

Report No.: FR092923-01A

FCC RADIO TEST REPORT

FCC ID : 2AXW2-3476

Equipment: Digital Media Receiver

Model Name: C76N8S

Applicant : Calcium Crater LLC

DTC QUADRANT

5445 DTC PARKWAY, PENTHOUSE 4

GREENWOOD VILLAGE,

COLORADO, 80111

Standard : FCC Part 15 Subpart C §15.247

The product was received on Dec. 09, 2020 and testing was started from Dec. 09, 2020 and completed on Jan. 20, 2021. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

Table of Contents

His	tory o	f this test reportf	3			
Su	mmary	y of Test Result	4			
1	Gene	ral Description	5			
	1.1	Product Feature of Equipment Under Test	5			
	1.2	Product Specification of Equipment Under Test	5			
	1.3	Modification of EUT	5			
	1.4	Testing Location	6			
	1.5	Applicable Standards	6			
2	Test	Configuration of Equipment Under Test	7			
	2.1	Carrier Frequency Channel	7			
	2.2	Test Mode				
	2.3	Connection Diagram of Test System	9			
	2.4	Support Unit used in test configuration and system	10			
	2.5	EUT Operation Test Setup	10			
	2.6	Measurement Results Explanation Example	10			
3	Test	Test Result				
	3.1	Number of Channel Measurement	11			
	3.2	Hopping Channel Separation Measurement	13			
	3.3	Dwell Time Measurement	17			
	3.4	20dB and 99% Bandwidth Measurement	19			
	3.5	Output Power Measurement	26			
	3.6	Conducted Band Edges Measurement	27			
	3.7	Conducted Spurious Emission Measurement	32			
	3.8	Radiated Band Edges and Spurious Emission Measurement	36			
	3.9	AC Conducted Emission Measurement	40			
	3.10	Antenna Requirements	42			
4		of Measuring Equipment				
5	Unce	rtainty of Evaluation	45			
Аp	pendix	A. Conducted Test Results				
Аp	pendix	k B. AC Conducted Emission Test Result				
Аp	pendix	c C. Radiated Spurious Emission				
Аp	pendix	c D. Radiated Spurious Emission Plots				

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix E. Duty Cycle Plots

Report Template No.: BU5-FR15CBT Version 2.4

Page Number Issued Date : 2 of 45 : Jan. 26, 2021

Report Version

: 01

Report No. : FR092923-01A

History of this test report

Report No. : FR092923-01A

Report No.	Version	Description	Issued Date
FR092923-01A	01	Initial issue of report	Jan. 26, 2021

TEL: 886-3-327-3456 Page Number : 3 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

Summary of Test Result

Report No.: FR092923-01A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)
3.1	15.247(a)(1)	Number of Channels	Pass
3.2	15.247(a)(1)	Hopping Channel Separation	Pass
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass
3.4	15.247(a)(1)	20dB Bandwidth	Pass
3.4	2.1049	99% Occupied Bandwidth	Reporting only
3.5	15.247(b)(1)	Peak Output Power	Pass
3.6	15.247(d)	Conducted Band Edges	Pass
3.7	15.247(d)	Conducted Spurious Emission	Pass
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass
3.9	15.207	AC Conducted Emission	Pass
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Ruby Zou

TEL: 886-3-327-3456 Page Number : 4 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Digital Media Receiver			
Model Name	C76N8S			
FCC ID	2AXW2-3476			
	WLAN 11b/g/n HT20			
EUT supports Radios application	WLAN 11a/n HT20/HT40			
EOT Supports Radios application	WLAN 11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			

Report No.: FR092923-01A

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
	Bluetooth BR(1Mbps) : 13.08 dBm (0.0203 W)		
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 12.98 dBm (0.0199 W)		
	Bluetooth EDR (3Mbps) : 12.97 dBm (0.0198 W)		
	Bluetooth BR(1Mbps) : 0.839MHz		
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.137MHz		
	Bluetooth EDR (3Mbps) : 1.128MHz		
Antenna Type / Gain	PCB IFA Antenna type with gain 2.78 dBi		
	Bluetooth BR (1Mbps) : GFSK		
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK		
	Bluetooth EDR (3Mbps) : 8-DPSK		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory	
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No. TH05-HY, CO05-HY, 03CH07-HY	

Report No.: FR092923-01A

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-3456 Page Number : 6 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 7 of 45 Issued Date : Jan. 26, 2021

Report No. : FR092923-01A

Report Version : 01

2.2 Test Mode

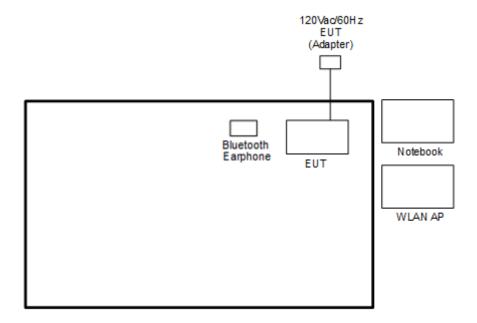
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

Report No.: FR092923-01A

b. AC power line Conducted Emission was tested under maximum output power.

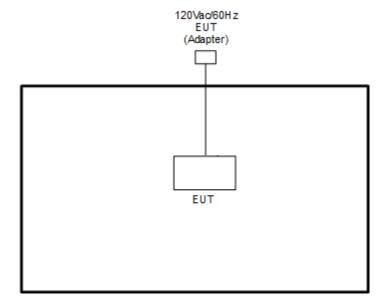
The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	· ·	Bluetooth BR 1Mbps GFS	<			
Radiated	Mode 1: CH00_2402 MHz					
Test Cases Mode 2: CH39_2441 MHz						
	Mode 3: CH78_2480 MHz					
AC Conducted	Mode 1 :WLAN (2.4GHz) Link + Bluetooth Link + MPEG4 + AC Adapter (AP23					
Emission	G1) (Acbel)					


Remark:

- For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF
 output power in the preliminary tests. The conducted spurious emissions and conducted band
 edge measurement for other data rates were not worse than 1Mbps, and no other significantly
 frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with AC Adapter (AP23 G1) (Acbel)

TEL: 886-3-327-3456 Page Number : 8 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

Report No.: FR092923-01A

<Bluetooth Tx Mode>

TEL: 886-3-327-3456 Page Number : 9 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

Report No.: FR092923-01A

2.5 EUT Operation Test Setup

The RF test items, utility "Compliance tool 1.0.0.90" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 10 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

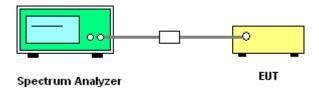
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

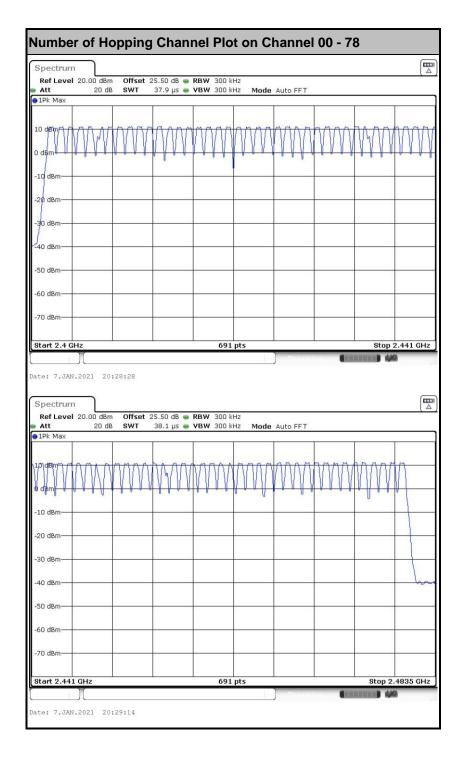
Report No.: FR092923-01A


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.


