

FCC RADIO TEST REPORT FCC ID: 2AXURX5005

Product : DASH CAM Trade Mark : MASIGO Model Name : X5005 Family Model : S550D,S555D,S558D,S559D,A500D,A 530D,A540D,A550D Report No. : S23060804505002

Prepared for

MASI AUTO CO., LTD.

7F.-10, No.9, Sec. 2, Nankan Rd., Luzhu Dist., Taoyuan City 338, Taiwan

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name: MASI AUTO CO., LTD.
Address : 7F10, No.9, Sec. 2, Nankan Rd., Luzhu Dist., Taoyuan City 338, Taiwan
Manufacturer's Name: MASI AUTO CO., LTD.
Address Taoyuan City 338, Taiwan
Product description
Product name: DASH CAM
Model and/or type reference : X5005
Family Model S550D,S555D,S558D,S559D,A500D,A530D,A540D,A550D
Sample number S230608045005
Standards: FCC Part15.407
Test procedure ANSI C63.10-2013 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements/ the Industry Canada requirements And it is applicable only to the tested sample identified in the report.
This report shall not be reproduced except in full, without the written approval of NTEK, this
document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of
the document.
Date of Test
Date (s) of performance of tests Jun 12, 2023 ~ Jul 06, 2023
Date of IssueJul 06, 2023
Test Result Pass
Testing Engineer : <u>Muen bin</u> (Allen Liu) Authorized Signatory : <i>Muthawayayayayayayayayayayayayayayayayayaya</i>
(Alex Li)

Report No.: S23060804505002

. .

Table of Contents	
	Page
1. SUMMARY OF TEST RESULTS	5
1.1 FACILITIES AND ACCREDITATIONS	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	ED 10
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3. TEST REQUIREMENTS	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION MEASUREMENT	16
3.3 POWER SPECTRAL DENSITY TEST	26
3.4 26DB & 99% EMISSION BANDWIDTH	29
3.5 MINIMUM 6 DB BANDWIDTH	31
3.6 MAXIMUM CONDUCTED OUTPUT POWER	33
3.7 OUT OF BAND EMISSIONS	37
3.8 SPURIOUS RF CONDUCTED EMISSIONS	39
3.9 FREQUENCY STABILITY MEASUREMENT	40
4. ANTENNA REQUIREMENT	44
4.1 STANDARD REQUIREMENT	44
4.2 EUT ANTENNA	44
5. TEST RESULTS	45
5.1 DUTY CYCLE	45
5.2 MAXIMUM CONDUCTED OUTPUT POWER	53
5.3 -6DB BANDWIDTH	54
5.4 OCCUPIED CHANNEL BANDWIDTH	62
5.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL	70
5.6 BAND EDGE	78
5.7 CONDUCTED RF SPURIOUS EMISSION	85

Revision History				
Report No.	Version	Description	Issued Date	
S23060804505002	Rev.01	Initial issue of report	Jul 06, 2023	

Version.1.2

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E					
Standard Section	Test Item	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	N/A			
15.209(a), 15.407 (b)(4)	Spurious Radiated Emissions	PASS			
15.407 (a)(3)	26 dB and 99% Emission Bandwidth	PASS			
15.407(e)	Minimum 6 dB bandwidth	PASS			
15.407 (a)(3)	Maximum Conducted Output Power	PASS			
15.407(b)(4)	Band Edge	PASS			
15.407 (a)(3)	Power Spectral Density	PASS			
15.407(b)	Spurious Emissions at Antenna Terminals	PASS			
15.203	Antenna Requirement	PASS			
15.407(c)	Automatically discontinue transmission	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

Sile Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street,
	Bao'an District, Shenzhen 518126 P.R. China.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied Channel Bandwidth	± 4.7%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

GENERAL DESCH				
Equipment	DASH CAM			
Trade Mark	MASIGO			
Model Name	X5005	X5005		
Family Model	S550D,S555D,S558D,	S559D,A500D,A530D,A540D,A550D		
Model Difference	All models are the sam channel.	Il models are the same circuit and RF module, except the language and marketing nannel.		
FCC ID	2AXURX5005			
Product Description	details of EUT technica Model: SM CC 5V3.5A	⊠802.11a/n/ac (20MHz channel bandwidth) ⊠802.11n/ac (40MHz channel bandwidth) ⊠802.11ac (80MHz channel bandwidth) 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11a: (6,9,12,18,24,36,48,54Mbps; 802.11ac (VHT40):MCS0-MCS15; 802.11ac (VHT20):MCS0-MCS8; 802.11ac (VHT40)/VHT80):MCS0-MCS9; OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n/ac; ⊠5745-5825 MHz for 802.11a/n(HT20)/ac(VHT20); 5755-5795 MHz for 802.11a/n(HT40)/ac(VHT40); 5775MHz for 802.11ac(VHT80) ⊠5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5775MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ; Ceramic Antenna band IV:1dBi on, features, or specification exhibited in User's Manual, More al specification, please refer to the User's Manual.		
Car Charger	Input: DC 12V-24V Output: 5V 1.0A for USB Type A, total 5V 3.5A			
Battery	N/A			
Power supply	DC 5V from Car Charg	er		
Connecting I/O Port(s)	Please refer to the Use	er's Manual		
Hardware version:	A1			
Firmware version:	X5005-V01T			
Software version:	X5005-V01T			
	,			

Note:

NTEK 北测

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Certificate #4298.01

802.11a/n/ac(20 MHz) Carrier Frequency Channel							
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

	802.11n	/ac(40MHz) (Carrier Frequend	cy Channel	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795	-	-

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

	802.11	ac(80MHz) C	arrier Frequency	y Channel	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
155	5775			-	-

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Normal Link Mode
Mode 2	802.11a / n 20 / ac 20 CH149/ CH157/ CH 165
Mode 3	802.11n 40 / ac 40 CH 151 / CH 159
Mode 4	802.11ac 80 CH 155

For Radiated Emission			
Final Test Mode Description			
Mode 1	Normal Link Mode		
Mode 2	802.11a / n 20 / ac 20 CH149/ CH157/ CH 165		
Mode 3	802.11n 40 / ac 40 CH 151 / CH 159		
Mode 4	802.11ac 80 CH 155		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED					
For Radiated Test Cases					
EUT					
For Conducted Test Cases					
C-1 Instrument					
Note:1.The temporary antenna connector is soldered on the PCB board in order to perform conducted test and this temporary antenna connector is listed in the equipment list.	S				

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK 北测

® lac-MR

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^l column.

