

FCC PART 15.249 TEST REPORT

For

Zhejiang Tri mix Technology Co.,Ltd

Floor No. 1, East of Fengnan Road, Fengqiao Town, Nanhu District, Jiaxing City, Zhejiang Province, China

FCC ID: 2AXVZ-TRIMIX-S4

Report Type: **Product Type:** Original Report Control box Report Number: RDG201016011-00B **Report Date:** 2020-12-18 from Car Ivan Cao Assistant Manager **Reviewed By:** Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
DECLARATIONS	
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	6
EUT Exercise Software	6
EQUIPMENT MODIFICATIONS	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC§15.203 - ANTENNA REQUIREMENT	Q
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A)– AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	9
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	11
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS	13
APPLICABLE STANDARD	13
EUT SETUP	
TEST EQUIPMENT SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	15
FCC §15.215(C) – 20 DB BANDWIDTH TESTING	21
APPLICABLE STANDARD	21
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:		Control box
EUT Model:		L04Y
	Multiple Models:	I06Y, J04Y, 914Y, 954Y, 923Y, N03Y, 443Y, 444Y, H13Y, H23Y, 152Y, K01Y, H02Y, 192Y, 442Y, M02Y, 542Y, K12Y, 132Y
Ope	ration Frequency:	2440MHz
	Antenna Gain∆:	0.55 dBi
	Modulation Type:	GFSK
Adapter 1#	Model:	W52RA199-290018
Information for	Input:	AC100-240V 50/60Hz 1.5A
152Y	Output:	29.0V1.8A 52.2W
Adapter 2#	Model:	W52RA198-290018
Information for	Input:	AC100-240V 50/60Hz 1.5A
152Y and L04Y	Output:	29.0V1.8A 52.2W
Adapter 3#	Model:	SW-4052
Information for	Input:	AC100-240V 50/60Hz 2.0A
152Y	Output:	29.0V1.8A 52.2W
Adapter 4#	Model:	W87RA07-290030
Information for	Input:	AC100-240V~4.0A 50/60Hz
L04Y	Output:	29.0V3.0A 87.0W
Ra	ted Input Voltage:	DC 29V from adapter
	Serial Number:	RDG201016011-RF-S4
EU	UT Received Date:	2020.10.16
EU	Γ Received Status:	Good

Note: The series product, models L04Y, I06Y, J04Y, 914Y, 954Y, 923Y, N03Y, 443Y, 444Y, H13Y, H23Y, 152Y, K01Y, H02Y, 192Y, 442Y, M02Y, 542Y, K12Y, 132Y are electrically identical, the model L04Y was fully tested. The difference between them please refer to the declaration letter for details.

The device may sales with the one of the 4 dapters, per 15B emission test, the adapter#1 was the worst and tested for this report.

The device may sales with the two of the 4 motors, per 15B emission test, two motors was the worst and tested for this report.

Objective

This type approval report is prepared on behalf of **Zhejiang Tri mix Technology Co.,Ltd** in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207,15.209, 15.215 and 15.249 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AXVZ-TRIMIX-S4; Part of system submittal with FCC ID: 2AXVZ-TRIMIX-RF07; Part of system submittal with FCC ID: 2AXVZ-TRIMIX-RF05.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
	30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical
Unwanted Emissions, radiated	200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical
	1G~6GHz: 4.45 dB, 6G~26.5GHz: 5.23 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(^{\text{\text{}}}\)". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

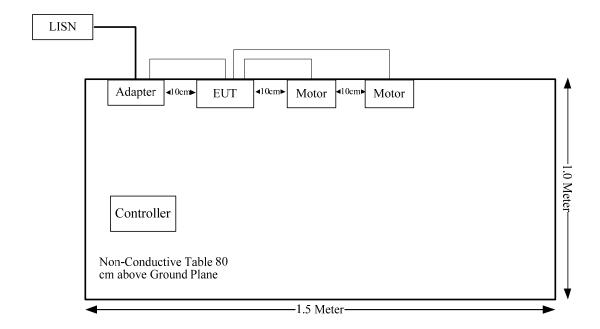
This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★".