3.1.4 Test Setup

TEL: 886-3-327-3456 Page Number : 11 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Report No.: FR092923-01A

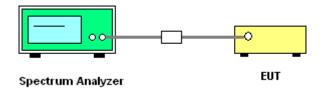
TEL: 886-3-327-3456 Page Number : 12 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR092923-01A

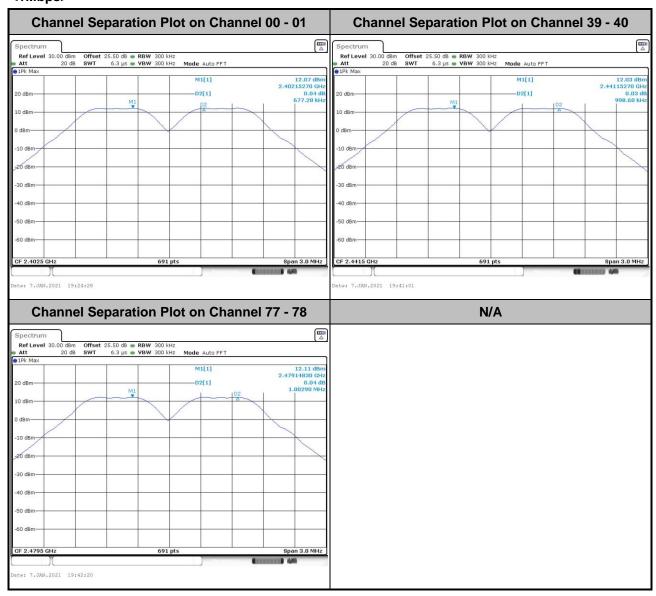

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

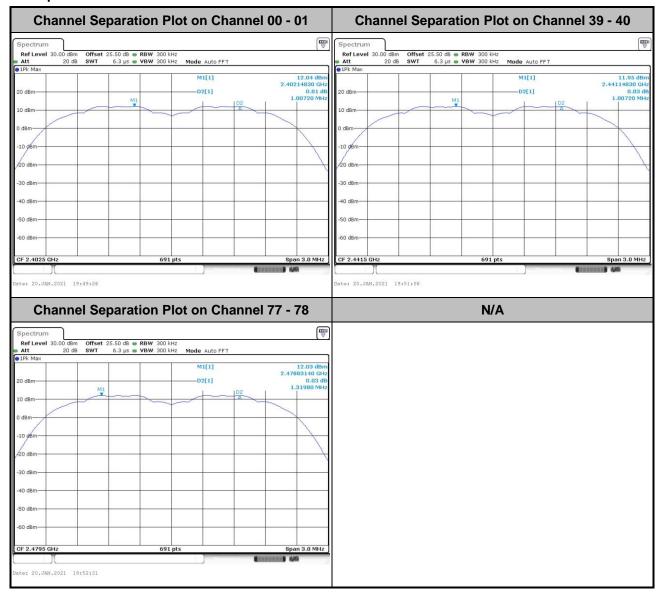
3.2.4 Test Setup



3.2.5 Test Result of Hopping Channel Separation

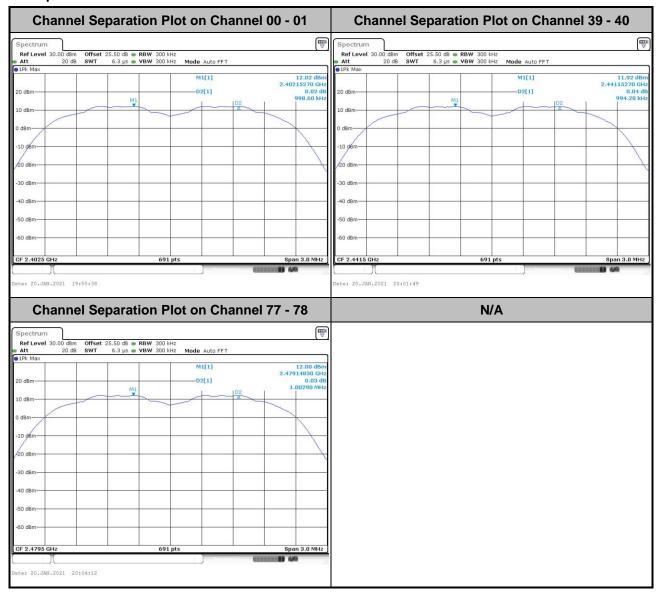
Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number: 13 of 45
FAX: 886-3-328-4978 Issued Date: Jan. 26, 2021


<1Mbps>

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 14 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


<2Mbps>

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 15 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<3Mbps>

Report No.: FR092923-01A

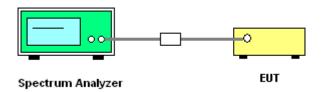
TEL: 886-3-327-3456 Page Number : 16 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR092923-01A

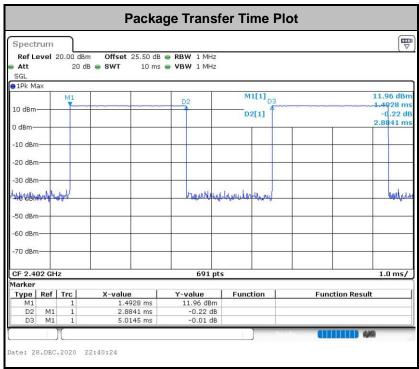

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 17 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

Report No.: FR092923-01A

Remark:

- **1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : 18 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

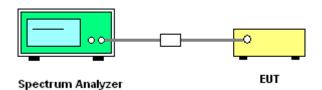
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

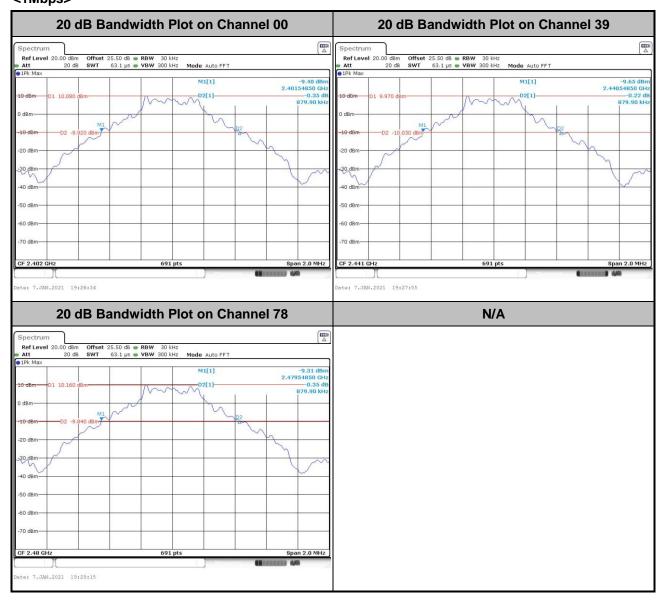

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR092923-01A

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - $RBW \ge 1\%$ of the 20 dB bandwidth; $VBW \ge RBW$; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

