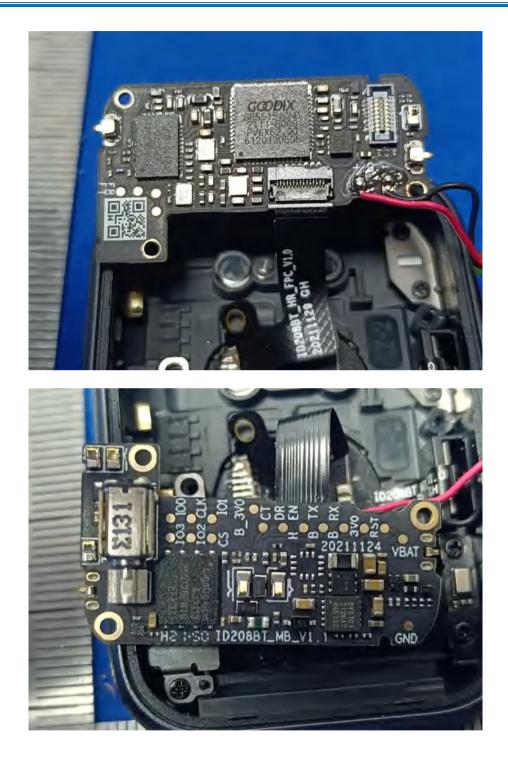

10

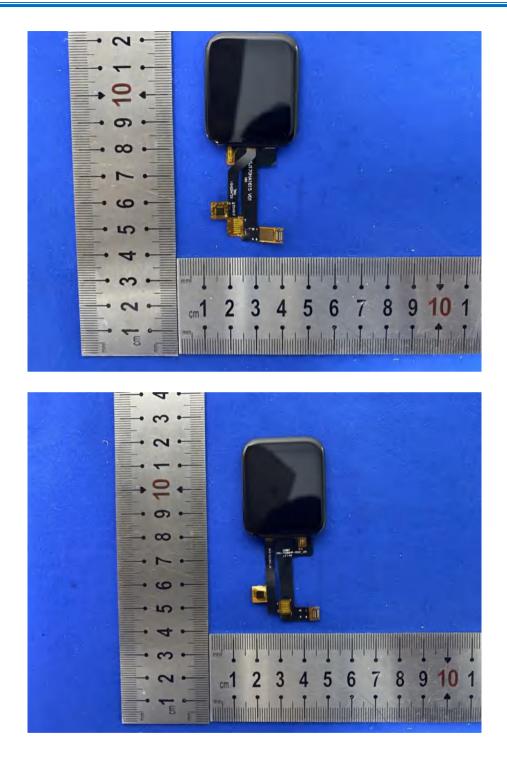
9

2 3

4 5 6




Shenzhen Huaxia Testing Technology Co., Ltd.



Shenzhen Huaxia Testing Technology Co., Ltd.

*** END OF REPORT ***