

Page 1 of 67

TEST REPORT

Product Name	:	Tablet PC
Brand Mark	:	tibuta
Model No.	:	K100
Extension Model	:	K101, K102
FCC ID	:	2AXUI-K100
Report Number	:	BLA-EMC-202106-A3501
Date of Sample Receipt	:	2021/6/9
Date of Test	:	2021/6/9 to 2021/7/27
Date of Issue	:	2021/7/27
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

CHITECH SHENZHEN TECHNOLOGY CO., LTD Chitech industrial Park, NO.48, Xiashijia Road, Gongming Town, Guangming New Dist., Shenzhen, China Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Sven Approved by: Bhe Zhong

neels Review by:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description	
00 2021/7/27		Original	

TABLE OF CONTENTS

1	-	TES	T SUMMARY	5
2	(GEN	IERAL INFORMATION	6
3	(GEN	ERAL DESCRIPTION OF E.U.T.	6
4	-	TES	T ENVIRONMENT	7
5	-	TES	T MODE	7
_		-	SUREMENT UNCERTAINTY	
6			CRIPTION OF SUPPORT UNIT	1
7				8
8				
9			T INSTRUMENTS LIST	
1(0	RAD	NATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	12
	10.	1	LIMITS	12
	10.	2	BLOCK DIAGRAM OF TEST SETUP	13
	10.	3	PROCEDURE	
	10.	4	TEST DATA	15
1′	1 (CON	IDUCTED SPURIOUS EMISSIONS	19
	11.	1	LIMITS	19
	11.	2	BLOCK DIAGRAM OF TEST SETUP	19
	11.	3	TEST DATA	20
1:	2 (CON	IDUCTED BAND EDGES MEASUREMENT	21
	12.	1	LIMITS	21
	12.	2	BLOCK DIAGRAM OF TEST SETUP	21
	12.	3	ТЕST DATA	22
1:	3	POV	VER SPECTRUM DENSITY	23
	13.	1	LIMITS	23
	13.	2	BLOCK DIAGRAM OF TEST SETUP	23
	13.	3	TEST DATA	23
14	4 (CON	IDUCTED PEAK OUTPUT POWER	24
	14.	1	LIMITS	24
	14.	2	BLOCK DIAGRAM OF TEST SETUP	
	14.	3	TEST DATA	25

15	ΜΙΝΙ	MUM 6DB BANDWIDTH	6
15	.1	LIMITS	6
15	.2	BLOCK DIAGRAM OF TEST SETUP	6
15	.3	TEST DATA	6
16	CON	DUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)2	7
16	.1	LIMITS	7
16	.2	BLOCK DIAGRAM OF TEST SETUP	7
16	.3	PROCEDURE	7
16	.4	TEST DATA	9
17	ANT	ENNA REQUIREMENT	1
17		CONCLUSION	
18	RAD	IATED SPURIOUS EMISSIONS	2
18	.1	LIMITS	2
18	.2	BLOCK DIAGRAM OF TEST SETUP	3
18	.3	PROCEDURE	3
18	.4	TEST DATA	5
19	APP	ENDIX	3
19	.1	MAXIMUM CONDUCTED OUTPUT POWER	3
19	.2	-6DB BANDWIDTH	5
19	.3	Occupied Channel Bandwidth	7
19	.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	9
19	.5	BAND EDGE	1
19	.6	CONDUCTED RF SPURIOUS EMISSION	4
APPI	ENDI	X A: PHOTOGRAPHS OF TEST SETUP	8
APP	ENDI	X B: PHOTOGRAPHS OF EUT	0

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 47 CFR Part 15, Subpart C 7.8.6 & Section 15.247(d) 11.11		Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	ak 47 CFR Part 15, Subpart C 15.247 ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1		47 CFR Part 15, Subpart C 15.247(b)(1) & 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Àntenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 47 CFR Part 15, Subpart C (2013) Section 47.209 & 15.247(d)		Pass

2 GENERAL INFORMATION

Applicant	CHITECH SHENZHEN TECHNOLOGY CO.,LTD		
Address	Chitech industrial Park,NO.48,Xiashijia Road,Gongming Town,Guangming New Dist.,Shenzhen,China		
Manufacturer	CHITECH SHENZHEN TECHNOLOGY CO.,LTD		
Address Chitech industrial Park,NO.48,Xiashijia Road,Gongming Town,Guang New Dist.,Shenzhen,China			
Factory	CHITECH SHENZHEN TECHNOLOGY CO.,LTD		
Address	Chitech industrial Park,NO.48,Xiashijia Road,Gongming Town,Guangming New Dist.,Shenzhen,China		
Product Name	Tablet PC		
Test Model No.	К100		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	BND-A863-C V5.0
Software Version	ZT_IR_Tibuta_MasterPad_K100_2G-go_R133_A863_8_land_gc030a_gc0 2m2_user
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Internal antenna
Antenna Gain:	0.53dBi(Provided by the applicant)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	+25°C	3.7Vdc	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION			
ТХ	TX Keep the EUT in transmitting mode with modulation			
Remark:Only the data of the worst mode would be recorded in this report.				