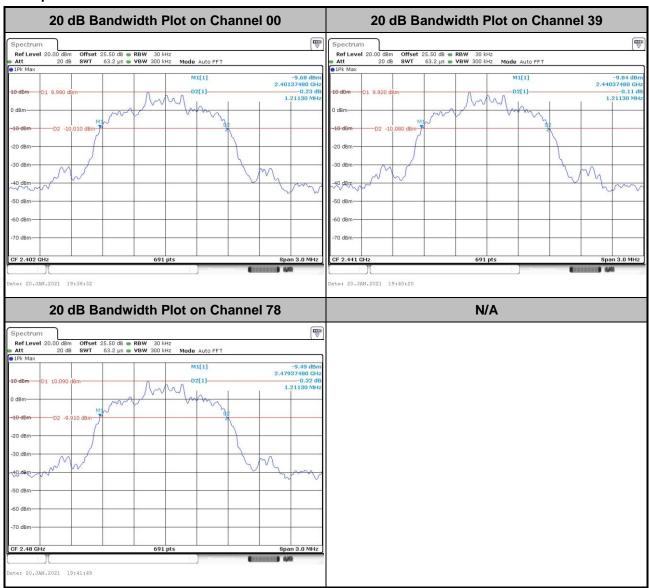
3.4.4 Test Setup



3.4.5 Test Result of 20dB Bandwidth

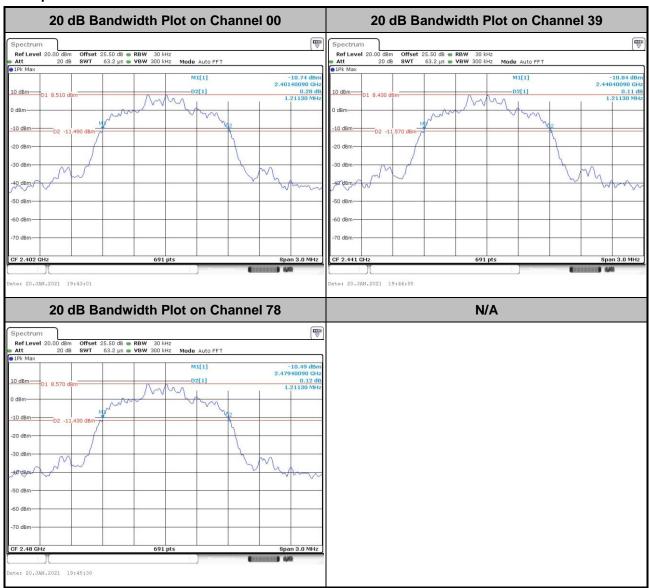
Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 19 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


<1Mbps>

Report No.: FR092923-01A

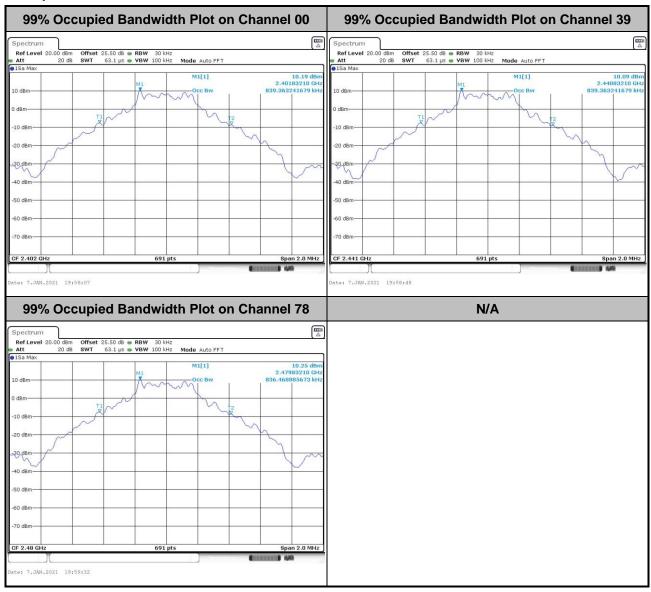
TEL: 886-3-327-3456 Page Number : 20 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


<2Mbps>

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 21 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<3Mbps>

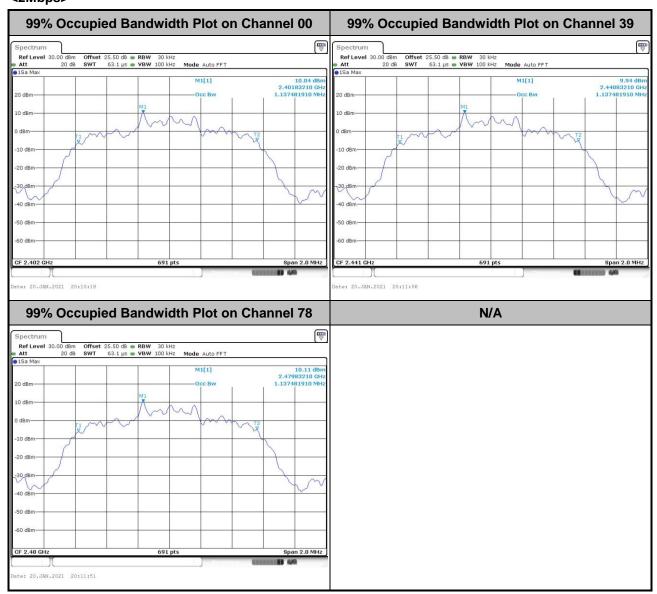

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 22 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

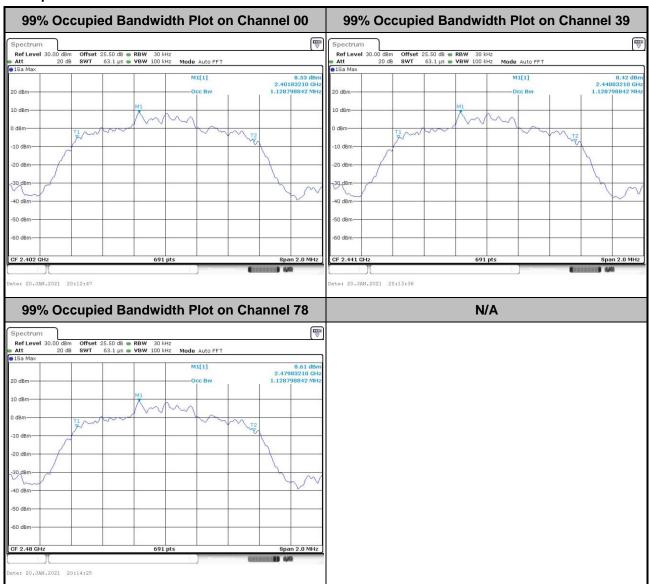


Report No.: FR092923-01A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 23 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<2Mbps>



Report No.: FR092923-01A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 24 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<3Mbps>

Report No.: FR092923-01A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

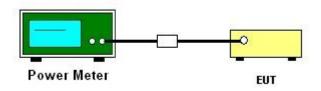
TEL: 886-3-327-3456 Page Number : 25 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR092923-01A


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

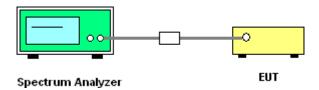
TEL: 886-3-327-3456 Page Number : 26 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR092923-01A


3.6.2 Measuring Instruments

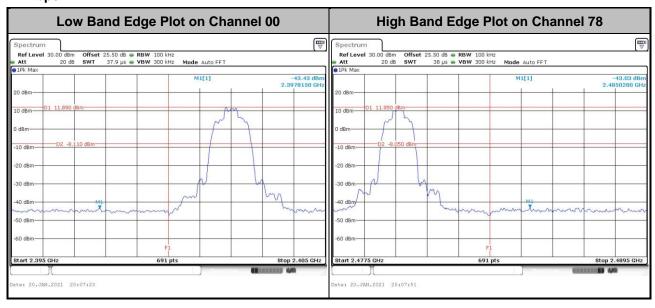
See list of measuring equipment of this test report.