NTEK JLW®

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

ladia	Iona Conducted	iest equipment					
Iten	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

lote:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

NTEK LIN®

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

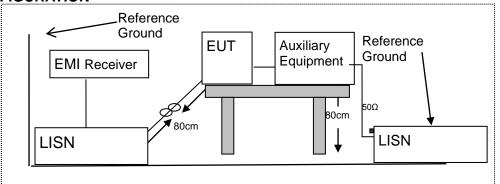
Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

Version.1.2

3. TEST REQUIREMENTS

3.1CONDUCTED EMISSION MEASUREMENT 3.1.1 APPLICABLE STANDARD

According to FCC Part 15.207(a)


3.1.2 CONFORMANCE LIMIT

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.1.3 TEST CONFIGURATION

3.1.4 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support
 equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for
 the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.5 TEST RESULTS

EUT :	DASH CAM	Model Name :	X5005
Temperature :	22 ℃	Relative Humidity :	57%
Pressure :	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode :	N/A

Note: Not Applicable

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 APPLICABLE STANDARD According to FCC Part 15.407(b) and 15.209

3.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

'					
	MHz	MHz	MHz	GHz	
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
	0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
	6.26775-6.26825	123-138	2200-2300	14.47-14.5	
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
	12.57675-12.57725	322-335.4	3600-4400	(2)	
	13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

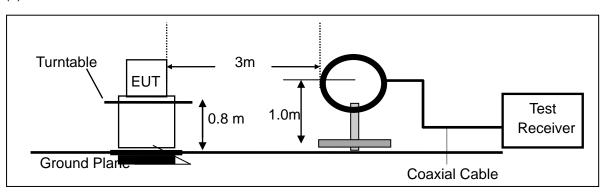
3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

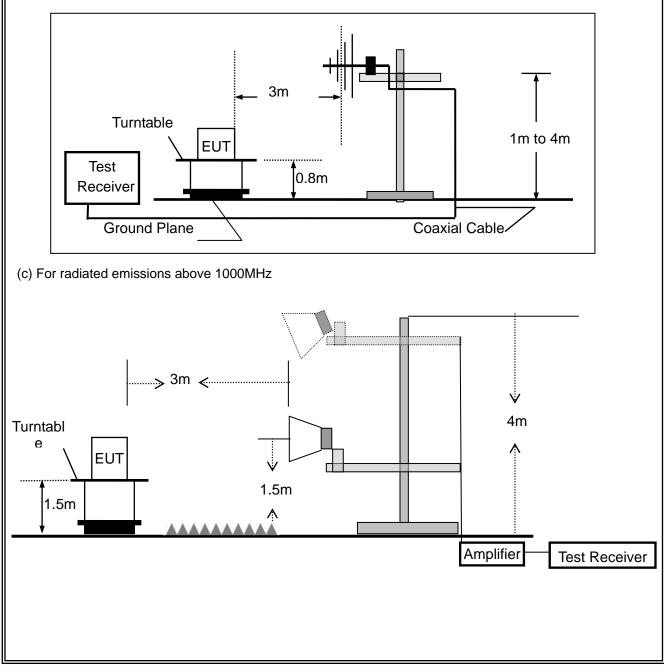
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


3.2.3 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.



3.2.4 TEST CONFIGURATION

(b) For radiated emissions from 30MHz to 1000MHz

3.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
AL 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Report No.: S23060804505002

3.2.6 TEST RESULTS (9KHz - 30 MHz)

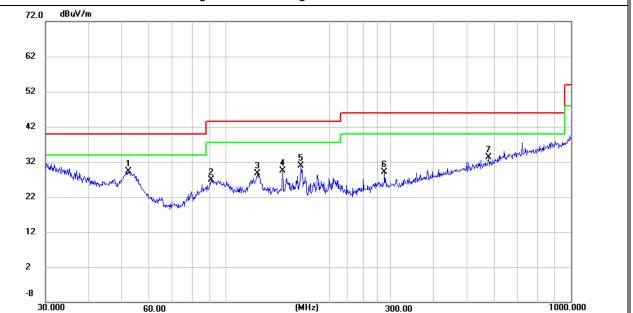
EUT:	DASH CAM	Model Name. :	X5005
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 5V
Test Mode :	ТХ	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Report No.: S23060804505002


3.2.7 TEST RESULTS (30MHz - 1GHz)

		-	
EUT :	DASH CAM	Model Name. :	X5005
Temperature :	25 ℃	Relative Humidity :	55%
Pressure :	1010 hPa	Test Voltage :	DC 5V
Test Mode :	TX(5.8G)- 802.11a (Mid CH)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	52.3912	15.20	14.13	29.33	40.00	-10.67	QP
V	90.5374	10.06	16.79	26.85	43.50	-16.65	QP
V	123.2655	10.00	18.75	28.75	43.50	-14.75	QP
V	145.8611	10.91	18.60	29.51	43.50	-13.99	QP
V	164.9075	13.22	17.78	31.00	43.50	-12.50	QP
V	287.9904	9.09	20.07	29.16	46.00	-16.84	QP
V	576.6443	7.11	26.11	33.22	46.00	-12.78	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark			
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtomant			
Н	123.2655	9.41	18.75	28.16	43.50	-15.34	QP			
Н	208.5803	11.44	16.58	28.02	43.50	-15.48	QP			
Н	287.9904	10.84	20.07	30.91	46.00	-15.09	QP			
Н	502.9395	6.62	24.90	31.52	46.00	-14.48	QP			
Н	721.7259	8.50	28.28	36.78	46.00	-9.22	QP			
Н	993.0114	7.01	32.36	39.37	54.00	-14.63	QP			
Emissio	Remark: Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit									
72.0	dBuV/m									
62 52							ſ			
42						- Luc Burnting	6 			
32	when the state of			when an and a marked a	lothy with on the with	walledwalarable				
22	and have the second second and a second as	WIN MARKAN WAR	wilden somernende	March al Poly, and Papers						
12										
2										
-8).000	60.00		(MHz)	300.00		1000.000			
5.		0.00			500.00					

Note(1)"802.11a" mode is the worst mode. (2)Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

3.2.8 TEST RESULTS (1GHz-18GHz)

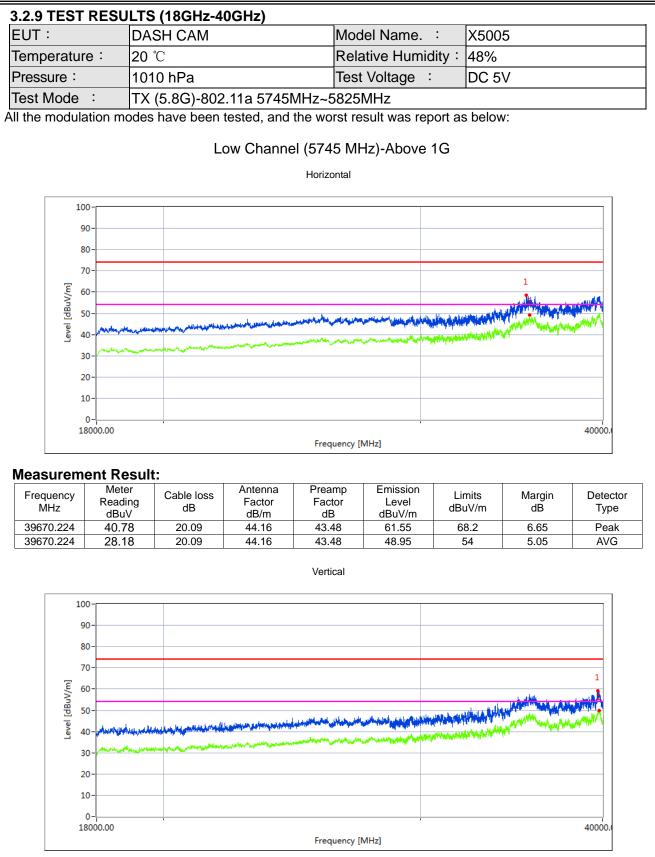
EUT :	DASH CAM	Model Name. :	X5005
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 5V
Test Mode :	TX (5.8G) 802.11a_5745~582	5MHz	