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)			
Radiated Emission(9kHz-30MHz)	±4.34dB			
Radiated Emission(30Mz-1000MHz)	±4.24dB			
Radiated Emission(1GHz-18GHz)	±4.68dB			
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB			

7 DESCRIPTION OF SUPPORT UNIT

Device Type Manufacturer		Model Name	Serial No.	Remark
NA NA		NA	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment Manufacturer		Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	2020/11/10	2023/11/9
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of Conducted Spurious Emissions									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11				
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11				
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11				

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Spectrum	Spectrum Agilent		MY49100060	2020/10/12	2021/10/11	
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11	
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11	
	•					

Test Equipment Of Power Spectrum Density									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11				
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11				
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11				
	•								

Test Equipment Of Conducted Peak Output Power									
Equipment	Manufacturer	Cal.Date	Cal.Due						
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11				
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11				
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11				

Test Equipment Of Minimum 6dB Bandwidth											
Equipment Manufacturer Model S/N Cal.Date Cal.Due											
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11						
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11						
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11						

Report No.: BLA-EMC-202106-A3501 Page 11 of67

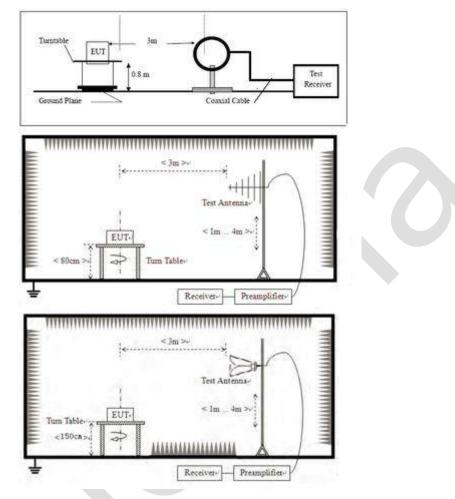
Signal Generator Agilent	E8257D	MY44320250	2020/10/12	2021/10/11
--------------------------	--------	------------	------------	------------

Test Equipment Of	Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Shield room	SKET	833	N/A	2020/11/25	2023/11/24				
Receiver	R&S ESPI3		101082	2020/10/12	2021/10/11				
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11				
LISN	LISN AT		AKK1806000003	2020/10/12	2021/10/11				
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A				

Test Equipment Of Radiated Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	Chamber SKET		N/A	2020/11/10	2023/11/9			
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11			
Receiver	R&S	ESR7	101199 2020/10/12		2021/10/11			
broadband Antenna	Schwarzbeck	VULB9168	_B9168 00836 P:00227		2022/9/25			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25			
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25			
Controller	SKET	N/A	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-02	BLA-XC-02 N/A		N/A			
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A			

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25 ℃
Humidity	52%

10 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS


10.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

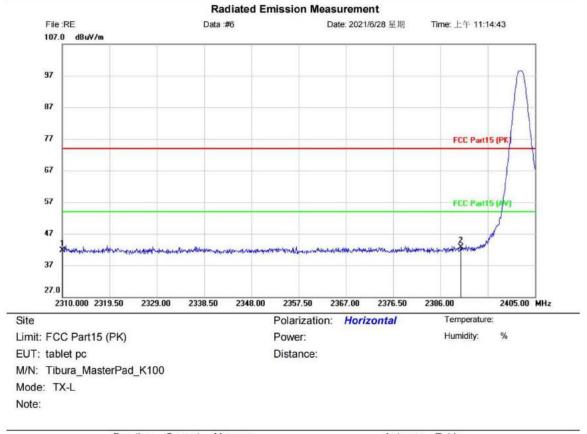
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

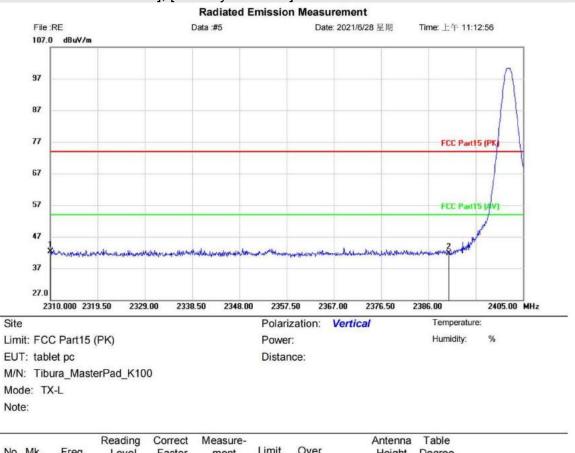
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

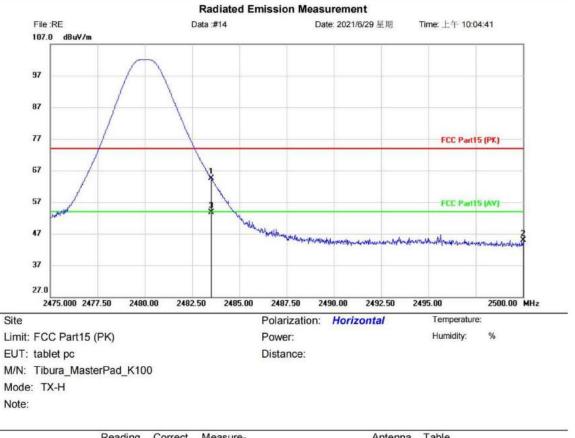
10.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	46.41	-4.61	41.80	74.00	-32.20	peak			
2	*	2390.000	46.89	-4.27	42.62	74.00	-31.38	peak			

*:Maximum data x:Over limit !:over margin

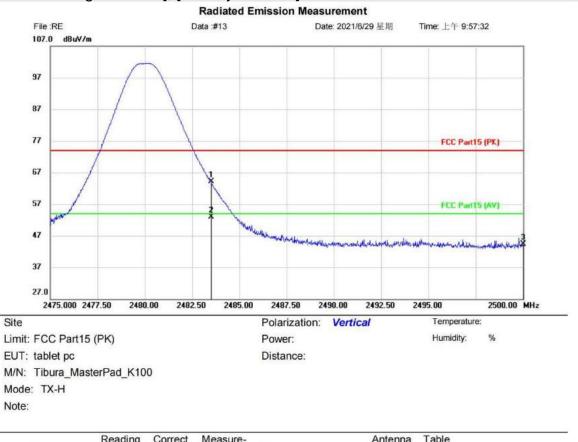
(Reference Only


[TestMode: TX low channel]; [Polarity: Vertical]

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2310.000	47.01	-4.61	42.40	74.00	-31.60	peak			
2		2390.000	46.04	-4.27	41.77	74.00	-32.23	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only