3.6.3 Test Procedures

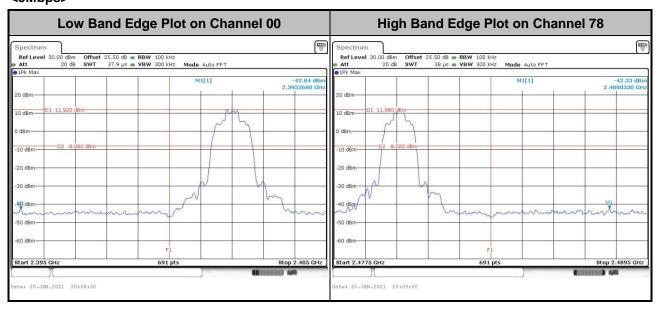
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 886-3-327-3456 Page Number : 27 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


3.6.5 Test Result of Conducted Band Edges

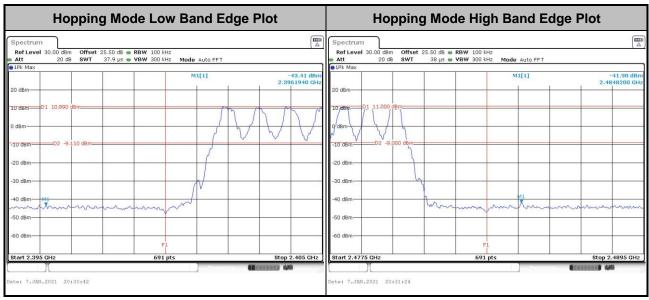
<1Mbps>


Report No.: FR092923-01A

<2Mbps>

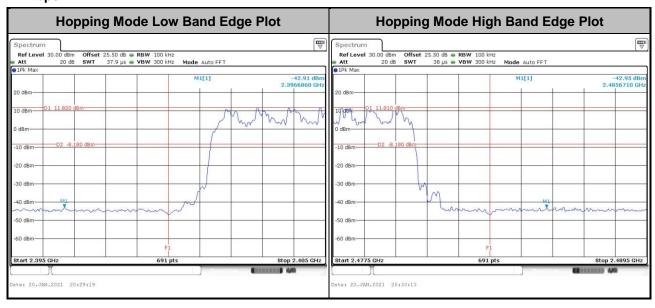
TEL: 886-3-327-3456 Page Number : 28 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<3Mbps>

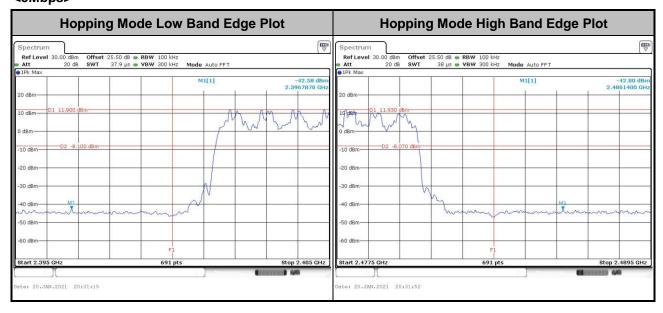


Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 29 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>


Report No.: FR092923-01A

<2Mbps>

TEL: 886-3-327-3456 Page Number : 30 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<3Mbps>

Report No.: FR092923-01A

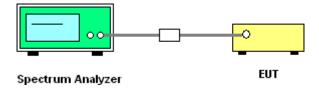
TEL: 886-3-327-3456 Page Number : 31 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

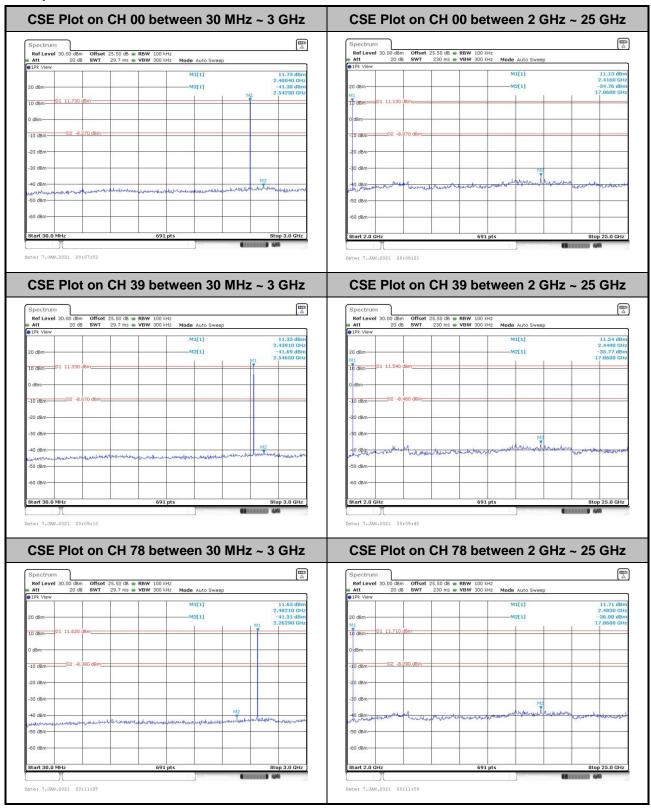
Report No.: FR092923-01A


3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

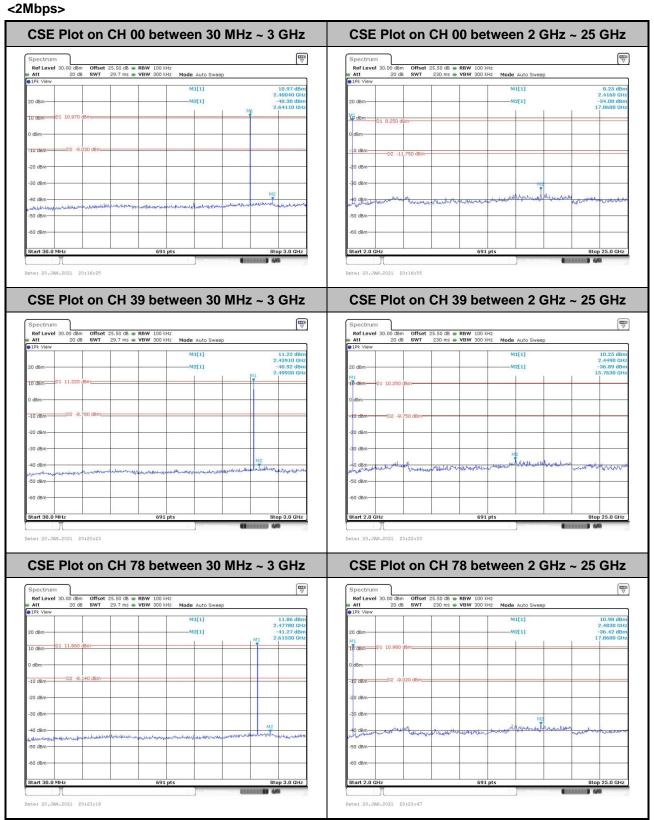
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

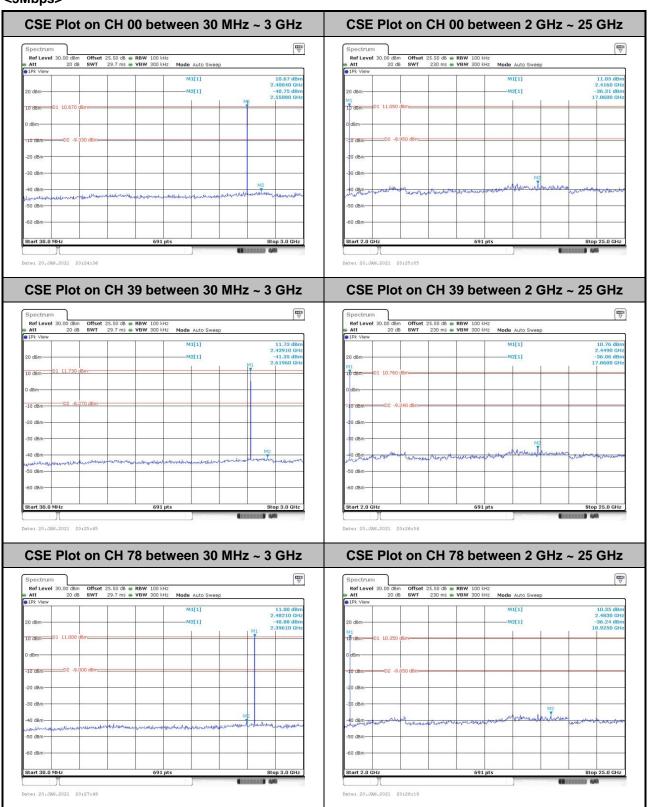
TEL: 886-3-327-3456 Page Number: 32 of 45
FAX: 886-3-328-4978 Issued Date: Jan. 26, 2021

