

FCC Measurement/Technical Report on

Hyper-thin Bluetooth IoT edge Wiliot Battery Assisted IoT Pixel

Contains FCC ID: 2AXVQ-WILIOT2SB

Contains IC: 22623-WILIOT2SB

Report Reference: MDE_WILIOT_2104_FCC_02

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/
Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

TABLE OF CONTENTS

1. App	olied Standards and Test Summary	3
1.1. 1.2. 1.3.	Applied Standards FCC-IC Correlation table Measurement Summary /Signatures	3 4 5
2. Rev	vision History / Signatures	5
2. Adr	ninistrative Data	6
2.1. 2.2. 2.3. 2.4.	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
3. Tes	t Object Data	7
2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11.	General EUT Description EUT Main components Auxiliary Equipment Ancillary Equipment EUT Setups Operating Modes / Test Channels Product labelling	7 8 8 8 9 9
3. Tes	t Results	10
3.1. 3.2.	Field strength of Fundamental / Radiated power output Field Strength of Harmonics / Spurious radiated emissions	10 12
4. Tes	t Equipment	19
5. Ant	enna Factors, Cable Loss and Sample Calculations	21
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	LISN R&S ESH3-Z5 (150 kHz - 30 MHz) Antenna R&S HFH2-Z2 (9 kHz - 30 MHz) Antenna R&S HL562 (30 MHz - 1 GHz) Antenna R&S HF907 (1 GHz - 18 GHz) Antenna EMCO 3160-09 (18 GHz - 26.5 GHz) Antenna EMCO 3160-10 (26.5 GHz - 40 GHz)	21 22 23 24 25 26
6. Pho	oto Report	26
7. Mea	asurement Uncertainties	27

Page 3 of 27

1. APPLIED STANDARDS AND TEST SUMMARY

1.1. APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-20 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.249 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

Note: ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2. FCC-IC CORRELATION TABLE

Correlation of measurement requirements for general radio equipment and operation within the bands 902-928~MHz, 2400-2483.5~MHz, 5725-5825~MHz and 24.0-24.25~GHz from FCC and IC

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Transmitter spurious radiated emissions	§ 15.209	RSS-Gen Issue 5: 6.13/8.9/8.10;
		RSS-210 Issue 10: 7.2
Field strength of Fundamental	§ 15.249	RSS-210 Issue 10: Annex B.10
		RSS-Gen Issue 5: 6.12, 8.9
Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.	§15.249	RSS-210, Issue 10: Annex B.10

1.3. MEASUREMENT SUMMARY /SIGNATURES

FCC Part 15, Subpart C § 15.249 (a)

Field strength of Fundamental / Radiated power output

The measurement was performed according to ANSI C63.10 2013

OP-Mode, Frequency Setup Port Final Result

CW, high S01_AA01 Enclosure passed

FCC Part 15, Subpart C § 15.249 (a), § 15.35 (b), § 15.209

Field Strength of Harmonics / Spurious radiated emissions

The measurement was performed according to ANSI C63.10 2013

OP-Mode, Frequency Setup Port Final Result

CW, high S01_AA01 Enclosure passed

N/A not applicable (the EUT cannot be connected to the AC mains network)

2. REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2022-02-16		valid	

COMMENT: -

The purpose of the test report is to verify the impact of a HW change. Thus not all applicable tests were performed.

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Robert Machulec

2. ADMINISTRATIVE DATA

2.1. TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015 FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

2.2. PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Robert Machulec

Date of Report: 2022-02-16 Testing Period: 2021-09-28

2.3. APPLICANT DATA

Company Name: Wiliot Inc.

Address: 13500 Evening Creek Dr N, Suite 120

San Diego United States

Contact Person: Mr. Roberto Sandre

2.4. MANUFACTURER DATA

Company Name: Please see Applicant Data

Address:

Contact Person:

3. TEST OBJECT DATA

2.5. GENERAL EUT DESCRIPTION

Kind of Device product description	BTLE Transmitter operating in 2400 – 2483.5 MHz ISM frequency band.
Product name	Hyper-thin Bluetooth IoT edge
Туре	Wiliot Battery Assisted IoT Pixel
Declared EUT data by	the supplier
Voltage Type	DC
Normal Voltage	1.5 V
Low Voltage	-
High Voltage	-
Normal Temperature	25 °C
Low Temperature	-20 °C
High Temperature	+50 °C
Specific product description for the EUT	The EUT is a tag with a Bluetooth® Low Energy Wireless Micro Controller Unit (MCU) that offers the ability to sense, compute and communicate using Bluetooth wireless communication technology. They do this with a printed battery, and with a physical design and packaging that allows the integration onto stickers. The EUT is a transmit-only uni-directional device.
The EUT provides the following ports:	none
Special software used for testing	Wiliot Test Mode Host software, provided by the manufacturer
Antenna type / gain	Internal PCB loop antenna / -3dBi
Transmitter operating frequencies	2402 MHz / 2426 MHz / 2480 MHz

The main components of the EUT are listed and described in Chapter 3.2.