Polar	Frequency	Meter	Cable	Antenna	Preamp	Emission	Limits	Morgin	Detector			
Polar	Frequency	Reading	loss	Factor	Factor	Level	Limits	Margin	Туре			
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)				
Low Channel (5745 MHz)-Above 1G												
Vertical	Vertical 5122.51 60.56 5.94 35.40 44.00 57.90 74.00 -10											
Vertical	5122.51	40.98	5.94	35.40	44.00	38.32	54.00	-15.68	AV			
Vertical	11490.60	60.18	8.46	39.75	44.50	63.89	74.00	-10.11	Pk			
Vertical	11490.60	39.65	8.46	39.75	44.50	43.36	54.00	-10.64	AV			
Vertical	17235.65	39.30	10.12	38.80	44.10	44.12	68.20	-24.08	Pk			
Horizontal	5166.60	59.50	5.94	35.18	44.00	56.62	68.20	-11.58	Pk			
Horizontal	11490.47	50.62	8.46	38.71	44.50	53.29	74.00	-20.71	Pk			
Horizontal	11490.47	40.87	8.46	38.71	44.50	43.54	54.00	-10.46	AV			
Horizontal	17235.47	56.80	10.12	38.38	44.10	61.20	68.20	-7.00	Pk			
			middle (Channel (578	35 MHz)-Ab	ove 1G						
Vertical	5433.40	59.18	6.48	36.35	44.05	57.96	74.00	-16.04	Pk			
Vertical	5433.40	39.01	6.48	36.35	44.05	37.79	54.00	-16.21	AV			
Vertical	11570.41	60.87	8.47	37.88	44.51	62.71	74.00	-11.29	Pk			
Vertical	11570.41	40.15	8.47	37.88	44.51	41.99	54.00	-12.01	AV			
Vertical	17355.84	39.15	10.12	38.80	44.10	43.97	68.20	-24.23	Pk			
Horizontal	4866.60	60.99	6.48	36.37	44.05	59.79	74.00	-14.21	Pk			
Horizontal	4866.60	39.12	6.48	36.37	44.05	37.92	54.00	-16.08	AV			
Horizontal	11570.28	60.20	8.47	38.64	44.50	62.81	74.00	-11.19	Pk			
Horizontal	11570.28	40.85	8.47	38.64	44.50	43.46	54.00	-10.54	AV			
Horizontal	17355.49	49.28	10.12	38.38	44.10	53.68	68.20	-14.52	Pk			

Report No.: S23060804505002

	High Channel (5825 MHz)-Above 1G										
Vertical	5244.48	59.60	7.10	37.24	43.50	60.44	68.20	-7.76	Pk		
Vertical	11652.42	59.40	8.46	37.68	44.50	61.04	74.00	-12.96	Pk		
Vertical	11652.42	39.34	8.46	37.68	44.50	40.98	54.00	-13.02	AV		
Vertical	17473.74	49.14	10.12	38.80	44.10	53.96	68.20	-14.24	Pk		
Horizontal	5285.29	60.49	7.10	37.24	43.50	61.33	68.20	-6.87	Pk		
Horizontal	11652.67	60.43	8.46	38.57	44.50	62.96	74.00	-11.04	Pk		
Horizontal	11652.67	39.67	8.46	38.57	44.50	42.20	54.00	-11.80	AV		
Horizontal	17474.68	50.85	10.12	38.38	44.10	55.25	68.20	-12.95	Pk		

Note:"802.11a" mode is the worst mode.

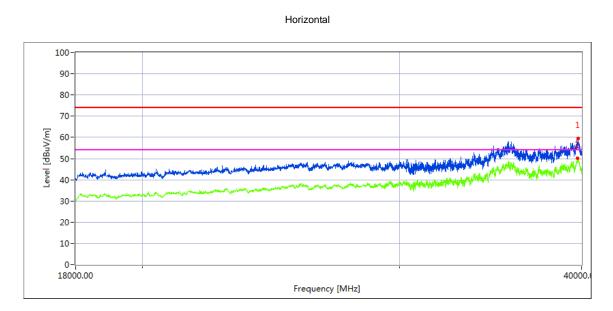

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value

has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

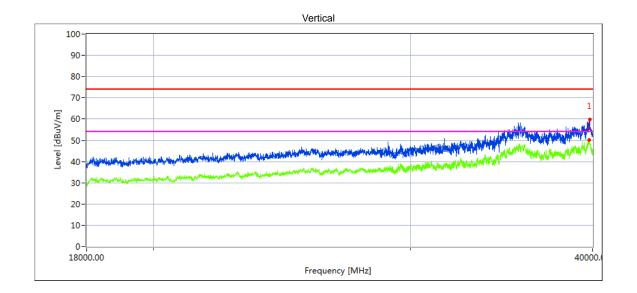
Measurement Result:


Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39731.342	43.78	20.06	44.07	43.21	64.70	68.2	3.50	Peak
39731.342	28.58	20.06	44.07	43.21	49.50	54	4.50	AVG

High Channel (5825 MHz)-Above 1G

ACCREDITED

Certificate #4298.01


R Hac-MR

Measurement Result:

NTEK 北测

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
35628.534	43.07	19.11	42.63	43.48	61.33	68.2	6.87	Peak
35636.158	28.25	19.12	42.63	43.48	46.52	54	7.48	AVG

Measurement Result:

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39821.763	43.22	20.1	44.1	43.22	64.20	68.2	4.00	Peak
39821.763	28.32	20.1	44.1	43.22	49.30	54	4.70	AVG

3.3 POWER SPECTRAL DENSITY TEST

3.3.1 Applied procedures / limit

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add

10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add
 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

3.3.3 DEVIATION FROM STANDARD

No deviation.

3.3.4 TEST SETUP

3.3.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.6 TEST RESULTS

EUT :	DASH CAM	Model Name. :	X5005	
Temperature :	25 °C	Relative Humidity :	56%	
Pressure :	1015 hPa	Test Voltage :	DC 5V	
Test Mode :	TX Frequency Band IV (5725-5850MHz)			

Test data reference attachment.

3.4 26DB & 99% EMISSION BANDWIDTH

3.4.1 Applied procedures / limit

NTEK 北测

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

3.4.2 TEST PROCEDURE

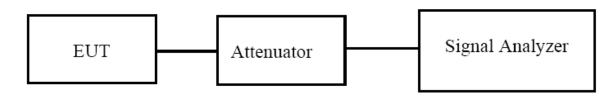
a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

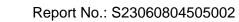

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \ge 3 \cdot RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.


3.4.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.4.4 TEST RESULTS

EUT :	DASH CAM	Model Name. :	X5005	
Temperature :	25 ℃	Relative Humidity :	56%	
Pressure :	1012 hPa	Test Voltage :	DC 5V	
Test Mode :	TX Frequency Band IV (5725-5850MHz)			

Test data reference attachment.