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 33 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021


OMbran

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 34 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

<3Mbps>

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number : 35 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR092923-01A

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 36 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.8.3 Test Procedures

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR092923-01A

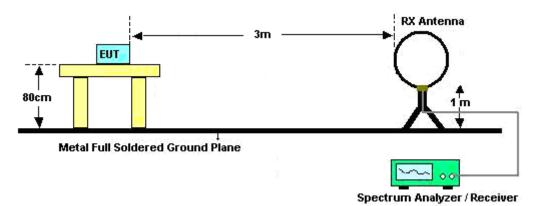
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

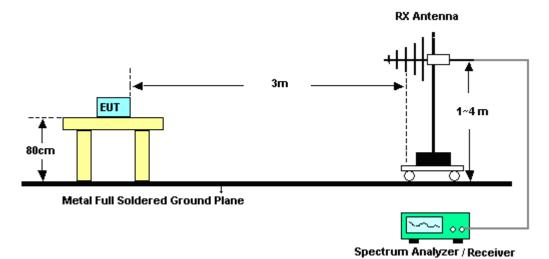
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

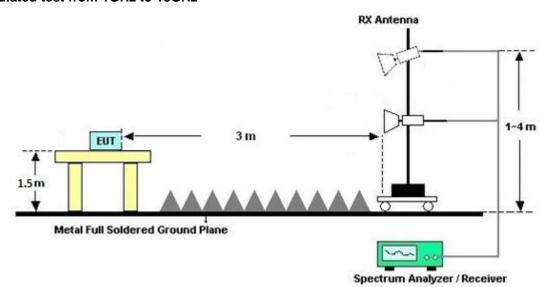

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 Page Number : 37 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

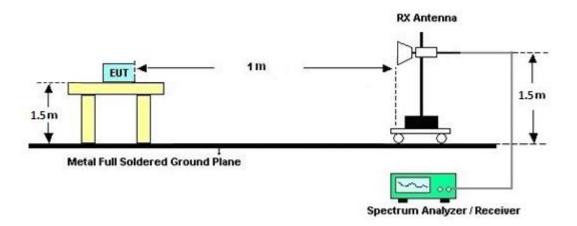

3.8.4 Test Setup

For radiated test below 30MHz



Report No.: FR092923-01A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-3456 Page Number: 38 of 45
FAX: 886-3-328-4978 Issued Date: Jan. 26, 2021

For radiated test above 18GHz

Report No.: FR092923-01A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 39 of 45
FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

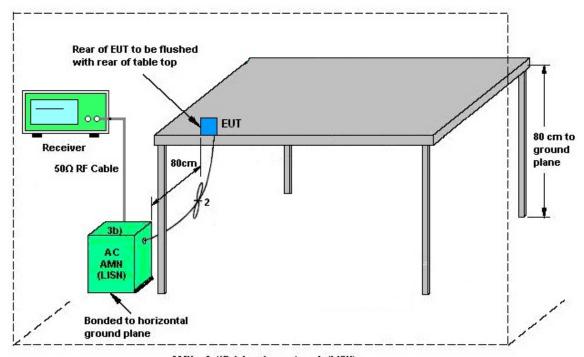
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR092923-01A

Eroquency of emission (MUz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 40 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.9.4 Test Setup

Report No.: FR092923-01A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 41 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR092923-01A

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 42 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jul. 14, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Jul. 13, 2021	Radiation (03CH07-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 29, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Apr. 28, 2021	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz~40GHz	Dec. 02, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Dec. 01, 2021	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz~26.5GHz	May 21, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	May 20, 2021	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jun. 09, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Jun. 08, 2021	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 19, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	May 18, 2021	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 23, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Apr. 22, 2021	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 31, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 15, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Jun. 14, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,80 1606/2	18GHz~40GHz	Feb. 25, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4, MY28655/4	9kHz~30MHz	Feb. 25, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4, MY24971/4, MY15682/4	30MHz~1GHz	Feb. 25, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4, MY24971/4, MY15682/4	1GHz~18GHz	Feb. 25, 2020	Dec. 09, 2020 ~ Jan. 05, 2021	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	N/A	Dec. 09, 2020 ~ Jan. 05, 2021	N/A	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Dec. 09, 2020 ~ Jan. 05, 2021	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Dec. 09, 2020 ~ Jan. 05, 2021	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	N/A	Dec. 09, 2020 ~ Jan. 05, 2021	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Dec. 09, 2020 ~ Jan. 05, 2021	N/A	Radiation (03CH07-HY)

Report No. : FR092923-01A

TEL: 886-3-327-3456 Page Number : 43 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 30, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 11, 2020	Dec. 30, 2020	Sep. 10, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 18, 2020	Dec. 30, 2020	Nov. 17, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2020	Dec. 30, 2020	Nov. 15, 2021	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Dec. 30, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	Dec. 30, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	Dec. 30, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2020	Dec. 28, 2020 ~ Jan. 20, 2021	Mar. 01, 2021	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz ~ 40GHz	Jul. 22, 2020	Dec. 28, 2020 ~ Jan. 20, 2021	Jul. 21, 2021	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2020	Dec. 28, 2020 ~ Jan. 20, 2021	Mar. 16, 2021	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 12, 2020	Dec. 28, 2020 ~ Jan. 20, 2021	Aug. 11, 2021	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz ~ 40GHz	Aug. 12, 2020	Dec. 28, 2020 ~ Jan. 20, 2021	Aug. 11, 2021	Conducted (TH05-HY)

TEL: 886-3-327-3456 Page Number : 44 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.3
of 95% (U = 2Uc(y))	2.3

Report No.: FR092923-01A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.7
of 95% (U = 2Uc(y))	4.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3
of 95% (U = 2Uc(y))	5.5

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.0

TEL: 886-3-327-3456 Page Number : 45 of 45 FAX: 886-3-328-4978 Issued Date : Jan. 26, 2021

Report Number : FR092923-01A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu	Temperature:	21~25	°C
Test Date:	2020/12/28~2021/1/20	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u>
2	20dB and 99% Occupied Bandwidth and Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.879	0.839	0.677	0.5860	Pass
DH	1Mbps	1	39	2441	0.879	0.839	0.998	0.5860	Pass
DH	1Mbps	1	78	2480	0.879	0.836	1.002	0.5860	Pass
2DH	2Mbps	1	0	2402	1.211	1.137	1.007	0.8073	Pass
2DH	2Mbps	1	39	2441	1.211	1.137	1.007	0.8073	Pass
2DH	2Mbps	1	78	2480	1.211	1.137	1.319	0.8073	Pass
3DH	3Mbps	1	0	2402	1.211	1.128	0.998	0.8073	Pass
3DH	3Mbps	1	39	2441	1.211	1.128	0.994	0.8073	Pass
3DH	3Mbps	1	78	2480	1.211	1.128	1.002	0.8073	Pass

TEST RESULTS DATA

Dwell Time

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.88	0.31	0.4	Pass
AFH	20	53.33	2.88	0.15	0.4	Pass

TEST RESULTS DATA Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	13.03	20.97	Pass
DH1	39	1	12.97	20.97	Pass
	78	1	13.08	20.97	Pass
	0	1	12.85	20.97	Pass
2DH1	39	1	12.83	20.97	Pass
	78	1	12.98	20.97	Pass
	0	1	12.85	20.97	Pass
3DH1	39	1	12.82	20.97	Pass
	78	1	12.97	20.97	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	12.85	8.30
DH1	39	1	12.71	8.30
	78	1	12.94	8.30
	0	1	10.85	8.15
2DH1	39	1	10.82	8.15
	78	1	11.10	8.15
	0	1	10.95	8.22
3DH1	39	1	10.87	8.22
	78	1	11.17	8.22