2.6. EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1405004AA01	radiated sample
Sample Parameter	Value	е
Serial No.	80C	
HW Version	Gen2 Battery	
SW Version	Wiliot_Fw_P2.1	
Comment		

2.7. AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using
Development board	Wiliot, PIB 2.0, WLT_015	

2.8. ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description

2.9. EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
S01_AA01	EUT A	Used for all tests

2.10. OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
CW	Continuous Wave signal	EUT transmits continuously an
		unmodulated signal
PM	Pulsed Modulated signal	EUT transmits a modulated
	_	signal with maximum possible
		duty cycle

BT LE Test Channels: Channel: Frequency [MHz]

low	mid	high
37	38	39
2402	2426	2480

Modulation: GFSK, BT = 0.5, 1 Msym/s

2.11. PRODUCT LABELLING

2.11.1. FCC ID LABEL

Please refer to the documentation of the applicant.

2.11.2. IC LABEL

Please refer to the documentation of the applicant.

2.11.3. LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

3. TEST RESULTS

3.1. FIELD STRENGTH OF FUNDAMENTAL / RADIATED POWER OUTPUT

Standard FCC Part 15, Subpart C

The test was performed according to ANSI C63.10-2013

3.1.1. TEST DESCRIPTION

Please refer to the description at sub-clause 4.2.1 esp. item no. 3. (Above 1 GHz)

3.1.2. TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.249

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

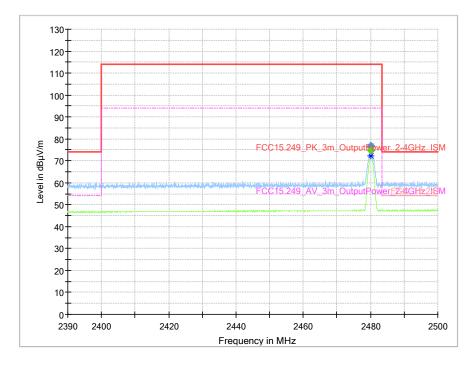
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50 (94.0 dBμV/m)	500 (54.0 dBμV/m)
2400-2483.5 MHz	50 (94.0 dBμV/m)	500 (54.0 dBμV/m)
5725-5875 MHz	50 (94.0 dBμV/m)	500 (54.0 dBμV/m)
24.0-24.25 GHz	250 (108.0 dBμV/m)	2500 (68.0 dBμV/m)

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

- (c) Field strength limits are specified at 3 meters.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

3.1.3. TEST PROTOCOL

Temperature: 23 °C Air Pressure: 1011 hPa Humidity: 38 %


Op. Mode	Setup	Port
CW	S01_AA01	Enclosure

Frequency [MHz]	9	Limit [dBµV/m]	Margin to Limit [dB]	Remarks
2480	74.7	94	19.3	No duty cycle correction applied

Notes: -

3.1.4. MEASUREMENT PLOTS

Radio Technology = BTLE, Operating Frequency = High (S01_AA01)

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2479.980		74.7	93.98	19.28	1000.0	1000.000	150.0	V	-87.0	82.0	35.1

3.1.5. TEST EQUIPMENT USED

- Radiated Emissions

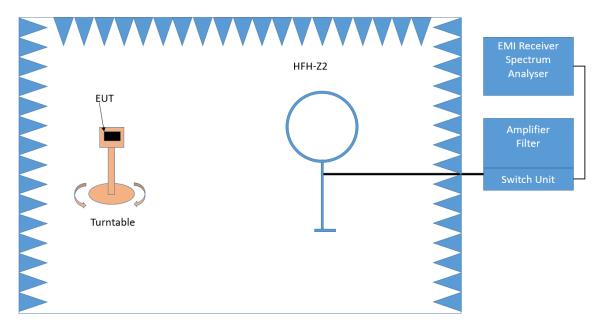
3.2. FIELD STRENGTH OF HARMONICS / SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to ANSI C63.10-2013