β.5 MINIMUM 6 DB BANDWIDTH

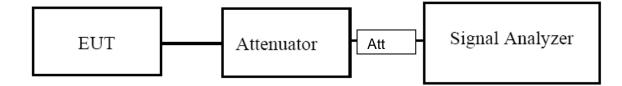
3.5.1 Applied procedures / limit

According to FCC §15.407(e)

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.5.2 TEST PROCEDURE

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:


- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.5.3 DEVIATION FROM STANDARD

No deviation.

3.5.4 TEST SETUP

3.5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.5.6 TEST RESULTS

EUT :	DASH CAM	Model Name. :	X5005	
Temperature :	25 ℃	Relative Humidity :	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5V	
Test Mode :	TX (5G) Mode Frequency Band IV (5725-5850MHz)			

Test data reference attachment.

β.6 MAXIMUM CONDUCTED OUTPUT POWER

3.6.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit		
5150~5250	250mW		
5725~5850	1W		

3.6.2 TEST PROCEDURE

• Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

• The EUT transmits continuously (or with a duty cycle ≥ 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

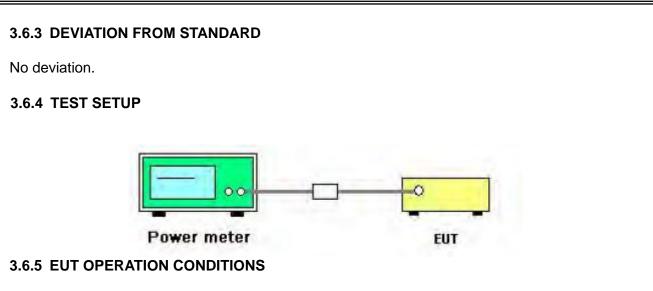
(ii) Set RBW = 1 MHz.

NTEK 北测

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.


(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.6.6 TEST RESULTS

EUT :	DASH CAM	Model Name. :	X5005
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Test Mode :	TX (5G) Mode Frequency Band IV (5725-5850MHz)		

Test data reference attachment.

3.7 OUT OF BAND EMISSIONS

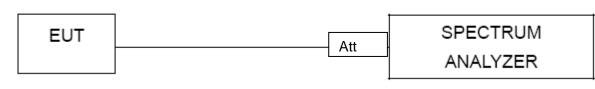
3.7.1 Applicable Standard

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.


3.7.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

3.7.3 DEVIATION FROM STANDARD

No deviation.

3.7.4 TEST SETUP

3.7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.7.6 TEST RESULTS

EUT :	DASH CAM	Model Name. :	X5005
Temperature :	25 ℃	Relative Humidity :	56%
Pressure :	1012 hPa	Test Voltage :	DC 5V

Test data reference attachment.

3.8 SPURIOUS RF CONDUCTED EMISSIONS

3.8.1Conformance Limit

According to FCC §15.407(b)(1) (2) (3) (4)

3.8.2Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

3.8.3Test Setup

Please refer to Section 6.1 of this test report.

3.8.4Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 40GHz.

3.8.5Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

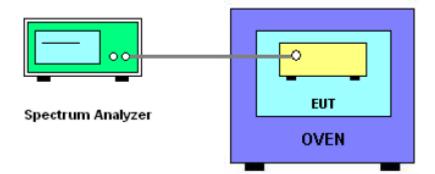
3.9 FREQUENCY STABILITY MEASUREMENT

3.9.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

β.9.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyzer.


2. EUT have transmitted absence of modulation signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.

- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10_6 \text{ ppm}$.
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

β.9.3 TEST SETUP LAYOUT

3.9.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

β.9.5 TEST RESULTS

EUT:	DASH CAM	Model Name. :	X5005
Temperature :	25 ℃	Relative Humidity :	56%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Test Mode :	TX Frequency(5745-5825MHz)		

Voltage vs. Frequency Stability

				Referer	nce Frequ	ency: 5745	MHz
	TEO	T CONDITIONS	`			Max.	Max.
	IES	T CONDITIONS)	f	fc	Deviation	Deviation
						(MHz)	(ppm)
Thom		V nom (V)	5.0	5745.0020	5745	0.00200	-0.3479
	20	V max (V)	5.5	5745.0060	5745	0.00599	-1.0419
(°C)		V min (V)	4.5	5745.0099	5745	0.00991	-1.7249
		Limits		W	ithin 5748/	5-5850MHz	
		Result			Com	plies	

Temperature vs. Frequency Stability

				Referer	nce Frequ	ency: 5745	MHz
- -		NDITIONS	`			Max.	Max.
1	ESICC	INDITIONS		f	fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5745.0007	5745	0.00067	-0.1169
		T (°C)	-10	5745.0045	5745	0.00451	-0.7850
		T (°C)	0	5745.0092	5745	0.00923	-1.6060
		T (°C)	10	5745.0012	5745	0.00115	-0.2005
	5	T (°C)	20	5745.0067	5745	0.00665	-1.1577
V nom (V)	5	T (°C)	30	5745.0038	5745	0.00382	-0.6647
		T (°C)	40	5745.0001	5745	0.00005	-0.0087
		T (°C)	50	5745.0017	5745	0.00173	-0.3007
		T (°C)	60	5745.0035	5745	0.00350	-0.6089
		T (°C)	70	5745.0080	5745	0.00801	-1.3942
	Li	mits		W	ithin 5745/	5-5850MHz	
	Re	esult			Com	plies	

Voltage vs. Frequency Stability

				Referer	nce Frequ	ency: 5785	MHz
	TEQ	T CONDITIONS				Max.	Max.
	IES	T CONDITIONS	0	f	fc	Deviation	Deviation
						(MHz)	(ppm)
Thom		V nom (V)	5.0	5785.0002	5785	0.00016	-0.0275
	20	V max (V)	5.5	5785.0032	5785	0.00320	-0.5524
(°C)		V min (V)	4.5	5785.0041	5785	0.00405	-0.7003
	-	Limits		W	ithin 5745/	5-5850MHz	
		Result			Com	plies	

Temperature vs. Frequency Stability

				Referer	nce Frequ	ency: 5785	MHz
- -		NDITIONS	`			Max.	Max.
I	ESIUC	MDITIONS		f	fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5785.0034	5785	0.00343	-0.5933
		T (°C)	-10	5785.0093	5785	0.00926	-1.6013
		T (°C)	0	5785.0064	5785	0.00635	-1.0982
		T (°C)	10	5785.0063	5785	0.00629	-1.0866
	5	T (°C)	20	5785.0038	5785	0.00380	-0.6570
V nom (V)	5	T (°C)	30	5785.0037	5785	0.00373	-0.6445
		T (°C)	40	5785.0060	5785	0.00600	-1.0367
		T (°C)	50	5785.0082	5785	0.00818	-1.4141
		T (°C)	60	5785.0025	5785	0.00251	-0.4343
		T (°C)	70	5785.0089	5785	0.00887	-1.5331
	Li	mits		W	ithin 574	5-5850MHz	
	Re	esult			Com	plies	

Voltage vs. Frequency Stability

				Referer	nce Frequ	ency: 5825	MHz
	TEO	T CONDITIONS				Max.	Max.
	IE3	T CONDITIONS	0	f	fc	Deviation	Deviation
						(MHz)	(ppm)
Tasa		V nom (V)	5.0	5825.0071	5825	0.00711	-1.2206
T nom	20	V max (V)	5.5	5825.0075	5825	0.00754	-1.2951
(°C)		V min (V)	4.5	5825.0005	5825	0.00047	-0.0801
		Limits		W	ithin 5745/	5-5850MHz	
		Result			Com	plies	