TEST RESULTS DATA

Number of Hoppina Frequency

1		A 1 ('		
		Adaptive		
	Number of Hopping	Frequency	Limits	Dass/Fail
	(Channel)	Hopping	(Channel)	Pass/Fail
	,	(Channel)	, ,	
	79	20	> 15	Pass

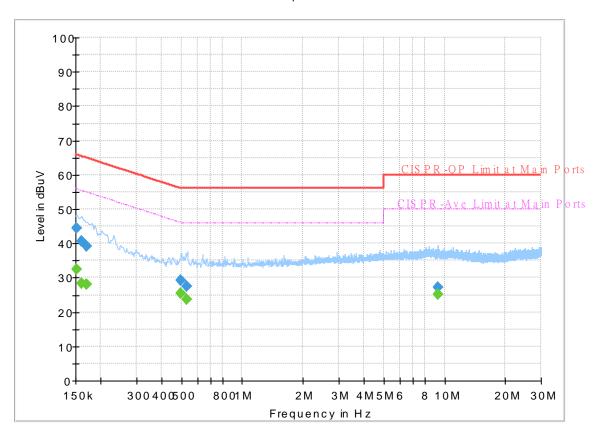
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Lee	Temperature :	23~26 ℃
rest Engineer.	Tom Lee	Relative Humidity :	40~50%

Report No.: FR092923-01A

TEL: 886-3-327-3456 Page Number: B1 of B1

EUT Information

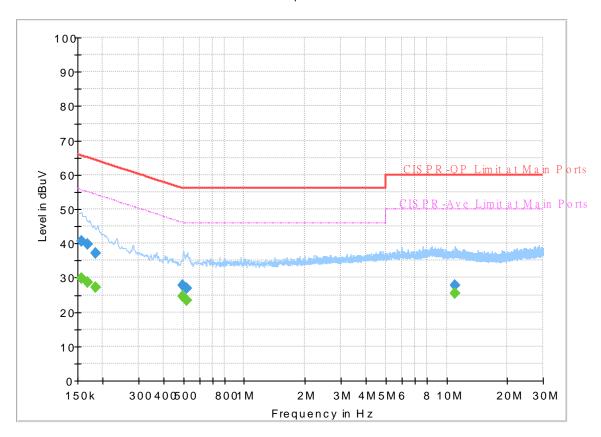

 Report NO :
 092923-01

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum


Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		32.56	55.88	23.32	L1	OFF	19.6
0.152250	44.37	-	65.88	21.51	L1	OFF	19.6
0.161250		28.38	55.40	27.02	L1	OFF	19.6
0.161250	40.60	-	65.40	24.80	L1	OFF	19.6
0.170250		28.13	54.95	26.82	L1	OFF	19.6
0.170250	39.32		64.95	25.63	L1	OFF	19.6
0.498930		25.55	46.02	20.47	L1	OFF	19.5
0.498930	29.21	-	56.02	26.81	L1	OFF	19.5
0.531960		23.70	46.00	22.30	L1	OFF	19.6
0.531960	27.38	-	56.00	28.62	L1	OFF	19.6
9.298500		25.10	50.00	24.90	L1	OFF	20.0
9.298500	27.18		60.00	32.82	L1	OFF	20.0

EUT Information

Report NO: 092923-01
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.156750	40.65		65.63	24.98	N	OFF	19.6
0.156750		29.84	55.63	25.79	N	OFF	19.6
0.168000	39.86		65.06	25.20	N	OFF	19.6
0.168000		28.75	55.06	26.31	N	OFF	19.6
0.183750	37.11		64.31	27.20	N	OFF	19.6
0.183750		27.11	54.31	27.20	N	OFF	19.6
0.498300	27.81		56.03	28.22	N	OFF	19.6
0.498300		24.47	46.03	21.56	N	OFF	19.6
0.519000	26.89		56.00	29.11	N	OFF	19.6
0.519000		23.47	46.00	22.53	N	OFF	19.6
11.031000	27.64		60.00	32.36	N	OFF	20.1
11.031000		25.30	50.00	24.70	N	OFF	20.1

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Wang, Stan Hsieh and Ken Wu	Temperature :	20~25°C
rest Engineer :		Relative Humidity :	50~58%

Report No. : FR092923-01A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2361.345	44.11	-29.89	74	39.52	31.83	8.16	35.4	337	234	Р	Н
		2361.345	19.32	-34.68	54	-	-	-	-	-	-	Α	Н
DT	*	2402	104.32	-	-	99.62	31.9	8.22	35.42	337	234	Р	Н
BT CH00	*	2402	79.53	-	-	-	-	-	-	-	-	Α	Н
2402MHz		2373.735	43.87	-30.13	74	39.23	31.87	8.18	35.41	140	45	Р	V
2402111112		2373.735	19.08	-34.92	54	-	-	-	-	-	-	Α	V
	*	2402	105.08	-	-	100.38	31.9	8.22	35.42	140	45	Р	V
	*	2402	80.29	-	-	-	-	-	-	-	-	Α	V
		2357.88	43.06	-30.94	74	38.47	31.83	8.16	35.4	310	233	Р	Н
		2357.88	18.27	-35.73	54	-	-	-	-	-	-	Α	Н
	*	2441	105.92	-	-	100.87	32.2	8.29	35.44	310	233	Р	Н
	*	2441	81.13	-	-	-	-	-	-	-	-	Α	Н
		2497.97	43.63	-30.37	74	38.11	32.6	8.38	35.46	310	233	Р	Н
BT		2497.97	18.84	-35.16	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		2355.08	43.72	-30.28	74	39.14	31.83	8.15	35.4	124	40	Р	V
244 IVIF12		2355.08	18.93	-35.07	54	-	-	-	-	-	-	Α	V
	*	2441	106.75	-	-	101.7	32.2	8.29	35.44	124	40	Р	V
	*	2441	81.96	-	-	-	-	-	-	-	-	Α	V
		2491.67	45.72	-28.28	74	40.2	32.6	8.37	35.45	124	40	Р	٧
		2491.67	20.93	-33.07	54	-	-	-	-	-	-	Α	٧

TEL: 886-3-327-3456 Page Number : C1 of C7

	*	2480	106.2	-	-	100.82	32.47	8.36	35.45	334	233	Р	Н
	*	2480	81.41	-	-	-	-	-	-	-	-	Α	Н
		2484.16	50.05	-23.95	74	44.67	32.47	8.36	35.45	334	233	Р	Н
BT		2484.16	25.26	-28.74	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz	*	2480	106.36	-	-	100.98	32.47	8.36	35.45	138	40	Р	٧
2400WII IZ	*	2480	81.57	-	-	-	-	-	-	-	-	Α	٧
		2483.88	50.68	-23.32	74	45.3	32.47	8.36	35.45	138	40	Р	٧
		2483.88	25.89	-28.11	54	-	-	-	-	-	-	Α	V
Remark	1. No	o other spurious	s found.										
Kemark	2. Al	l results are PA	SS against F	Peak and	Average lir	nit line.							