3.2.1. TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

Anechoic chamber

Antenna distance: 3 m

Antenna height: 1 mDetector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

Detector: Quasi-Peak (9 kHz – 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 – 1000 MHz

- Frequency steps: 30 kHz - IF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

- Height variation range: 1 – 4 m - Height variation step size: 1.5 m - Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360°. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1 – 4 m. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms - Turntable angle range: 360 ° - Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

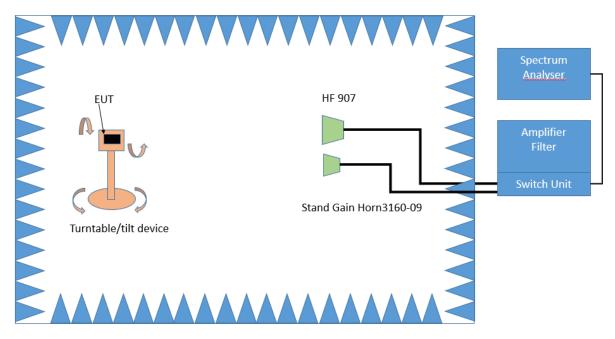
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}.$

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

Page 16 of 27

3.2.2. TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.249

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50 (94.0 dBµV/m)	500 (54.0 dBµV/m)
2400-2483.5 MHz	50 (94.0 dBuV/m)	500 (54.0 dBuV/m)
5725-5875 MHz	50 (94.0 dBµV/m)	500 (54.0 dBµV/m)
24.0-24.25 GHz	250 (108.0 dBµV/m)	2500 (68.0 dBµV/m)

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

- (c) Field strength limits are specified at a distance of 3 meters.
- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency	Limit (µV/m)	Measurement	Calculate	Limit (dBµV/m)
(MHz)	-	distance (m)	Limit (dBµV/m @10m)	@10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 – 13.8) + 59.1 dB	107.6 – 72.9
0.49 - 1.705	24000/F (kHz)	30	(33.8 – 23.0) + 19.1 dB	52.9 – 42.1
1.705 – 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

3.2.3. TEST PROTOCOL

MEASUREMENT 30 MHz to 1 GHz

Temperature: 23°C Air Pressure: 1011 hPa Humidity: 38 %

Op. Mode	Setup	Port
CW	S01_AA01	Enclosure

High channel:

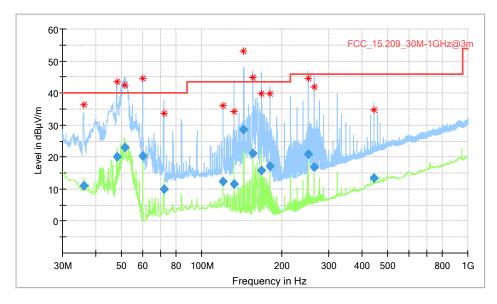
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
	·	·		(ms)					
36.000000	10.98	40.00	29.02	1000.0	120.000	123.0	V	-135.0	15.8
48.000000	20.12	40.00	19.88	1000.0	120.000	281.0	V	90.0	8.0
51.420000	22.95	40.00	17.05	1000.0	120.000	110.0	V	-89.0	5.9
60.000000	20.37	40.00	19.63	1000.0	120.000	160.0	V	-168.0	5.8
72.000000	9.84	40.00	30.16	1000.0	120.000	120.0	V	11.0	8.7
120.000000	12.39	43.50	31.11	1000.0	120.000	266.0	V	-86.0	11.7
132.000000	11.44	43.50	32.06	1000.0	120.000	134.0	V	85.0	10.5
144.000000	28.54	43.50	14.96	1000.0	120.000	106.0	V	83.0	9.5
156.000000	21.04	43.50	22.46	1000.0	120.000	250.0	V	-132.0	9.3
168.000000	15.91	43.50	27.59	1000.0	120.000	239.0	V	101.0	9.3
180.000000	17.17	43.50	26.33	1000.0	120.000	189.0	Н	-132.0	10.3
252.030000	21.00	46.00	25.00	1000.0	120.000	115.0	Н	-171.0	11.8
264.030000	16.78	46.00	29.22	1000.0	120.000	111.0	Н	-175.0	12.2
444.030000	13.43	46.00	32.57	1000.0	120.000	247.0	Н	19.0	17.7