Temperature vs. Frequency Stability

				Referer	nce Frequ	ency: 5825	MHz
Т т		NDITIONS	,			Max.	Max.
1		MDITIONE)	f	fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5825.0042	5825	0.00422	-0.7249
		T (°C)	-10	5825.0018	5825	0.00184	-0.3155
		T (°C)	0	5825.0027	5825	0.00266	-0.4569
		T (°C)	10	5825.0094	5825	0.00942	-1.6168
V nom (V)	5	T (°C)	20	5825.0067	5825	0.00670	-1.1504
V nom (V)	5	T (°C)	30	5825.0071	5825	0.00714	-1.2258
		T (°C)	40	5825.0006	5825	0.00055	-0.0949
		T (°C)	50	5825.0073	5825	0.00726	-1.2462
		T (°C)	60	5825.0086	5825	0.00863	-1.4819
		T (°C)	70	5825.0037	5825	0.00369	-0.6338
	Li	mits		W	ithin 5745/	5-5850MHz	
	Re	esult			Com	plies	

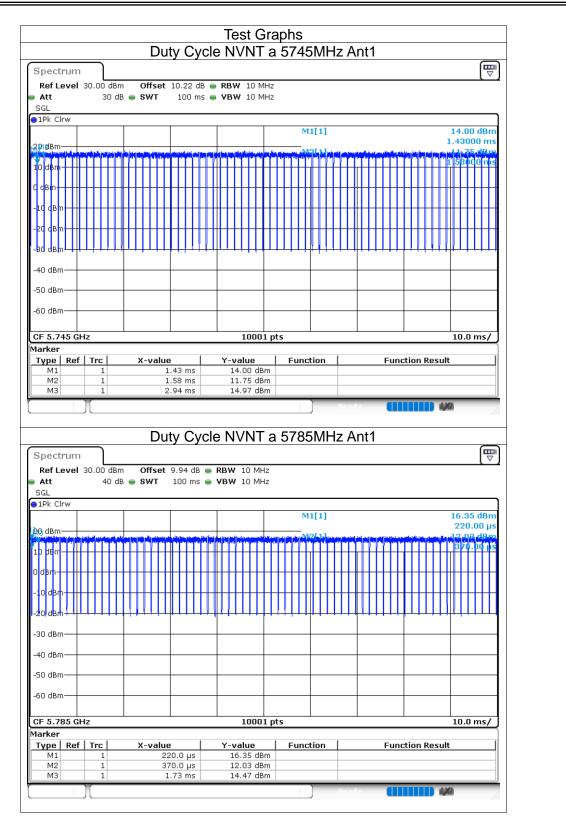
4. ANTENNA REQUIREMENT

4.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

4.2 EUT ANTENNA

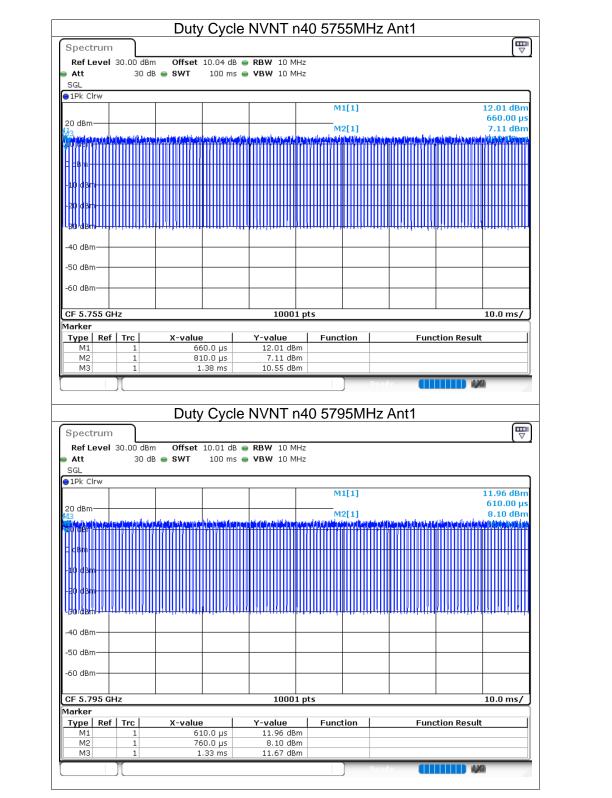
The EUT antenna is permanent attached Ceramic Antenna (antenna gain: band IV:1dBi). It comply with the standard requirement.