[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	65.78	-1.26	64.52	74.00	-9.48	peak			
2		2500.000	46.20	-1.34	44.86	74.00	-29.14	peak			
3	*	2483.500	54.88	-1.26	53.62	54.00	-0.38	AVG			

*:Maximum data x:Over limit !:over margin

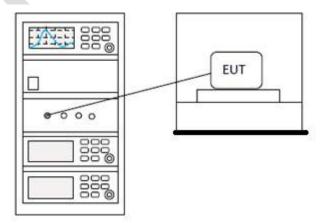
(Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	65.34	-1.26	64.08	74.00	-9.92	peak			
2	*	2483.500	54.23	-1.26	52.97	54.00	-1.03	AVG			
3		2500.000	45.65	-1.34	44.31	74.00	-29.69	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only


11 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Sven				
Temperature	25 ℃				
Humidity	52%				

11.1 LIMITS

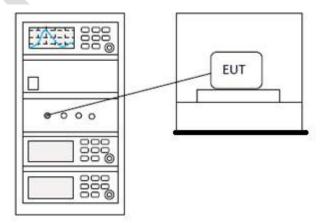
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202106-A3501 Page 20 of67

11.3 TEST DATA

Pass: Please Refer To Appendix: For Details


Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Sven				
Temperature	25 ℃				
Humidity	52%				

12 CONDUCTED BAND EDGES MEASUREMENT

12.1 LIMITS

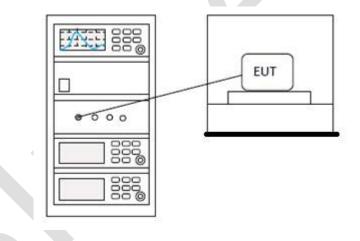
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

12.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202106-A3501 Page 22 of67

12.3 TEST DATA

Pass: Please Refer To Appendix: For Details


13 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Sven				
Temperature	25°C				
Humidity	52%				

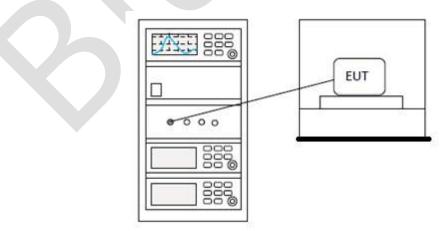
13.1 LIMITS

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous transmission

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA

Pass: Please Refer To Appendix: For Details


14 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Sven				
Temperature	25℃				
Humidity	52%				
14.1 LIMITS					

14.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for \geq 50 hopping channels			
902-928	0.25 for $25 \le$ hopping channels < 50			
	1 for digital modulation			
	1 for \geq 75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5705 5950	1 for frequency hopping systems and digital			
5725-5850	modulation			

14.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202106-A3501 Page 25 of67

14.3 TEST DATA

Pass: Please Refer To Appendix: For Details


15 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25 ℃
Humidity	52%

15.1 LIMITS

Limit: \geq 500 kHz

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA

Pass: Please Refer To Appendix: For Details

16 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Sven				
Temperature	25°C				
Humidity	52%				

16.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

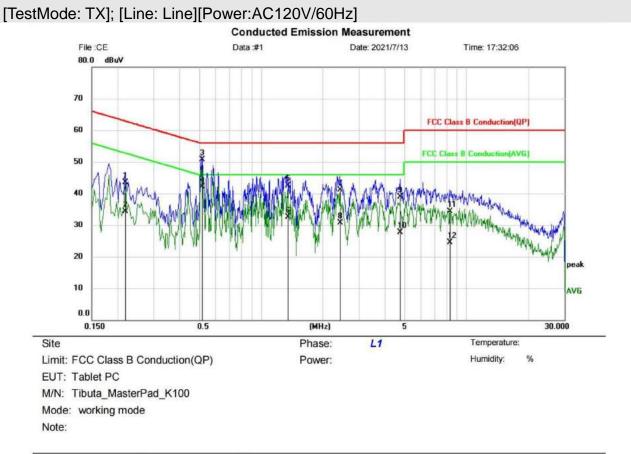
16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

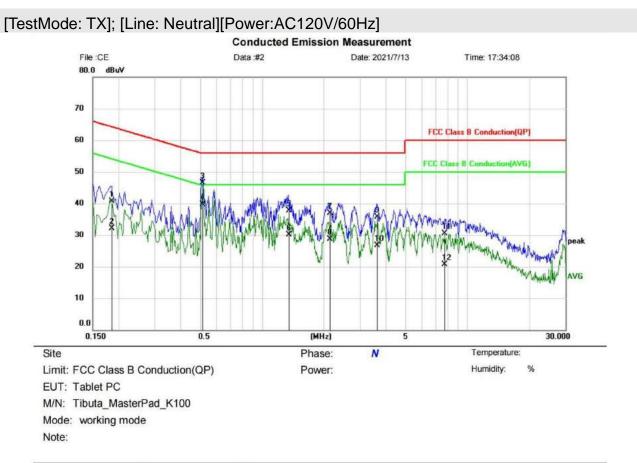
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

16.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2180	33.64	9.83	43.47	62.89	-19.42	QP	
2		0.2180	24.45	9.83	34.28	52.89	-18.61	AVG	
3		0.5180	40.85	9.87	50.72	56.00	-5.28	QP	
4	*	0.5180	32.20	9.87	42.07	46.00	-3.93	AVG	
5		1.3500	32.50	9.93	42.43	56.00	-13.57	QP	
6		1.3500	22.63	9.93	32.56	46.00	-13.44	AVG	
7		2.4219	31.15	9.95	41.10	56.00	-14.90	QP	
8		2.4219	20.73	9.95	30.68	46.00	-15.32	AVG	
9		4.7500	28.83	10.01	38.84	56.00	-17.16	QP	
10		4.7500	17.75	10.01	27.76	46.00	-18.24	AVG	
11		8.3139	24.18	10.13	34.31	60.00	-25.69	QP	
12		8.3139	14.43	10.13	24.56	50.00	-25.44	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only