TEL: 886-3-327-3456 Page Number : C2 of C7

2.4GHz 2400~2483.5MHz

Report No. : FR092923-01A

BT (Harmonic @ 3m)

	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Avg.	Pol.
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V
	4804	38.53	-35.47	74	51.65	34	11.82	58.94	100	0	Р	Н
BT	4804	13.74	-40.26	54	-	-	-	-	-		Α	Н
CH 00	4804	38.86	-35.14	74	51.98	34	11.82	58.94	100	0	Р	V
2402MHz	4804	14.07	-39.93	54	-	-	-	-	-	-	Α	V
	4882	39.19	-34.81	74	51.81	34.1	12.02	58.74	100	0	Р	Н
	4882	14.4	-39.6	54	-	-	-	-	-	-	Α	Н
	7323	40.97	-33.03	74	48.37	35.6	14.48	57.48	100	0	Р	Н
BT	7323	16.18	-37.82	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz	4882	39.36	-34.64	74	51.98	34.1	12.02	58.74	100	0	Р	V
2441111112	4882	14.57	-39.43	54	-	-	-	-	-	-	Α	V
	7323	40.6	-33.4	74	48	35.6	14.48	57.48	100	0	Р	V
	7323	15.81	-38.19	54		-	-	-	-	-	Α	V
	4980	40.04	-33.96	74	52.04	34.2	12.3	58.5	100	0	Р	Н
	4980	15.25	-38.75	54	-	-	-	-	-	-	Α	Н
D.T.	7440	40.34	-33.66	74	47.71	35.6	14.62	57.59	100	0	Р	Н
BT	7440	15.55	-38.45	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz	4960	39.59	-34.41	74	51.7	34.2	12.24	58.55	100	0	Р	V
2400WIT12	4960	14.8	-39.2	54	-	-	-	-	-	-	Α	V
	7440	40.8	-33.2	74	48.17	35.6	14.62	57.59	100	0	Р	V
	7440	16.01	-37.99	54	-	-	-	-	-	-	Α	V

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: C3 of C7

Emission above 18GHz

2.4GHz BT (SHF)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
2.4GHz		24489	36.08	-37.92	74	43.53	39.1	6.75	53.3	150	0	Р	Н
ВТ													
SHF		24748	37.12	-36.88	74	44.54	38.8	6.87	53.09	150	0	Р	V
Remark	1. No	. No other spurious found.											
Keillark	2. All results are PASS against limit line.												

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: C4 of C7

Report No. : FR092923-01A

Emission below 1GHz

Report No. : FR092923-01A

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.81	23.47	-16.53	40	28.42	24.12	0.94	30.01	-	-	Р	Н
		129.36	28.88	-14.62	43.5	39.5	17.43	1.91	29.96	-	-	Р	Н
		135.84	30.56	-12.94	43.5	41.07	17.5	1.95	29.96	-	-	Р	Н
		848.1	32.14	-13.86	46	27.76	28.65	4.96	29.23	-	-	Р	Н
0.4011-		892.9	32.41	-13.59	46	27.73	28.6	5.1	29.02	-	-	Р	Н
2.4GHz BT		948.2	33.21	-12.79	46	26.55	30.12	5.25	28.71	100	0	Р	Н
LF		30.27	31.66	-8.34	40	36.42	24.32	0.93	30.01	100	0	Р	V
LF		37.02	30.5	-9.5	40	38.57	20.9	1.03	30	-	-	Р	V
		38.91	30.14	-9.86	40	39.22	19.87	1.05	30	-	-	Р	V
		846	31.36	-14.64	46	27.07	28.58	4.95	29.24	-	-	Р	٧
		881	32.14	-13.86	46	27.27	28.89	5.06	29.08	-	-	Р	٧
		955.9	33.45	-12.55	46	26.34	30.5	5.28	28.67	-	-	Р	٧
Remark		other spurious		mit line								•	

2. All results are PASS against limit line.

TEL: 886-3-327-3456 Page Number : C5 of C7

Note symbol

Report No. : FR092923-01A

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C6 of C7

A calculation example for radiated spurious emission is shown as below:

Report No.: FR092923-01A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

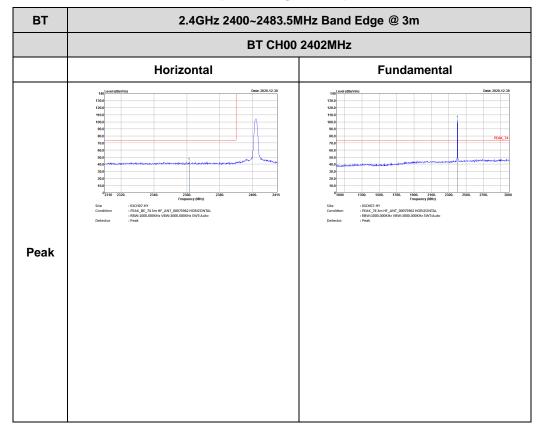
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

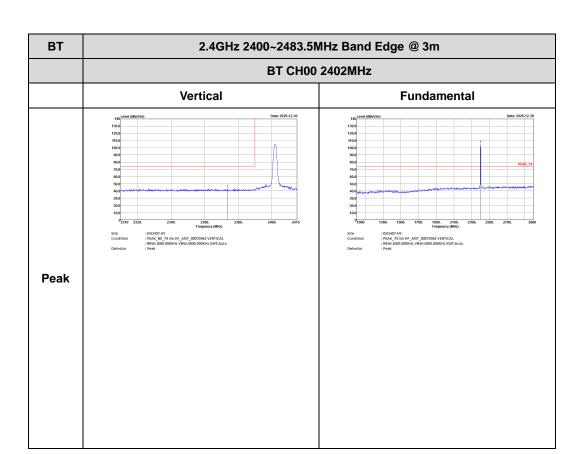
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

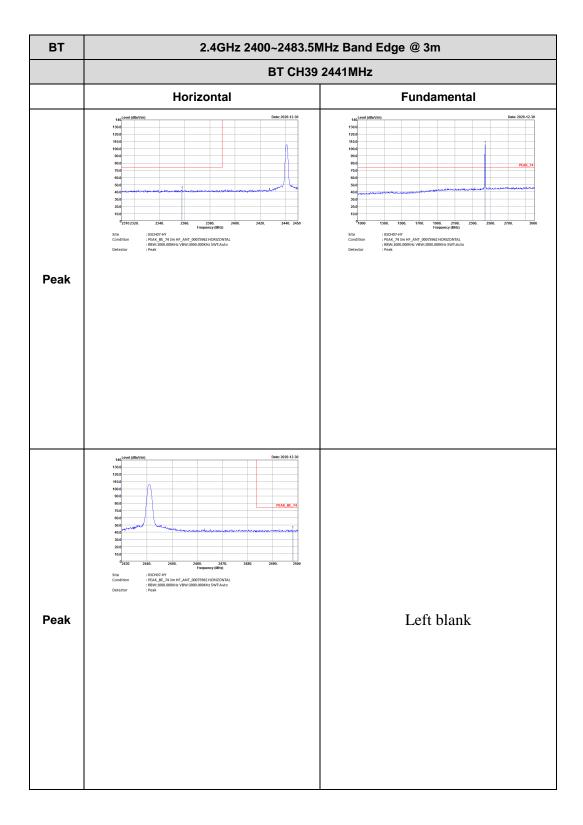
TEL: 886-3-327-3456 Page Number : C7 of C7