5. TEST RESULTS

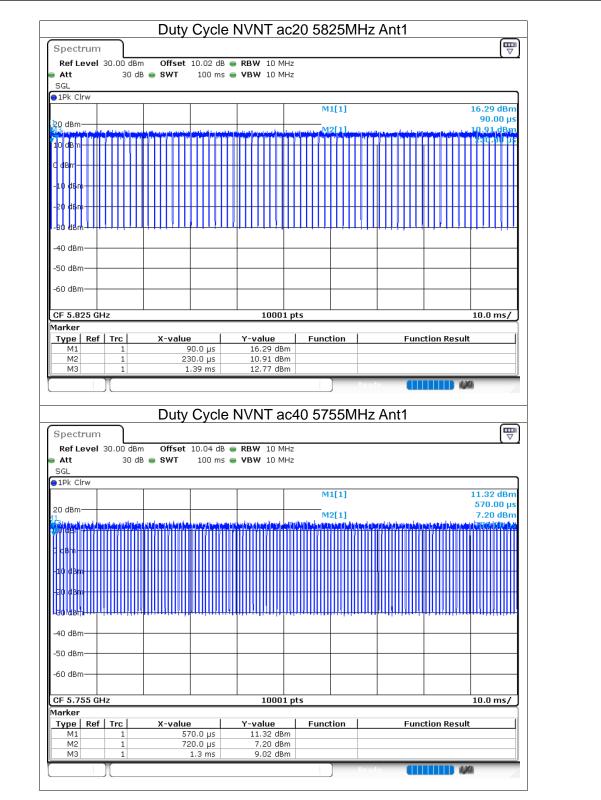
5.1 DUTY CYCLE

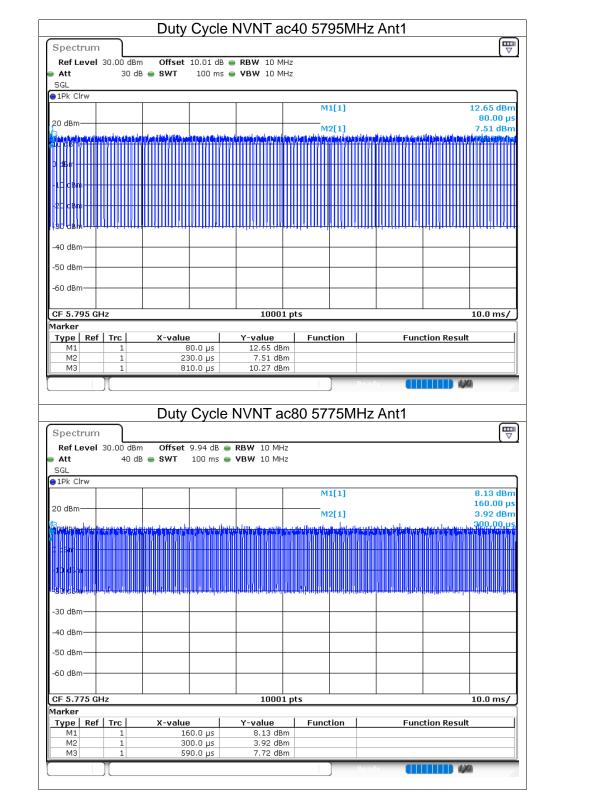
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle	Correction Factor (dB)	1/T (kHz)
		. /		(%)		• •
NVNT	а	5745	Ant1	90.68	0.42	0.74
NVNT	а	5785	Ant1	90.79	0.42	0.74
NVNT	а	5825	Ant1	90.81	0.42	0.74
NVNT	n20	5745	Ant1	89.4	0.49	0.88
NVNT	n20	5785	Ant1	89.36	0.49	0.87
NVNT	n20	5825	Ant1	89.38	0.49	0.87
NVNT	n40	5755	Ant1	81.14	0.91	1.75
NVNT	n40	5795	Ant1	81.05	0.91	1.75
NVNT	ac20	5745	Ant1	89.44	0.48	0.87
NVNT	ac20	5785	Ant1	89.5	0.48	0.86
NVNT	ac20	5825	Ant1	89.55	0.48	0.86
NVNT	ac40	5755	Ant1	81.43	0.89	1.72
NVNT	ac40	5795	Ant1	81.3	0.9	1.72
NVNT	ac80	5775	Ant1	68.83	1.62	3.45



Spectrur	n)																						[₩	-
Ref Leve	I 30.0			Offse																					
SGL		30 d	3 👄 3	SWT	1	100	ms (• •	BW	10	MН	z													
●1Pk Clrw																									ו
													M1	L[1]										lBm	
20j3dBm	أمرا المراجع	an dallan calli.		ملته والد ملته	14 111 11	د (مر) م	أستلاست		افعدهم	dur en en		فالمتحدثة		26.13	al car disc	. افغادهما	ت سطر الم			المرجعة والمراجعة		790 11.3			
10 dBm			1 1 1		TT.	111	TT	<u> </u>		· •	ŤΠ	TT		TT		1				TT	m	11.3 9au	a a	Οþ	5
										Ш	Ш									Ш	Ш				
D #Em						Π	Ш			П	Ш	Ш			Ш			Т		П	П		Π	Π	1
-10 d6m —					╫	╂			╈	₩	₩	┼┼┼				╉	╈	++	╫╂	╈			╂	╢	1
-20 dBm —						╨			11	11	Ш	111						111	##	11	⊥				
130 88m			1 1		1	· ·		T		• •	1	• • •				ľ	- 1		••	••	· •	• • •		- 1	1
-40 dBm—			-		+			+			+					+			-						1
-50 dBm					+			_								-			-						4
60 dP																									
-60 dBm																									1
CF 5.825	GHz									100	01	pts							I			10.0	0 m	ıs/	4
Marker																									1
Type Re M1	f Tr	<u>c</u>	>	(-vali	.ie 790.i	0.02		Y		lue 86 c			unct	ion				Fun	ctio	n Re	sult				
M2		1			790.1 960.1						-DIL				-										
											lBm														
MЗ		1			2.32					30 d 86 d						_	_	_	_	_	_		_	_	
M3)[]	Rea	dy					ų,	7			
M3)[2.32	2 ms	5		14.	86 c	lBm				Rea	dy					14	8		1	
M3)[2.32	2 ms	5	N	14.	86 c	lBm		574	5M	Rea Hz	dy Ar	nt1				4,4	8			
	n				2.32	2 ms	5	N	14.	86 c	lBm		574	5M	Rea Hz	م Ar	nt1				4,4	4			
Spectrur Ref Leve		1 00 dBr	n	Dut	2.32 y (2 ms	cle	■ R	14. VN	86 c	^{IBm} n	20 :	574	5M	Peo Hz	م Ar	nt1				4,4	2			
Spectrur Ref Leve Att		1 00 dBr		Dut	2.32 y (2 ms	cle	■ R	14. VN	86 c	^{IBm} n	20 :	574	5M	Rea Hz	Ar	nt1				4,4	2		(₩	
Spectrur Ref Leve Att SGL		1 00 dBr	n	Dut	2.32 y (2 ms	cle	■ R	14. VN	86 c	^{IBm} n	20 :			Rea Hz	Ar	nt1					2			
Spectrur Ref Leve Att SGL 1Pk Clrw		1 00 dBr	n	Dut	2.32 y (2 ms	cle	■ R	14. VN	86 c	^{IBm} n	20 :		5M	Hz	Ar	nt1				- 44	14.8		1Bm	
Spectrur Ref Leve Att SGL 1Pk Clrw &OdBm		1 00 dBr	n	Dut	2.32 y (2 ms	cle	■ R	14. VN	86 c	^{IBm} n	20 :	M		Rea	Ar	nt1					14.8 620	0.0	dBm 0 բւ	
Spectrur Ref Leve Att SGL 1Pk Clrw &OdBm		1 00 dBr	n	Dut	2.32 t 10	2 ms	cle	■ R	I4.	86 c	^{IBm} n	20 :	M	L[1]	Rea	Ar	nt1					620	0.0 19.0	dBm 0 բ։ 1Rm	
Spectrur Ref Leve Att SGL 1Pk Clrw RO dBm 10 dBm		1 00 dBr	n	Dut offse swt	2.32 t 10	2 ms	cle	R V	I4.	86 c	^{IBm} n	20 :	M	L[1]	Hz	Ar	nt1					620 1.9 (1	0.0 19.0	dBm 0 բ։ 1Rm	
Spectrur Ref Leve Att SGL 1Pk Clrw		1 00 dBr	n	Dut offse swt	2.32 t 10	2 ms	cle	R V	I4.	86 c	^{IBm} n	20 :	M	L[1]	Hz	Ar	nt1					620 1.9 (1	0.0 19.0	dBm 0 բ։ 1Rm	
Spectrur Ref Leve Att SGL 1Pk Clrw RD dBm 10 dBm		1 00 dBr	n	Dut offse swt	2.32 t 10	2 ms	cle	R V	I4.	86 c	^{IBm} n	20 :	M	L[1]		Ar	nt1					620 1.9 (1	0.0 19.0	dBm 0 բ։ 1Rm	
Spectrur Ref Leve Att SGL 1Pk Clrw 10 dBm 	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw 10 dBm 	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw 10 dBm 	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw RO dBm 10 dBm 10 dBm -10 dBm -10 dBm	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw 20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm	30.0	1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R	I4.	10 10		20 3										62(18)(17)(1Bm 0 բ։ 1Bp	
Spectrur Ref Leve Att SGL 1Pk Clrw (20) dBm -10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm		1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R				20 :												dBm 0 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1	
Spectrur Ref Leve Att SGL 1Pk Clrw 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm		1 00 dBr 30 d		Dut offse swr	2.32 y (10	2 ms	dB (ms)	R		10 10		20 :										62(18)(17)(dBm 0 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1	
Spectrur Ref Leve Att SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm		1 00 dBr 30 d										20 :												dBm 0 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1 Pa 1	
Spectrur Ref Leve Att SGL 1Pk Clrw 20 dBm -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -60 dBm	GHz				2.32							20 {												dBm 0 Pa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