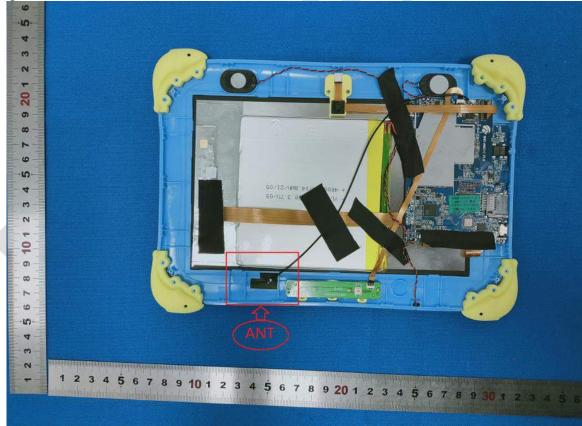
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1860	31.00	9.74	40.74	64.21	-23.47	QP	
	0.1860	22.36	9.74	32.10	54.21	-22.11	AVG	
	0.5140	36.70	9.79	46.49	56.00	-9.51	QP	
*	0.5140	29.95	9.79	39.74	46.00	-6.26	AVG	
	1.3460	27.79	9.85	37.64	56.00	-18.36	QP	
	1.3460	20.26	9.85	30.11	46.00	-15.89	AVG	
	2.1420	27.05	9.86	36.91	56.00	-19.09	QP	
	2.1420	18.87	9.86	28.73	46.00	-17.27	AVG	
	3.6300	25.83	9.91	35.74	56.00	-20.26	QP	
	3.6300	16.79	9.91	26.70	46.00	-19.30	AVG	
	7.7300	20.54	10.04	30.58	60.00	-29.42	QP	
	7.7300	10.75	10.04	20.79	50.00	-29.21	AVG	
		MHz 0.1860 0.5140 * 0.5140 1.3460 1.3460 2.1420 2.1420 3.6300 3.6300 7.7300	Mk. Freq. Level MHz dBuV 0.1860 31.00 0.1860 22.36 0.5140 36.70 * 0.5140 29.95 1.3460 27.79 1.3460 20.26 2.1420 27.05 2.1420 18.87 3.6300 25.83 3.6300 16.79 7.7300 20.54	Mk. Freq. Level Factor MHz dBuV dB 0.1860 31.00 9.74 0.1860 22.36 9.74 0.5140 36.70 9.79 * 0.5140 29.95 9.79 1.3460 27.79 9.85 2.1420 27.05 9.86 2.1420 18.87 9.86 3.6300 25.83 9.91 3.6300 16.79 9.91 7.7300 20.54 10.04	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1860 31.00 9.74 40.74 0.1860 22.36 9.74 32.10 0.5140 36.70 9.79 46.49 * 0.5140 29.95 9.79 39.74 1.3460 27.79 9.85 37.64 1.3460 20.26 9.85 30.11 2.1420 27.05 9.86 36.91 2.1420 18.87 9.86 28.73 3.6300 25.83 9.91 35.74 3.6300 16.79 9.91 26.70 7.7300 20.54 10.04 30.58	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV 0.1860 31.00 9.74 40.74 64.21 0.1860 22.36 9.74 32.10 54.21 0.5140 36.70 9.79 46.49 56.00 * 0.5140 29.95 9.79 39.74 46.00 1.3460 27.79 9.85 37.64 56.00 1.3460 20.26 9.85 30.11 46.00 2.1420 27.05 9.86 36.91 56.00 2.1420 18.87 9.86 28.73 46.00 3.6300 25.83 9.91 35.74 56.00 3.6300 16.79 9.91 26.70 46.00 3.6300 25.83 9.91 35.74 56.00 3.6300 16.79 9.91 26.70 46.00 7.7300 20.54 10.04 30.58	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dB dBuV dB dE <td< td=""><td>Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dD dD</td></td<>	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dD

*:Maximum data x:Over limit !:over margin

(Reference Only

17 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


17.1 CONCLUSION

Standard Requirement:

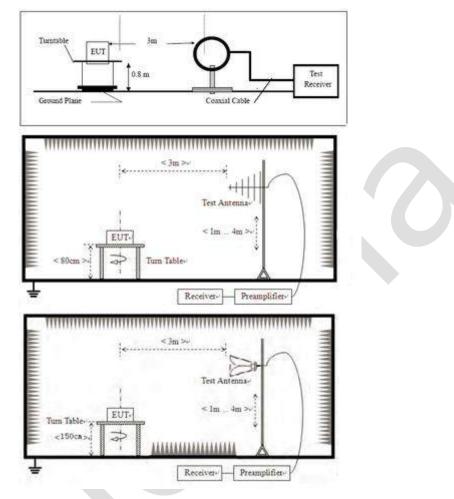
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.53 dBi.

18 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Sven					
Temperature	25°C					
Humidity	52%					


18.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30.0	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

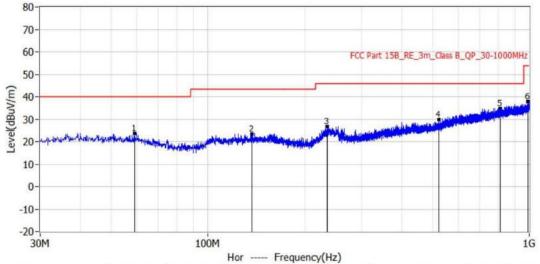
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

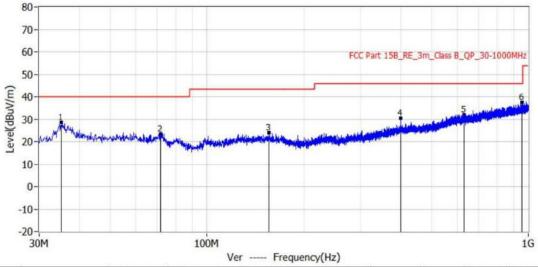
3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