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

The device only operates on 2440 MHz.


EUT Exercise Software

No software was used in test, the device was configured to engineer mode by manufacturer.

Equipment Modifications

No modifications were made to the EUT.

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conduction Emissions Compliance	
15.205, §15.209, §15.249	Radiated Emissions	Compliance
§15.215 (c)	20 dB Bandwidth	Compliance

FCC§15.203 - ANTENNA REQUIREMENT

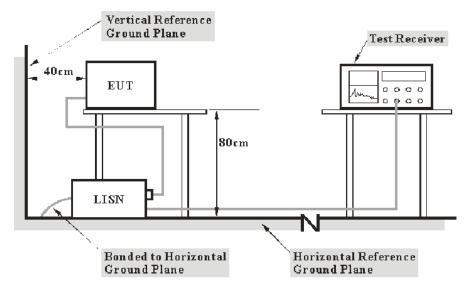
Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has internal Antenna permanently attached to the unit, the antenna gain is 0.55 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a)- AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

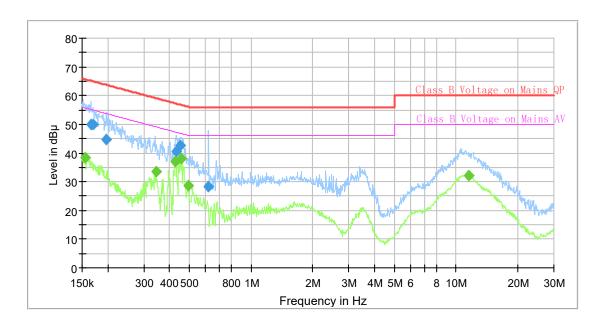
Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12
R&S	EMI Test Receiver	ESCI	101121	2020-07-07	2021-07-07
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

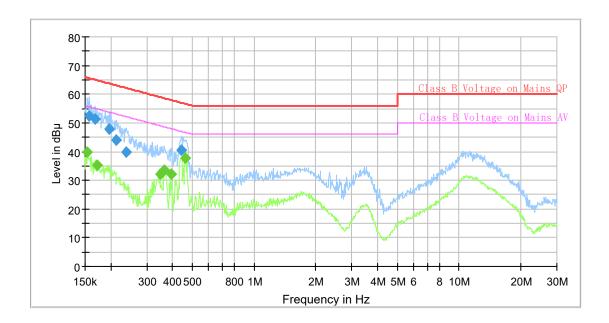
Test Data


Environmental Conditions

Temperature:	25.5℃
Relative Humidity:	36%
ATM Pressure:	101.5kPa
Tester:	Barry Yang
Test Date:	2020-11-10

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table and plots:


AC120 V, 60 Hz, Line:

Final_Result

a	Juit						
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB μ V)	(dB µ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.155329		38.57	55.71	17.14	9.000	L1	9.6
0.165734	49.93		65.17	15.24	9.000	L1	9.6
0.169074	50.05		65.01	14.96	9.000	L1	9.6
0.197344	44.78		63.72	18.94	9.000	L1	9.6
0.343287		33.68	49.12	15.44	9.000	L1	9.6
0.427528		37.19	47.30	10.11	9.000	L1	9.6
0.431814	40.36		57.22	16.86	9.000	L1	9.6
0.451638	42.49		56.84	14.35	9.000	L1	9.6
0.458447		38.03	46.72	8.69	9.000	L1	9.6
0.491602		28.73	46.14	22.41	9.000	L1	9.6
0.621468	28.31		56.00	27.69	9.000	L1	9.6
11.496483		32.26	50.00	27.74	9.000	L1	10.0

AC120 V, 60 Hz, Neutral:

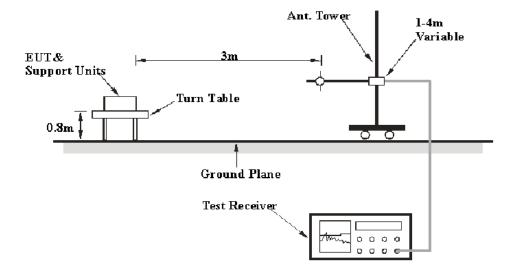
Final Result

<u>avo</u>	ou. t						
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB μ V)	(dB μ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.153788		39.95	55.79	15.84	9.000	N	9.6
0.157671	52.41		65.59	13.18	9.000	N	9.6
0.167396	51.48		65.09	13.61	9.000	N	9.6
0.170769		35.18	54.92	19.74	9.000	N	9.6
0.197344	47.71		63.72	16.01	9.000	N	9.6
0.213738	43.92		63.06	19.14	9.000	N	9.6
0.238526	39.94		62.15	22.21	9.000	N	9.6
0.348462		32.00	49.00	17.00	9.000	N	9.6
0.366283		33.52	48.58	15.06	9.000	N	9.6
0.392773		32.24	48.00	15.76	9.000	N	9.6
0.442717	40.66		57.01	16.35	9.000	N	9.6
0.460739		37.84	46.68	8.84	9.000	N	9.6

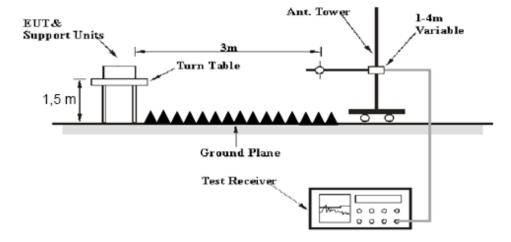
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.


(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

EUT Setup

Below 1 GHz:

1-25 GHz:

The radiated emission below 1GHz tests were performed in the 3 meters chamber test site A, above 1GHz tests were performed in the 3 meters chamber test site B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.249 limits.

Test Equipment Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

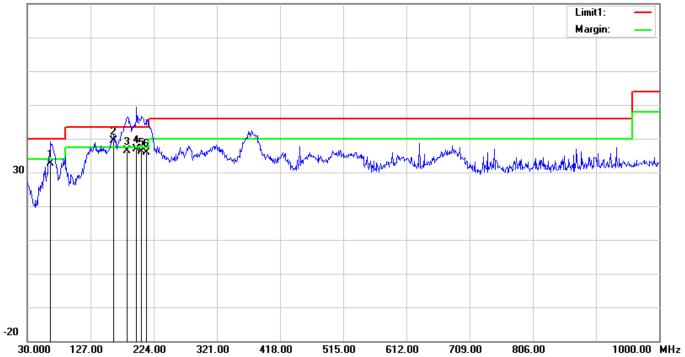
Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Radiation Below 1GHz						
Sunol Sciences	Antenna	JB3	A060611-1	2020-11-10	2023-11-10		
R&S	EMI Test Receiver	ESR3	102453	2020-09-12	2021-09-12		
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2020-09-05	2021-09-05		
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2020-09-05	2021-09-05		
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2020-05-06	2021-05-06		
HP	Amplifier	8447D	2727A05902	2020-09-05	2021-09-05		
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A		
		Radiation Above 1G	Hz				
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12		
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2017-12-06	2020-12-05		
Agilent	Spectrum Analyzer	E4440A	SG43360054	2020-07-07	2021-07-07		
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2020-09-05	2021-09-05		
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2020-06-27	2021-06-27		
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	2020-09-05	2021-09-05		
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2020-06-27	2021-06-27		
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A		
E-Microwave	Band-stop Filters	OBSF-2400-2483.5- S	OE01601525	2020-06-16	2021-06-16		
Micro-tronics	High Pass Filter	HPM50111	S/N-G217	2020-06-16	2021-06-16		