🗕 Att	30.00 dB		9.94 dB 👄 100 ms 👄						
SGL	40 0	o o ni	100 110 -		12				
●1Pk Clrw					м	1[1]			14.01 dBm
200 dBm	Luch an amount of the	hter de se tak an tak des t	na de se te ante de la	and a decad so a decision		2[1]	والمراجعة والمراجع	d han da sel successivel at	560.00 µs 11.83.d8m
10 HBm									17000 0 1003
D dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
CF 5.785 G	Hz			1000	1 pts				10.0 ms/
Marker Type Ref	Trc	X-valu	e	Y-value	Func	tion	Fund	ction Result	: 1
M1 M2	1	5	60.0 μs 00.0 μs	14.01 dE 11.93 dE					
M3	1		1.85 ms	15.83 dE					
						Read	Y		
		Dut	y Cycle	NVNT	n20 582	25MHz	Ant1		
			/ - /			-			
Spectrum	1								∎
Ref Level	30.00 dB		10.02 dB 🖷						
	30.00 dB	m Offset IB e SWT		RBW 10 M					
Ref Level Att	30.00 dB				1Hz	1[1]			
Ref Level Att SGL	30.00 dB				1Hz M	1[1]			14.46 dBm 690.00 µs
Ref Level Att SGL 1Pk Cirw	30.00 dB	iB 👄 SWT	100 ms 🖷	VBW 10 N	1Hz M				14.46 dBm
Ref Level Att SGL 1Pk Clrw A208dBm	30.00 dB	iB 👄 SWT	100 ms 🖷	VBW 10 N	1Hz M	2[1]			14.46 dBm 690.00 μs 11.10 dBm
Ref Level Att SGL IPk Clrw 20 dBm 0 dBm	30.00 dB	iB 👄 SWT	100 ms 🖷	VBW 10 N	1Hz M	2[1]			14.46 dBm 690.00 μs 11.10 dBm
Ref Level Att SGL 1Pk Clrw 20:08m 10 J8m 10 J8m 10 J8m	30.00 dB	iB 👄 SWT	100 ms 🖷	VBW 10 N	1Hz M	2[1]			14.46 dBm 690.00 μs 11.10 dBm
Ref Level Att SGL 1Pk Clrw 20:08m 10 J8m 10 J8m 10 d8m 20:08m		IB SWT	100 ms		11HZ				14.46 dBm 690.00 µs 11.10 dBm 1440.00 0\$
Ref Level Att SGL 1Pk Clrw 20:08m 10:18m 10:08m		IB SWT	100 ms		11HZ				14.46 dBm 690.00 μs 11.10 dBm
Ref Level Att SGL 1Pk Clrw 20:dBm 10 dBm 10 dBm -10 dBm -20 dBm -40 dBm		IB SWT	100 ms		11HZ				14.46 dBm 690.00 µs 11.10 dBm 1440.00 0\$
Ref Level Att SGL 1Pk Clrw 20:dBm 10:dBm 10:dBm 10:dBm 10:dBm 10:dBm -20:dBm -30:dBm -50:dBm		IB SWT	100 ms		11HZ				14.46 dBm 690.00 µs 11.10 dBm 1440.00 0\$
Ref Level Att SGL 1Pk Clrw 20:dBm 10 dBm 10 dBm -10 dBm -20 dBm -40 dBm		IB SWT	100 ms		11HZ				14.46 dBm 690.00 µs 11.10 dBm 1440.00 0\$
Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm 10 dBm 20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm -60 dBm		IB SWT	100 ms						14.46 dBm 690.00 µs 11.10 dBm 1440.00 0\$
Ref Level Att SGL 1Pk Clrw 20:08m 10:08m -10:08m -20:08m -30:08m -30:08m -50:08m -60:08m	30.00 dB 30 c	X-valu							14.46 dBm 690.00 µs 11.10 dBm 840.00 µs





Spectrum																																			ſ	∇
Ref Level				ffse																																-
Att SGL	з	0 dB	● S'	WT	:	100	ms	•	v	В٧	V :	10	ΜH	łz																						
∋1Pk Clrw																																				
																	M1	[1]													1					3m
20 dBm	a har a bit should be	الملع جديان	سادية أتم	and the old	الاسلام	a lut		ماداره			a e d		4				M2	51			وملاقة	a de a				la e			بد اعلانا	بمامد	تلدر	2 12	20 21	.0	d D	µs Im
10 cBm			101		TT	ŢŢ	T	Π		1	Υ	П	Ì	""	Т	Π	Π	Т	Т	"	1		Т	Π	Γ	Ĩ		T	П	Π	Γ	T	'd	. þ	6	F
					Ш	Ш		Ш				Ш																		Ш		Π			L	Ш
					Ш	Π	Π	Π		Τ		Π			Τ	Π	Π	Π	Τ	Π	Π		Т	Π	Π			Т	Π	Π		Π		Τ	Т	Π
-10 #8m-+++						╫	Ħ	Ħ		t	H	Ħ	╉		╈	Ħ	H	Η	t		Η	╫	t	╟	t	╈		t	Ħ	₩		Ħ		t	t	Ħ
-20 #8m					₩	╢	╢	╢		+		╢	╀		+	╢	\square	\parallel	╀	\square	+	#	╀	╟	+	+		╀		₩		╢		╀	╀	₩
-80 480					Ш	Ш		Ш								Ш		Ш		Ц				Ц					Ш	Ш						Ш
Ce dom - T								1	ſ			ſ	Γ						'		1.1	1			. 1		1	1			1	1		1	1	2.15
-40 dBm					+				1				\dagger				+					\dagger					t				+					
-50 dBm					+				+				+				+					+					+				+					
-60 dBm					\perp								\downarrow									1														
CF 5.745 G	Hz				-				-		1	00	01	pts	;							·									- '	10	.0	m	ns	/
1arker Type Ref	Tre	1	x-	valu	ue		1		Y	-v	alı	ıe		1	5	-111	ct	ion		1					F	սո	cti	io,	ו R	esi	ılt					1
M1	1		Λ		20.					15	5.8	7 d																								
M2 M3	1				170. 1.32							9 d 3 d								+																_
	1			_	_	_	-	-	-	-	_			_										_	-	_		_	_		_					
	11																			R		d y		-		П					X					
																				R	e a	dy				Π					X					//
			D	Jut	y C) V	cle	1 e	N١	/١	<u>ا</u>	Га	ac	:2	0	5	78	35	N	. R. 11-	- 	dy :/	٩ı	nt	1						X					11
Spectrum			D	Outy	y C	Cy	cle) e	N١	/١	V _	Га	ac	2	0	5	78	35	N	R 11-	١z	dy : /	41	nt	1						X				ſ	
Spectrum Ref Level	. L	dBm)uty											0	5	78	35	N	®• 1⊩	łz	dy : /	41	nt	1						X				ſ	V
Ref Level Att	30.00			ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0	5	78	35	N	₽ 1⊢	1z	d¥ 2 /	41	nt	1										ſ	
Ref Level Att SGL	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0	5	78	35	N	R 1⊢	łz	dy : /	41	nt	1						X				[
Ref Level Att SGL	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0			35		R 1 -	łz	dy : /	41	nt	1										dB	3m
Ref Level Att SGL 1Pk Clrw	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]		P.		d y 		<u>nt</u>	1							54	łO	.0	dB	3m μs
Ref Level Att SGL 1Pk Clrw	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI								1							54	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]							1							54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]							1							54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]							1							54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:			MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:	0		MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:			MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:			MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00		0	ffse	t 9.	94	dB (•	RB	w	1	DM	1Hz	:			MI	.[1]														54 1	10 7	.0 34	de IO de	3m μs
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm			0	ffse	t 9.	94	dB (•	RB	w				:			MI	.[1]														54 1				3m µs
Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm				ffse WT	t 9. 10	94	dB (•			10																									3m µs
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm -10 cBm -20 dBm -30 dBm -60 dBm -60 dBm CF 5.785 G Marker Type	30.00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			ffse WT				•										.[1]																		3m µs
Att SGL 1Pk Clrw 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -60 dBm CF 5.785 G					t 9. 10			•			1(1)																									3m µs