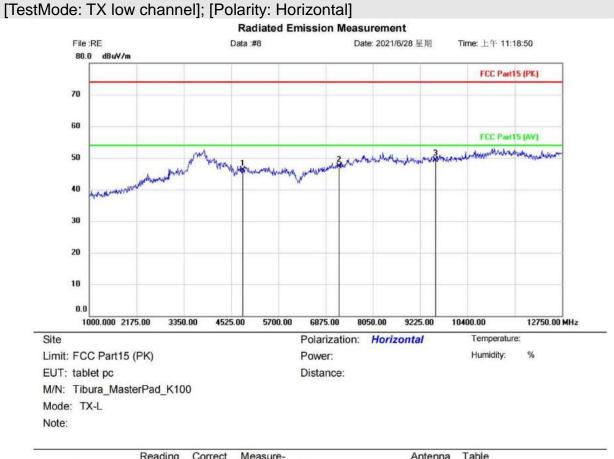
18.4 TEST DATA

[TestMode: TX]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202106-A35	
EUT: Tablet PC	Test Engineer:	
M/N: Tibuta_MasterPad K100	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2021-07-23 17:01:33	



No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	59.100MHz	40.0	23.6	-16.4	0.1	23.5	QP	Hor		
2*	136.943MHz	43.5	23.5	-20.0	-0.1	23.6	QP	Hor		
3*	234.549MHz	46.0	26.7	-19.3	4.2	22.5	QP	Hor		
4*	523.973MHz	46.0	29.8	-16.2	0.7	29.1	QP	Hor		
5*	812.426MHz	46.0	34.8	-11.2	0.5	34.3	QP	Hor		
6*	992.240MHz	54.0	37.9	-16.1	1.8	36.1	QP	Hor	[


[TestMode: TX]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202106-A35			
EUT: Tablet PC	Test Engineer:			
M/N: Tibuta_MasterPad K100	Temperature:			
S/N:	Humidity:			
Test Mode: TX mode	Test Voltage:			
Note:	Test Data: 2021-07-23 17:03:33			

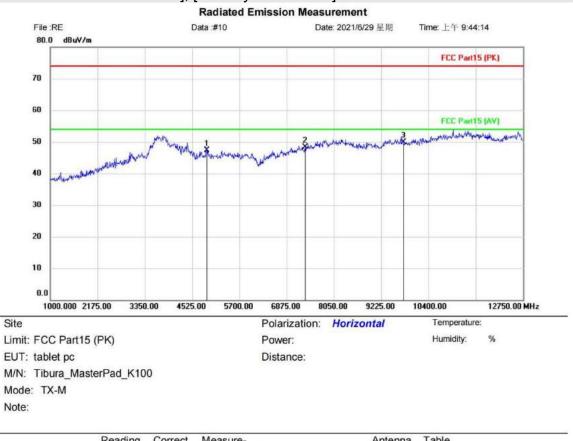
No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	35.093MHz	40.0	28.5	-11.5	4.9	23.6	QP	Ver		
2*	71.468MHz	40.0	23.4	-16.6	2.2	21.2	QP	Ver		
3*	155.979MHz	43.5	24.0	-19.5	0.6	23.4	QP	Ver		
4*	399.934MHz	46.0	30.5	-15.5	3.2	27.3	QP	Ver		
5*	629.824MHz	46.0	32.1	-13.9	0.6	31.5	QP	Ver		
6*	955.501MHz	46.0	37.4	-8.6	1.8	35.6	QP	Ver		



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	42.35	3.71	46.06	74.00	-27.94	peak			
2		7206.000	41.25	5.96	47.21	74.00	-26.79	peak			
3	*	9608.000	40.04	9.29	49.33	74.00	-24.67	peak			

*:Maximum data x:Over limit !:over margin

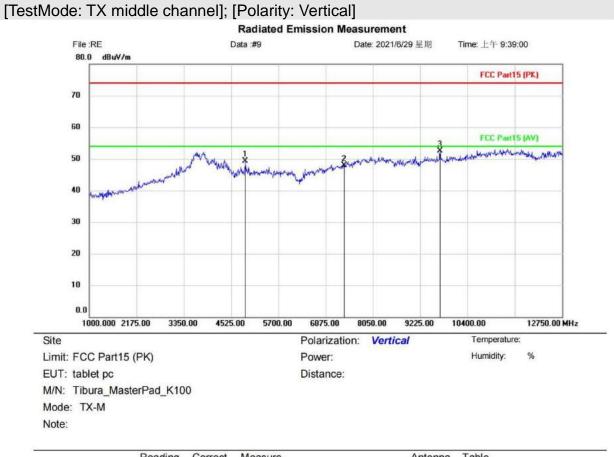
(Reference Only


[TestMode: TX low channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	45.52	3.71	49.23	74.00	-24.77	peak			
2		7206.000	41.83	5.96	47.79	74.00	-26.21	peak			
3	*	9608.000	40.27	9.29	49.56	74.00	-24.44	peak			

*:Maximum data x:Over limit !:over margin

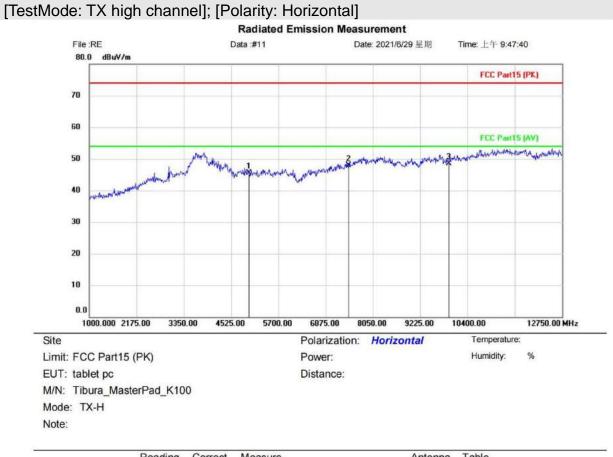
(Reference Only


[TestMode: TX middle channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4884.000	44.03	3.34	47.37	74.00	-26.63	peak			
2		7326.000	41.78	6.44	48.22	74.00	-25.78	peak			
3	*	9768.000	40.32	9.63	49.95	74.00	-24.05	peak			