MEASUREMENT 1 GHz - 26.5 GHz

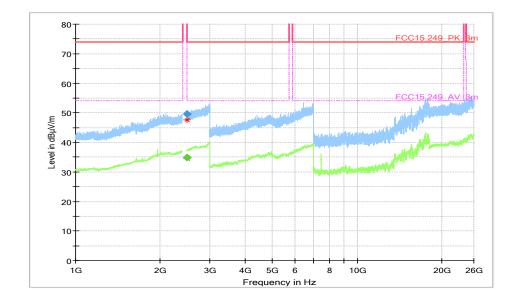
Temperature: 23°C
Air Pressure: 1011 hPa
Humidity: 38 %

Op. Mode	Setup	Port
CW	S01_AA01	Enclosure

High channel:


Fi	requency (MHz)	MaxPeak (dBµV/m)	CAverag e	Limit (dBµ	Margi n	Meas. Time	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n	Corr. (dB/
			(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
	2484.160		34.8	53.98	19.17	1000.0	1000.000	150.0	V	-127.0	82.0	5.3
	2484.160	49.7		73.98	24.29	1000.0	1000.000	150.0	Н	-34.0	110.0	5.3

Test report Reference: MDE_WILIOT_2104_FCC_02 Page 17 of 27



3.2.4. MEASUREMENT PLOTS

Radio Technology = BTLE, Operating Frequency = High, Frequency Range 30 MHz - 1 GHz (S01_AA01)

Radio Technology = BTLE, Operating Frequency = High, Frequency Range 1 – 26.0 GHz (S01_AA01)

3.2.5. TEST EQUIPMENT USED

- Radiated Emissions

4. TEST EQUIPMENT

Radiated Emissions FARRadiated Emissions in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
1.1	Opus10 TPR (8253.00)	00	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
1.2	AMF- 7D00101800- 30-10P-R		Miteq			
1.3	5HC2700/12750		Trilithic	9942012		
1.4	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.5	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2021-04	2023-04
1.6	Fluke 177	,	Fluke Europe B.V.	86670383	2020-04	2022-04
1.7	JS4-18002600- 32-5P		Miteq	849785		
1.8	FSW 43		Rohde & Schwarz	103779	2021-06	2023-06
1.9	3160-09		EMCO Elektronic GmbH	00083069		
1.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
1.11	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.12	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.13	3160-10	/ Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.14	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
1.15	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.16	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH			
1.17	AFS42- 00101800-25-S- 42	Broadband	Miteq	2035324		
1.18	HF 907		Rohde & Schwarz	102444	2021-09	2024-09

2 Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
2.2	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
2.3	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
-	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
2.5	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
2.6	DS 420S		HD GmbH	420/573/99		
2.7	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due" $\ensuremath{\mathsf{Last}}$

5. ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

5.1. LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	 11.1
26	11.2
28	11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z 5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading
LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

5.2. ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

0.2.	ANTEINIA RAS		
	AF		
Frequency	HFH-Z2)	Corr.	
MHz	dB (1/m)	dB	
0.009	20.50	-79.6	
0.01	20.45	-79.6	
0.015	20.37	-79.6	
0.02	20.36	-79.6	
0.025	20.38	-79.6	
0.03	20.32	-79.6	
0.05	20.35	-79.6	
0.08	20.30	-79.6	
0.1	20.20	-79.6	
0.2	20.17	-79.6	
0.3	20.14	-79.6	
0.49	20.12	-79.6	
0.490001	20.12	-39.6	
0.5	20.11	-39.6	
0.8	20.10	-39.6	
1	20.09	-39.6	
2	20.08	-39.6	
3	20.06	-39.6	
4	20.05	-39.5	
5	20.05	-39.5	
6	20.02	-39.5	
8	19.95	-39.5	
10	19.83	-39.4	
12	19.71	-39.4	
14	19.54	-39.4	
16	19.53	-39.3	
18	19.50	-39.3	
20	19.57	-39.3	
22	19.61	-39.3	
24	19.61	-39.3	
26	19.54	-39.3	
28	19.46	-39.2	
30	19.73	-39.1	

2-22 (7 KHZ - 30 WHZ)								
cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)		
dB	dB	dB	dB	dB	m	m		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.3	0.1	-40	30	3		
0.4	0.1	0.3	0.1	-40	30	3		