5.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)		
NVNT	а	5745	Ant1	9.23	0.42	9.65	30	Pass
NVNT	а	5785	Ant1	9.07	0.42	9.49	30	Pass
NVNT	а	5825	Ant1	8.68	0.42	9.1	30	Pass
NVNT	n20	5745	Ant1	9.12	0.49	9.61	30	Pass
NVNT	n20	5785	Ant1	9.01	0.49	9.5	30	Pass
NVNT	n20	5825	Ant1	8.75	0.49	9.24	30	Pass
NVNT	n40	5755	Ant1	9.15	0.91	10.06	30	Pass
NVNT	n40	5795	Ant1	9.41	0.91	10.32	30	Pass
NVNT	ac20	5745	Ant1	8.78	0.48	9.26	30	Pass
NVNT	ac20	5785	Ant1	8.67	0.48	9.15	30	Pass
NVNT	ac20	5825	Ant1	8.55	0.48	9.03	30	Pass
NVNT	ac40	5755	Ant1	9.24	0.89	10.13	30	Pass
NVNT	ac40	5795	Ant1	9.31	0.9	10.21	30	Pass
NVNT	ac80	5775	Ant1	8.57	1.62	10.19	30	Pass

5.3 -6DB BANDWIDTH

			-			
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	а	5745	Ant1	16.428	0.5	Pass
NVNT	а	5785	Ant1	16.422	0.5	Pass
NVNT	а	5825	Ant1	15.678	0.5	Pass
NVNT	n20	5745	Ant1	17.631	0.5	Pass
NVNT	n20	5785	Ant1	17.577	0.5	Pass
NVNT	n20	5825	Ant1	17.724	0.5	Pass
NVNT	n40	5755	Ant1	34.806	0.5	Pass
NVNT	n40	5795	Ant1	35.106	0.5	Pass
NVNT	ac20	5745	Ant1	17.64	0.5	Pass
NVNT	ac20	5785	Ant1	17.706	0.5	Pass
NVNT	ac20	5825	Ant1	17.694	0.5	Pass
NVNT	ac40	5755	Ant1	36.078	0.5	Pass
NVNT	ac40	5795	Ant1	35.328	0.5	Pass
NVNT	ac80	5775	Ant1	75.312	0.5	Pass

Report No.: S23060804505002

		Test Gra				
	-6dB Band	width NVN	a 57451	MHz Ant1		_
Spectrum						
Ref Level 20.00 dB		 RBW 100 kHz VBW 300 kHz 	Mode Auto F	E T		
GL Count 100/100	в змі 15.9 hs	- VBW 300 KH2	MODE AUTO F	FI		
1Pk Max	. ·					
			M1[1]			5.60 dBm 3270 GHz
.0 dBm			M2[1]			2.46 dBm
) dBm			ML		5.73680	0400 GHz
10 40-	M2N as Not Reday Labor	h & Balant she was seen in	na ashadama ni	EMA MARANA		
10 dBm	All Marine and a start	A	A NO. OF ANY	The second s		
20 dBm		¥				
30 dBm	A ^r			بر ا	MALA	
30 dBm					and the second second	Marson
4р авни <u>ч</u>						··· while a
50 dBm						
60 dBm						
70 dBm						
CF 5.745 GHz		10001 p	-			0.0 MHz
arker		10001 p	.5		span a	U.U MHZ
Type Ref Trc	X-value	Y-value	Function	Fun	ction Result	
M1 1	5.7478827 GHz	-6.60 dBm				
M2 1						
M2 1 M3 1	5.736804 GHz 5.753232 GHz	-12.46 dBm -12.57 dBm				
	5.736804 GHz 5.753232 GHz	-12.46 dBm	a 57851	MHz Ant1		
M3 1	5.736804 GHz 5.753232 GHz -6dB Banc	-12.46 dBm -12.57 dBm	a 5785	MHz Ant1		
M3 1	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	a 57851 Mode Auto F			
M3 1 Spectrum	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm				
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F			
M3 1 Spectrum	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]		5.79026	5.96 dBm 5450 GHz
M3 1 Spectrum Ref Level 20.00 dBa Att 30 d SGL Count 100/100 10Pk Max .0 dBm .0 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F		5.79026 -12	5.96 dBm 5450 GHz 2.88 dBm
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 11Pk Max	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]		5.79026 -12	5.96 dBm 5450 GHz
M3 1 Spectrum Ref Level 20.00 dBa Att 30 d SGL Count 100/100 10Pk Max .0 dBm .0 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12	5.96 dBm 5450 GHz 2.88 dBm
M3 1 Spectrum Ref Level 20.00 dBd Att 30 d SGL Count 100/100 10PK Max .0 dBm .0 dBm 10 dBm .0 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12	5.96 dBm 5450 GHz 2.88 dBm
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 IPk Max 0 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 10k Max 0 dBm 0 10 dBm 20 dBm 30 dBm 30 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 10k Max 0 dBm 0 10 dBm 20 dBm 30 dBm 30 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 1Pk Max .0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 60 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 1Pk Max .0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 60 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F M1[1]	FT	5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 11Pk Max 0 dBm 0 10 dBm 0 20 dBm 0 30 dBm 0 50 dBm 0 60 dBm 60 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F	FT	5.79026 -12 5.77675	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 100/100 1Pk Max .0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 60 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB	-12.46 dBm -12.57 dBm	Mode Auto F	FT	5.79026 -12 5.77675	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Ref Level 20.00 dBa Att 30 d SGL Count 100/100 1PK Max .0 dBm .0 dBm	5.736804 GHz 5.753232 GHz -6dB Banc m Offset 4.24 dB B SwT 75.9 μs 	-12.46 dBm -12.57 dBm	Mode Auto F		5.79026 -12 5.77675	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz
M3 1 Ref Level 20.00 dBr Att 30 d SGL Count 100/100 11PK Max	5.736804 GHz 5.753232 GHz	-12.46 dBm -12.57 dBm	Mode Auto F		5.79026 -12 5.77679	5.96 dBm 5450 GHz 2.88 dBm 9800 GHz