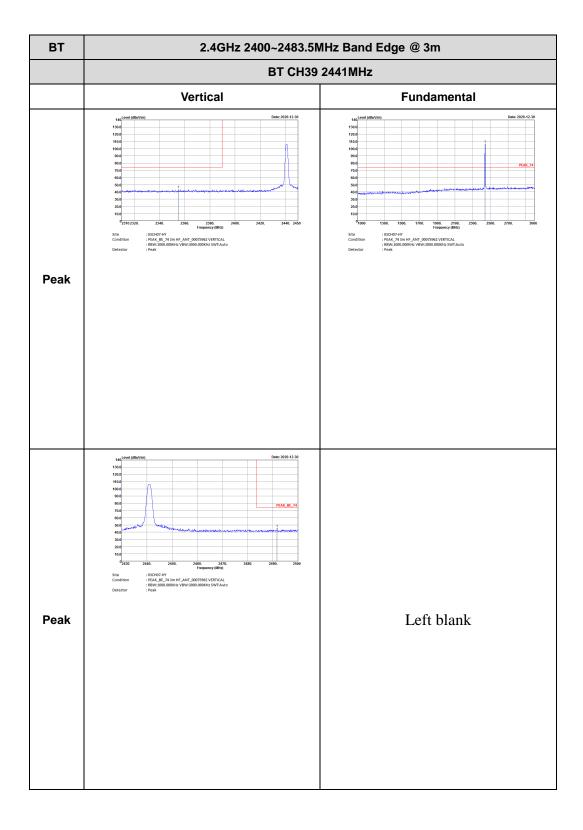

Appendix D. Radiated Spurious Emission Plots

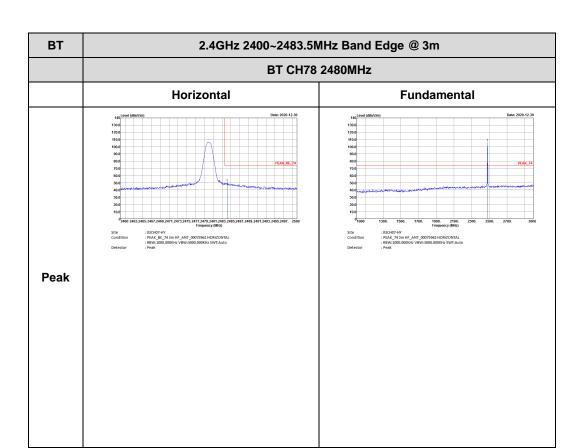
Test Engineer :	Jesse Wang, Stan Hsieh and Ken Wu	Temperature :	20~25°C
rest Engineer.		Relative Humidity :	50~58%

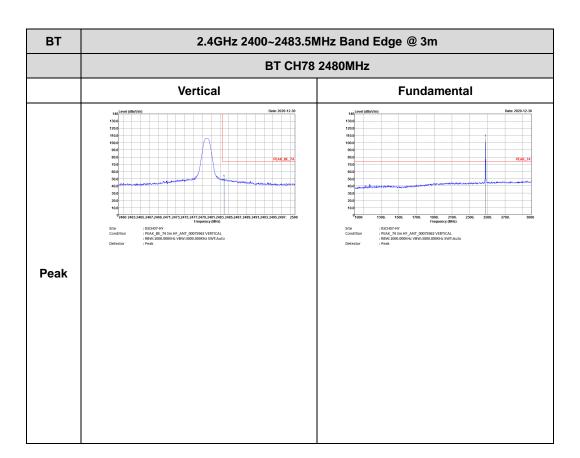

Report No. : FR092923-01A

2.4GHz 2400~2483.5MHz


BT (Band Edge @ 3m)

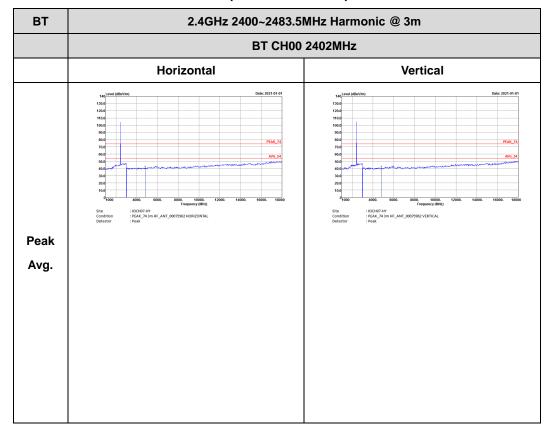

TEL: 886-3-327-3456 Page Number : D1 of D11


TEL: 886-3-327-3456 Page Number : D2 of D11

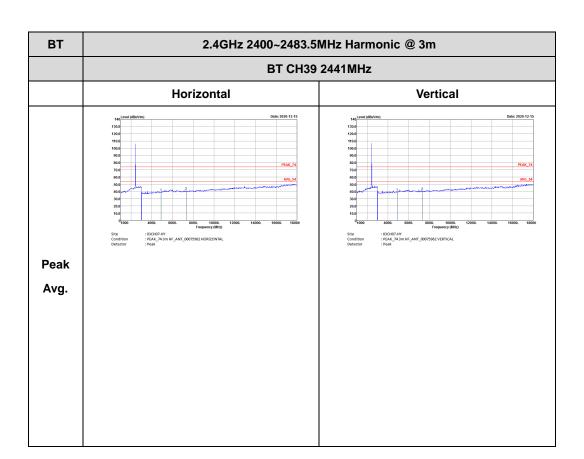

: D3 of D11 TEL: 886-3-327-3456 Page Number

: D4 of D11 TEL: 886-3-327-3456 Page Number

TEL: 886-3-327-3456 Page Number : D5 of D11



TEL: 886-3-327-3456 Page Number : D6 of D11


2.4GHz 2400~2483.5MHz

Report No. : FR092923-01A

BT (Harmonic @ 3m)

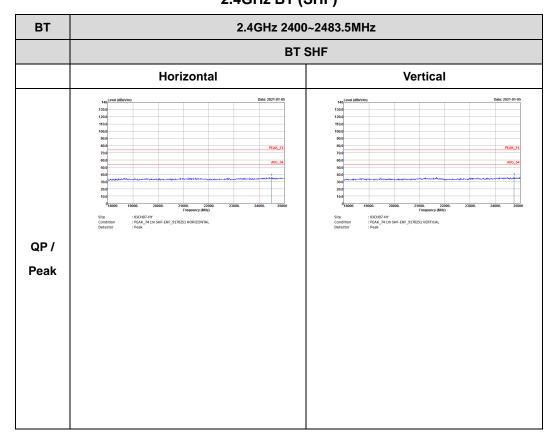
TEL: 886-3-327-3456 Page Number : D7 of D11

TEL: 886-3-327-3456 Page Number : D8 of D11

BT CH78 2480MHz

Horizontal

Vertical

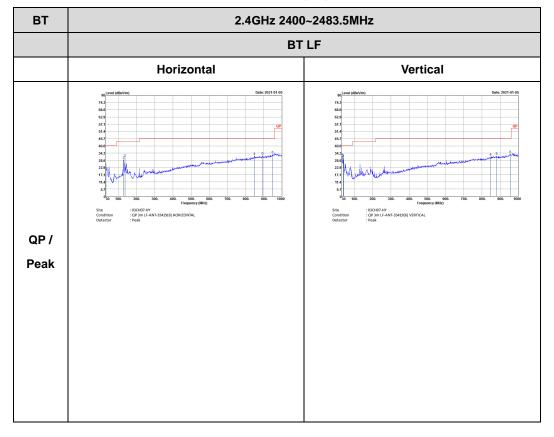

Use 1000 File of the control of the contro

Report No. : FR092923-01A

TEL: 886-3-327-3456 Page Number : D9 of D11

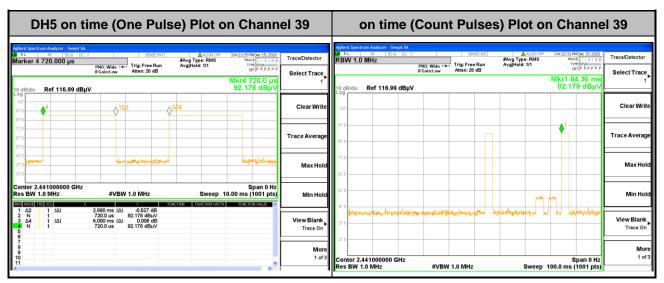
Emission above 18GHz 2.4GHz BT (SHF)

Report No. : FR092923-01A



TEL: 886-3-327-3456 Page Number : D10 of D11

Emission below 1GHz


Report No. : FR092923-01A

2.4GHz BT (LF)

TEL: 886-3-327-3456 Page Number : D11 of D11 FAX: 886-3-328-4978

Appendix E. Duty Cycle Plots

Report No.: FR092923-01A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms } x 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 886-3-327-3456 Page Number : E1 of E1