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

5.3. ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$(\underline{a}_{Limit} = 3 m)$						
	AF R&S					
Frequency	HL562	Corr.				
MHz	dB (1/m)	dB				
30	18.6	0.6				
50	6.0	0.9				
100	9.7	1.2				
150	7.9	1.6				
200	7.6	1.9				
250	9.5	2.1				
300	11.0	2.3				
350	12.4	2.6				
400	13.6	2.9				
450	14.7	3.1				
500	15.6	3.2				
550	16.3	3.5				
600	17.2	3.5				
650	18.1	3.6				
700	18.5	3.6				
750	19.1	4.1				
800	19.6	4.1				
850	20.1	4.4				
900	20.8	4.7				
950	21.1	4.8				
1000	21.6	4.9				

cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

$(d_{Limit} = 10 \text{ m})$									
30	18.6	-9.9		0.29	0.04	0.23	0.02	-10.5	
50	6.0	-9.6		0.39	0.09	0.32	0.08	-10.5	
100	9.7	-9.2		0.56	0.14	0.47	0.08	-10.5	
150	7.9	-8.8		0.73	0.20	0.59	0.12	-10.5	
200	7.6	-8.6		0.84	0.21	0.70	0.11	-10.5	
250	9.5	-8.3		0.98	0.24	0.80	0.13	-10.5	
300	11.0	-8.1		1.04	0.26	0.89	0.15	-10.5	
350	12.4	-7.9		1.18	0.31	0.96	0.13	-10.5	
400	13.6	-7.6		1.28	0.35	1.03	0.19	-10.5	
450	14.7	-7.4		1.39	0.38	1.11	0.22	-10.5	
500	15.6	-7.2		1.44	0.39	1.20	0.19	-10.5	
550	16.3	-7.0		1.55	0.46	1.24	0.23	-10.5	
600	17.2	-6.9		1.59	0.43	1.29	0.23	-10.5	
650	18.1	-6.9		1.67	0.34	1.35	0.22	-10.5	
700	18.5	-6.8		1.67	0.42	1.41	0.15	-10.5	
750	19.1	-6.3		1.87	0.54	1.46	0.25	-10.5	
800	19.6	-6.3		1.90	0.46	1.51	0.25	-10.5	
850	20.1	-6.0		1.99	0.60	1.56	0.27	-10.5	
900	20.8	-5.8		2.14	0.60	1.63	0.29	-10.5	
950	21.1	-5.6		2.22	0.60	1.66	0.33	-10.5	
1000	21.6	-5.6		2.23	0.61	1.71	0.30	-10.5	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

5.4. ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

	AF R&S	0000
Frequency MHz	HF907 dB (1/m)	Corr. dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

ı				cable		
				loss 4		
	cable			(switch		
	loss 1	cable	cable	unit,		used
	(relay	loss 2	loss 3	atten-	cable	for
	inside	(inside	(outside	uator &	loss 5 (to	FCC
	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
	dB	dB	dB	dB	dB	
	0.47	1.87	0.53	-27.58	1.33	
	0.56	2.41	0.67	-28.23	1.31	
	0.61	2.78	0.86	-27.35	1.40	
	0.58	2.74	0.90	-26.89	1.47	
	0.66	2.82	0.86	-25.58	1.46	

Fraguancy	AF R&S HF907	Corr.
Frequency MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

5.5. ANTENNA EMCO 3160-09 (18 GHZ – 26.5 GHZ)

	AF	
Frequency	EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

5.6. ANTENNA EMCO 3160-10 (26.5 GHZ – 40 GHZ)

	AF EMCO	
Frequency	3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

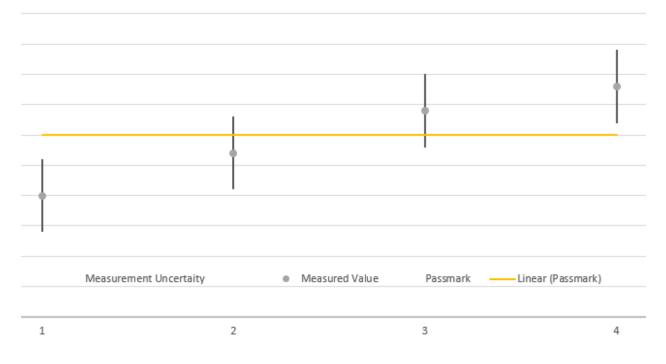
distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6. PHOTO REPORT

Please see separate photo report.



7. MEASUREMENT UNCERTAINTIES

Measurement Uncertainties

Parameter	Uncertainty
Antenna Power, Antenna Power Tolerance	± 1.2 dB
Frequency Tolerance	± 5.0 Hz
Transmitter Spurious Emissions, Limit on	± 2.5 dB
secondary radiated emissions	
Occupied bandwidth, Spread Bandwidth	± 825 kHz
Dwell time	± 30.0 µs
Temperature	± 0.3 °C
Humidity	± 3%
DC and low frequency voltages	± 1.5% + 2 digits
Time	± 5%
Antenna Gain and Pattern	± 1.8 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.