*:Maximum data x:Over limit !:over margin

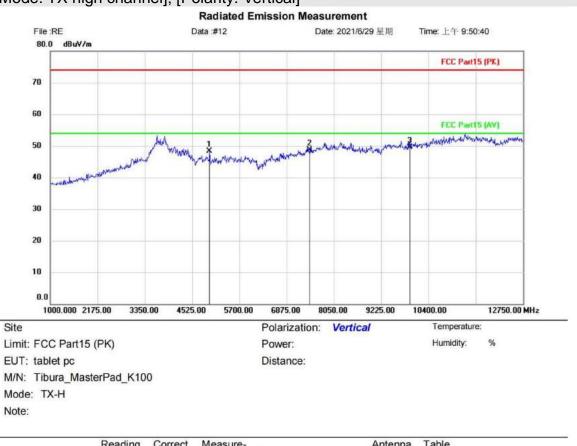
(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4877.500	46.00	3.37	49.37	74.00	-24.63	peak			
2		7326.000	41.50	6.44	47.94	74.00	-26.06	peak			
3	*	9718.500	42.98	9.53	52.51	74.00	-21.49	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.000	41.68	3.75	45.43	74.00	-28.57	peak			
2		7440.000	41.10	6.86	47.96	74.00	-26.04	peak			
3	*	9920.000	38.26	10.16	48.42	74.00	-25.58	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4959.750	44.50	3.75	48.25	74.00	-25.75	peak			
2		7440.000	41.76	6.86	48.62	74.00	-25.38	peak			
3	*	9920.000	39.29	10.16	49.45	74.00	-24.55	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

19 APPENDIX

19.1 MAXIMUM CONDUCTED OUTPUT POWER

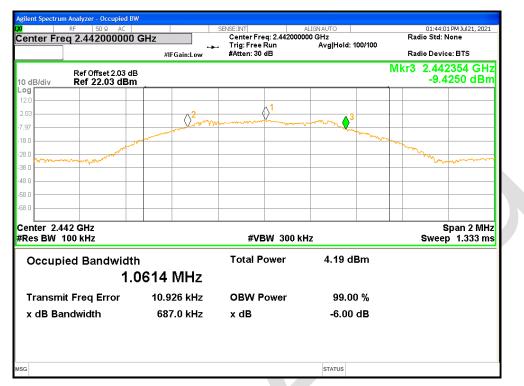
Condition	Mode	Frequency	Antenna	Conducted	Total Power	Limit	Verdict
		(MHz)		Power (dBm)	(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	-0.641	-0.641	30	Pass
	1M						
NVNT	BLE	2442	Ant1	-1.344	-1.344	30	Pass
	1M						
NVNT	BLE	2480	Ant1	-0.856	-0.856	30	Pass
	1M						

Power NVNT BLE 1M 2402MHz Ant1



Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1


19.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.715	0.5	Pass
	1 M					
NVNT	BLE	2442	Ant1	0.687	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.701	0.5	Pass
	1M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

ied BV :34 PM Jul 21, 2021 01:42:34 PM J Radio Std: None Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Center Freq 2.402000000 GHz **ц**., Radio Device: BTS #IFGain:Low Mkr3 2.402368 GHz Ref Offset 2.01 dB Ref 22.01 dBm -10.140 dBm 10 dB/div .og $\langle \rangle^2$ Center 2.402 GHz #Res BW 100 kHz Span 2 MHz Sweep 1.333 ms #VBW 300 kHz Occupied Bandwidth **Total Power** 4.91 dBm 1.0588 MHz 10.845 kHz **OBW Power** 99.00 % **Transmit Freq Error** x dB Bandwidth -6.00 dB 714.9 kHz x dB STATUS SG

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

19.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.047203104
NVNT	BLE 1M	2442	Ant1	1.047030138
NVNT	BLE 1M	2480	Ant1	1.043098546

OBW NVNT BLE 1M 2402MHz Ant1

Ient Spectrum Analyzer - Occupied B RF 50 Ω AC enter Freq 2.402000000		SENSE:INT Center Freg: 2.402000	ALIGN AUTO	01:42:28 PM Jul 21, 2021 Radio Std: None
	#IFGain:Low		Avg Hold: 100/100	Radio Device: BTS
dB/div Ref Offset 2.01 dB			_	
9				
11				
9		1 Auron and and and and and and and and and an	~~~~~	
0	~~~~		- man	
0				
	mar -		· · · · · · · · · · · · · · · · · · ·	m m
				- m
				Jun
0				
enter 2.402 GHz tes BW 30 kHz		#VBW 100 k	Hz	Span 3 MHz Sweep 3.333 ms
Occupied Bandwidtl	h	Total Power	5.02 dBm	
1.0	0472 MHz			
Transmit Freq Error	12.779 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.341 MHz	x dB	-26.00 dB	
			STATUS	

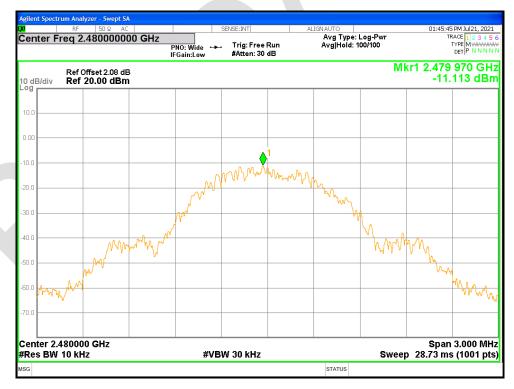
OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

19.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-10.942	8	Pass
NVNT	BLE 1M	2442	Ant1	-11.654	8	Pass
NVNT	BLE 1M	2480	Ant1	-11.113	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1



PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1

19.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.63	-30	Pass
NVNT	BLE 1M	2480	Ant1	-53.8	-30	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

ilent Spectrum Analyzer - Swept SA RF 50 Ω AC		OFFICE WIT			01 10 17 01 1 10	1.0001
		SENSE:INT	ALIGNAUTO Avg Type:	l on Dwr	01:42:47 PM Jul 2 TRACE 1 2	
enter Freq 2.40200000	PNO: Wide ++- IFGain:Low	. Trig: Free Run #Atten: 30 dB	Avg Hold: 1	00/100	TYPE M H	
Ref Offset 2.01 dB dB/div Ref 20.00 dBm				Mk	r1 2.402 264 -1.786	
0.0						
.00			1			
0.0						
0.0			1			
0.0						
0.0	M	√	hry			
0.0						—
0.0	and					
0.0 Mr have approved	mm		עי	Mrnwing	Manason	home
					·	
0.0						
enter 2.402000 GHz Res BW 100 kHz		W 300 kHz		Sween	Span 8.000 1.000 ms (100	
SG	#VD	W 300 KHZ	STATUS	Gweep	1.000 ms (100	τριομ

01:42:50 PM Jul 21, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Fast +++ IFGain:Low Mkr1 2.402 3 GHz Ref Offset 2.01 dB Ref 20.00 dBm -1.951 dBm 10 dB/div og 10.1 n n 30 1.79 d 40.0 $\sqrt{2}$ \Diamond^4 50. $\langle \rangle^3$ Start 2.30600 GHz Stop 2.40600 GHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) #Res BW 100 kHz FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.402 3 GHz 2.400 0 GHz 2.390 0 GHz 2.359 1 GHz -1.951 dBm -56.119 dBm -58.743 dBm -56.424 dBm N N N N 1 f f f 2 3 4 5 6 7 8 9 10 f > STATUS

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

lent Spectr		/zer - Swept S/									
enter Fi	_R ⊧ req 2.	50 Ω AC 5260000	00 GHz	PNO: Fast ↔ FGain:Low	SENSE:INT • Trig: Fi #Atten:	ree Run 30 dB			Log-Pwr 100/100	01:45:5	2 PM Jul 21, 2021 RACE 1 2 3 4 5 6 TYPE MWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
dB/div		ffset 2.08 di 20.00 dBn									80 0 GHz .913 dBm
	1										
	A2										
) ~~	Wanav	phonesis	www.anglungen	own Money	mohunin	when the ser	burhantle	-	Mammaln	Ultrackey with the second	Mar Marghala and State
art 2.47	'600 G	H7								Stop 2	.57600 GHz
es BW				#VE	W 300 k	Hz			Swee		s (1001 pts)
MODE TF N 1 N 1 N 1 N 1	RC SCL f f f f		× 2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.494 3 GHz	-57.853	dBm dBm dBm	FUNCTION	FUNCTION W	/IDTH		FUNCTION VALUE	^
	•										
											×
							S	TATUS			

S

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

19.6 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-43.61	-30	Pass
NVNT	BLE 1M	2442	Ant1	-42.43	-30	Pass
NVNT	BLE 1M	2480	Ant1	-43.52	-30	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

gilent Spect	trum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGN AUTO	01:42:55 PM Jul 21, 2021
enter F	Freq 2.402000000 G	Hz PNO: Wide ↔ IFGain:Low		Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
dB/div	Ref Offset 2.01 dB Ref 20.00 dBm			M	lkr1 2.402 265 5 GHz -1.971 dBm
0.0					
		mm		1 magnowing	
.0			V	and the star	
.0	M				- m - m
.0	ww				- worker
.0					
.0					
.0					
0.0					
	.4020000 GHz / 100 kHz	#VE	3W 300 kHz	Sw	Span 1.500 MHz /eep 1.000 ms (1001 pts)
G				STATUS	

lent Spect		yzer - Swept SA										
	RF	50 Ω AC			SENSE:INT		AL	IGN AUTO	. L. a. a. Darma			PM Jul 21, 2021
enter F	req 1	3.2650000	Р	'NO: Fast 🔸	Trig: Fr #Atten:			Avg Type Avg Hold:	: Log-Pwr 10/10			ACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
dB/div		Offset 2.01 dE 20.00 dBm								М		412 GHz 681 dBm
g												
1.0		1										
		•										
0												
o ——												
0												-31.97 dBm
												<mark>∕</mark> 2
			34	5							m	for any marine
	AND THE A	work and a start	mangahan	L. L.		draw anon	mono	and the second	A BARNEL AND			
0 mare	,											
art 30 I es BW		íHz		#VB	W 300 k	Hz			S	weep 2		26.50 GHz (1001 pts)
MODE T		×		Y		FUNCTION	FUNCT	ION WIDTH		FUNCTIO	N VALUE	^
N N	1 f 1 f		2.412 GHz 25.229 GHz	-3.681 -45.584								
N	f		4.980 GHz	-56.554	dBm							
N N	1 f 1 f		7.177 GHz 9.586 GHz	-55.424 -56.443								
N												
												~
								STATUS				

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

ilent Specti	rum Analy	vzer - Swept SA										
	RF	50 Ω AC			SENSE:INT		AL	IGNAUTO		0	1:44:44 PM Jul 21,	
enter F	req 13	3.2650000	P	NO: Fast ++ Gain:Low		ree Run : 30 dB		Avg Typ Avg Hold	e: Log-Pwr : 10/10		TRACE 123 TYPE MWW DET P N N	HALALAF
) dB/div		ffset 2.03 dE 20.00 dBm								Mki	1 2.439 C -2.720 d	
^g												
0.0	l											
.00	Y											
1.0												
.0												_
1.0											-32	46 dBm 2
1.0				-								_
.0			\rightarrow			. La norman	and the second	harring a fager and	w water and graph	لليسميه ومعطويهم	The state of the second state	, Lynn L _{wy} A
.0	all works	the second se	an a	mane the stand	Con and the second							
.0												
art 30 ľ les BW		Hz		#VB	W 300 I	(Hz			Sv		Stop 26.50 530 s (1001	
R MODE T	1 f	>	2.439 GHz	ү -2.720		FUNCTION	FUNCT	ION WIDTH		FUNCTION V.	ALUE	^
N N	1 f		25.229 GHz 4.821 GHz	-44.890 -56.082								
	f		7.442 GHz 9.771 GHz	-55.121	dBm							
N	T		9.771 GHZ	-55.058	авт							
4 N 5 N 7 8												
												~
												>
i								STATUS				