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data


Environmental Conditions

Test Items	Radiation Below 1GHz	Radiation Above 1GHz
Temperature:	24.9°C	26 °C
Relative Humidity:	41 %	29 %
ATM Pressure:	101.7kPa	101.6 kPa
Tester:	Michael Zhang	Felix Wang
Test Date:	2020-11-27	2020-11-21

Test Mode: Transmitting

1) 30MHz-1GHz Horizontal:

80.0 dBuV/m

Frequency	Reading	Detector	Corrected	Result	Limit	Margin
(MHz)	(dBµV)		(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
65.8900	44.52	QP	-11.77	32.75	40.00	7.25
162.8900	45.60	QP	-6.30	39.30	43.50	4.20
183.2600	43.61	QP	-7.12	36.49	43.50	7.01
197.8100	43.01	QP	-6.15	36.86	43.50	6.64
205.5700	42.98	QP	-6.83	36.15	43.50	7.35
213.3300	43.20	QP	-7.20	36.00	43.50	7.50

709.00

806.00

Vertical:

-20

30.000

127.00

224.00

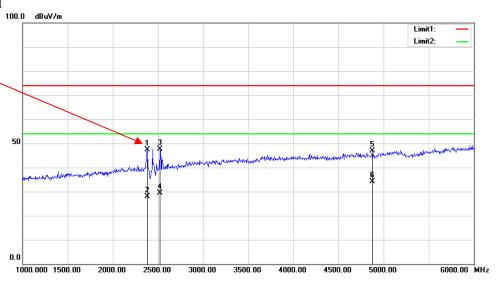
321.00

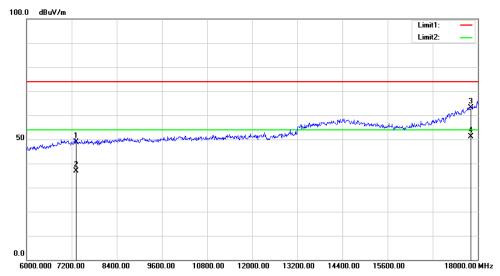
Frequency	Reading	Detector	Corrected	Result	Limit	Margin
(MHz)	(dBµV)		(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
66.8600	43.76	QP	-11.65	32.11	40.00	7.89
75.5900	42.95	QP	-11.27	31.68	40.00	8.32
83.3500	40.38	QP	-11.54	28.84	40.00	11.16
181.3200	43.72	QP	-7.01	36.71	43.50	6.79
198.7800	39.66	QP	-5.99	33.67	43.50	9.83
345.2500	42.83	peak	-3.16	39.67	46.00	6.33

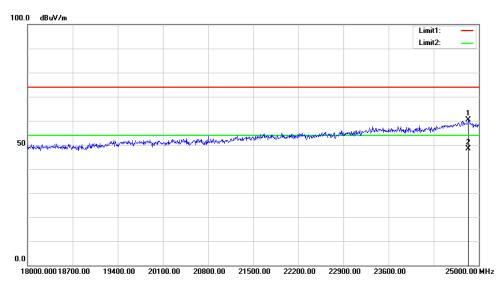
515.00

612.00

418.00

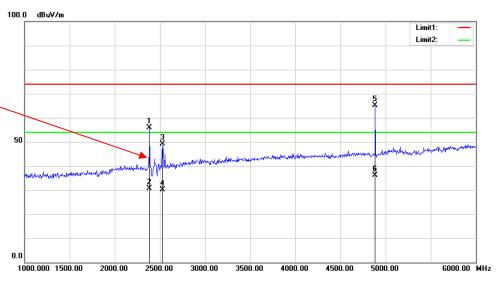

1000.00 MHz

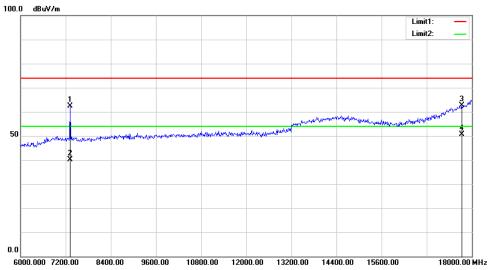

2) 1GHz-25GHz:

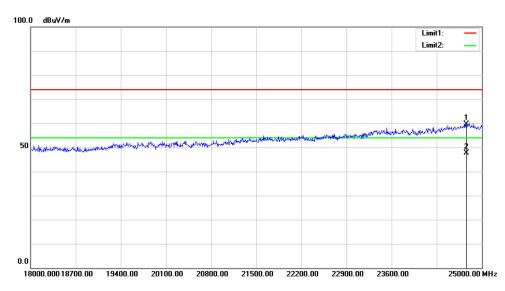

Eugguanav	Re	ceiver	Rx Antenna		Cable Amplifier		Corrected	T ::4	Manaia
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dB	dB	dBμV/m	dBμV/m	dB
2440.00	65.89	PK	Н	28.18	1.82	0.00	95.89	113.98	18.09
2440.00	30.22	AV	Н	28.18	1.82	0.00	60.22	93.98	33.76
2440.00	70.12	PK	V	28.18	1.82	0.00	100.12	113.98	13.86
2440.00	34.39	AV	V	28.18	1.82	0.00	64.39	93.98	29.59
2400.00	27.66	PK	V	28.10	1.80	0.00	57.56	74.00	16.44
2400.00	15.53	AV	V	28.10	1.80	0.00	45.43	54.00	8.57
2483.50	27.43	PK	V	28.27	1.84	0.00	57.41	74.00	16.59
2483.50	15.96	AV	V	28.27	1.84	0.00	46.00	54.00	8.00
4880.00	54.37	PK	V	33.06	3.27	25.66	65.04	74.00	8.96
4880.00	25.39	AV	V	33.06	3.27	25.66	36.06	54.00	17.94
7320.00	47.42	PK	V	36.03	4.62	25.72	62.35	74.00	11.65
7320.00	25.19	AV	V	36.03	4.62	25.72	40.12	54.00	13.88
2379.00	52.26	PK	V	28.06	1.79	26.30	55.81	74.00	18.19
2379.00	27.17	AV	V	28.06	1.79	26.30	30.72	54.00	23.28
2528.00	45.08	PK	V	28.40	1.86	26.25	49.09	74.00	24.91
2528.00	26.03	AV	V	28.40	1.86	26.25	30.04	54.00	23.96

Test plots: Horizontal

Fundamental Test with Band Rejection Filter







Vertical:

Fundamental Test with Band Rejection Filter

FCC §15.215(c) – 20 dB BANDWIDTH TESTING

Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 3. Repeat above procedures until all frequencies measured were complete.

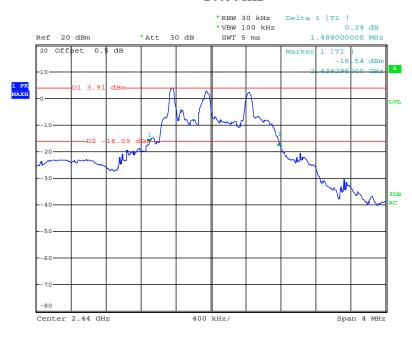
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100035	2020-09-12	2021-09-12
yzjingcheng	Coaxial Cable	KTRFBU-141-50	41005012	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions


Temperature:	28.7 °C
Relative Humidity:	51 %
ATM Pressure:	101.2 kPa
Tester:	Rennes Guo
Test Date:	2020-10-20

Test Result: Compliant. Please refer to following tables and plots

Test Mode: Transmitting

Frequency	20 dB Bandwidth
(MHz)	(MHz)
2440	1.488

2440 MHz

Date: 20.OCT.2020 09:45:36

***** END OF REPORT *****