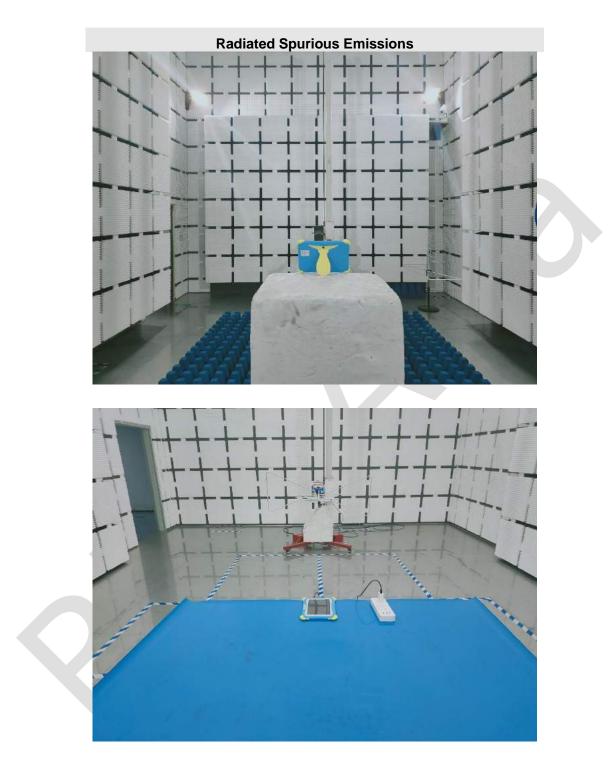
Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

ilent Spectr	um Analyzer - Sw								
enter F	RF 50 Ω req 13.265	000000 GHz	PNO: Fast +++	ENSE:INT Trig: Free R #Atten: 30 d	un	IGN AUTO Avg Type: Avg Hold:		TI	7 PM Jul 21, 2021 RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
) dB/div	Ref Offset 2. Ref 20.00								492 GHz 159 dBm
0.0	1								
.00									
3.0 3.0									
0.0									-32.05 dBm
0.0									<mark>2</mark>
.0			4		MARINA	philling deserves	- www.	مدار ماروه بور المروم می	worknow
.0 particular	without When Marking	wither the for the second state of the	and marken and the second	MANSAN CONTRACT					
1.0									
art 30 M Res BW	/IHz 100 kHz		#VB\	V 300 kHz			Swe		26.50 GHz 5 (1001 pts)
R MODE T N 1 2 N 1	f f	× 2.492 GH 25.229 GH	z -45.578	dBm	rion Func	TION WIDTH	F	UNCTION VALUE	*
3 N 1 1 N 1	f f	5.006 GH 7.415 GH	z -55.279	dBm					
N 1 N 1 	f	9.983 GH	z -56.070 (dBm					
1									
)									
									×
						STATUS			

S

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission



APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Conducted Emissions at AC Power Line (150kHz-30MHz)

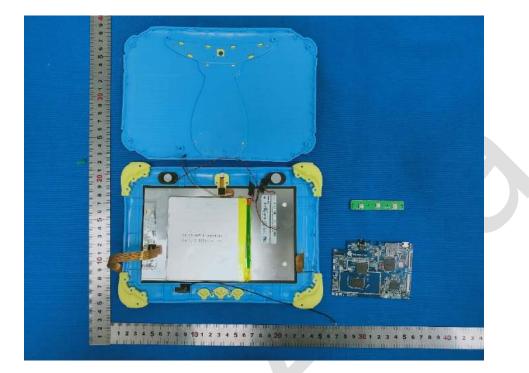
Report No.: BLA-EMC-202106-A3501 Page 60 of67

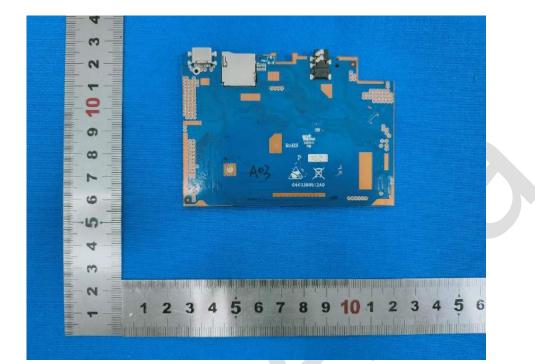
APPENDIX B: PHOTOGRAPHS OF EUT

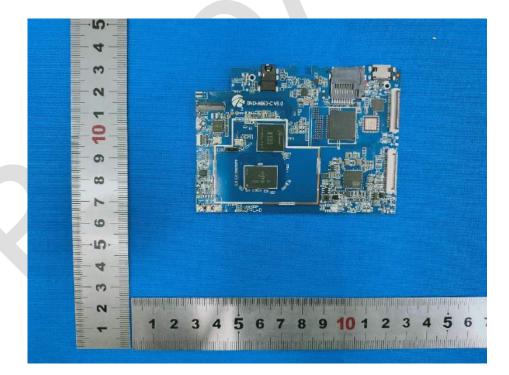
Report No.: BLA-EMC-202106-A3501 Page 61 of67

Report No.: BLA-EMC-202106-A3501 Page 62 of67

Report No.: BLA-EMC-202106-A3501 Page 63 of67




BlueAsia of Technical Services(Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Report No.: BLA-EMC-202106-A3501 Page 67 of 67

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.